27,489
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Measuring and tracking vitamin B12: A review of current methods with a focus on optical spectroscopy

, , &

References

  • Clarke, R. (2007) Homocysteine, B vitamins, and the risk of dementia. Am. J. Clin. Nutr. 85: 329–330.
  • Morris, M. C., Schneider, J. A., and Tangney, C. C. (2006) Thoughts on B-vitamins and dementia. J. Alzheimer's Dis.: JAD 9: 429–433.
  • Smith, A. D. (2008) The worldwide challenge of the dementias: A role for B vitamins and homocysteine?. Food Nutr. Bull. 29: 143–172.
  • Blasko, I., Hinterberger, M., Kemmler, G., Jungwirth, S., Krampla, W., Leitha, T., Heinz Tragl, K., and Fischer, P. (2013) Conversion from mild cognitive impairment to dementia: Influence of folic acid and vitamin B12 use in the vita cohort. J. Nutr., Health Aging 16: 687–694.
  • Blundo, C., Marin, D., and Ricci, M. (2011) Vitamin B12 deficiency associated with symptoms of frontotemporal dementia. Neurol Sci. 32: 101–105.
  • Hunt, A., Harrington, D., and Robinson, S. (2014) Vitamin B12 deficiency. BMJ 349: g5226.
  • Golding, P. H. (2016) Experimental vitamin B12 deficiency in a human subject: a longitudinal investigation of the performance of the holotranscobalamin (HoloTC, Active-B12) immunoassay. SpringerPlus 5: 1–17.
  • Banerjee, R. (1997) The Yin-Yang of cobalamin biochemistry. Chem. Biol. 4: 175–186.
  • Kivipelto, M., Annerbo, S., Hultdin, J., Bäckman, L., Viitanen, M., Fratiglioni, L., and Lökk, J. (2009) Homocysteine and holo-transcobalamin and the risk of dementia and Alzheimers disease: A prospective study. Eur. J. Neurol. 16: 808–813.
  • Lewis, M. S., Miller, L. S., Johnson, M. A., Dolce, E. B., Allen, R. H., and Stabler, S. P. (2005) Elevated methylmalonic acid is related to cognitive impairment in older adults enrolled in an elderly nutrition program. J. Nutr. Elder. 24: 47–65.
  • Quadri, P., Fragiacomo, C., Pezzati, R., Zanda, E., Tettamanti, M., and Lucca, U. (2005) Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin. Chem. Lab. Med. 43: 1096–1100.
  • Engelborghs, S., Vloeberghs, E., Maertens, K., Marien, P., Somers, N., Symons, A., Clement, F., Ketels, V., Saerens, J., Goeman, J., Pickut, B. A., Vandevivere, J., and De Deyn, P. P. (2004) Correlations between cognitive, behavioural and psychological findings and levels of vitamin B12 and folate in patients with dementia. Int. J. Geriatr. Psychiat. 19: 365–370.
  • Ariogul, S., Cankurtaran, M., Dagli, N., Khalil, M., and Yavuz, B. (2005) Vitamin B12, folate, homocysteine and dementia: are they really related?. Arch. Gerontol. Geriatr. 40: 139–146.
  • Bates, C. J. (1999) Diagnosis and detection of vitamin deficiencies. Br. Med. Bull. 55: 643–657.
  • Rothenberg, S. P., and Quadros, E. V. (1997) Quantitative methods for measurement of transcobalamin II. Methods Enzymol 281: 261–268.
  • United States National Library of Medicine. (2014) Vitamin B12 level. https://www.nlm.nih.gov/medlineplus/ency/article/003705.htm.
  • Australian Government Department of Health and Ageing. (2013) MBS review: Vitamin B12 testing protocol. http://www.health.gov.au/internet/main/publishing.nsf/Content/VitaminB12testing.
  • Raven, J. L., Robson, M. B., Morgan, J. O., and Hoffbrand, A. V. (1972) Comparison of three methods for measuring vitamin B12 in serum: Radioisotopic, euglena gracilis and lactobacillus leichmannii. Br. J. Haematol. 22: 21–31.
  • National Health and Medical Research Council New Zealand Ministry of Health. (2006) Nutrient reference values for Australia and New Zealand including recommended dietary intakes. https://www.nrv.gov.au/nutrients/vitamin-b12.
  • Devalia, V., Hamilton, M. S., Molloy, A. M., and British Committee for Standards in Haematology. (2014) Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 166: 496–513.
  • Lahner, E., and Annibale, B. (2009) Pernicious anemia: New insights from a gastroenterological point of view. World J. Gastroentero. 15: 5121–5128.
  • Baik, H. W., and Russell, R. M. (1999) Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 19: 357–377.
  • Risch, M., Meier, D. W., Sakem, B., Medina Escobar, P., Risch, C., Nydegger, U., and Risch, L. (2015) Vitamin B12 and folate levels in healthy Swiss senior citizens: A prospective study evaluating reference intervals and decision limits. BMC Geriatr. 15: 82.
  • Mirkazemi, C., Peterson, G. M., Tenni, P. C., and Jackson, S. L. (2012) Vitamin B12 deficiency in Australian residential aged care facilities. J. Nutr., Health Aging 16: 277–280.
  • Stabler, S. P. (1995) Screening the older population for cobalamin (Vitamin B12) deficiency. J. Am. Geriatr. Soc. 43: 1290–1297.
  • Hvas, A. M., Ellegaard, J., and Nexo, E. (2001) Increased plasma methylmalonic acid level does not predict clinical manifestations of vitamin B12 deficiency. Arch Intern Med 161: 1534–1541.
  • Lee, D. S. C., and Griffiths, B. W. (1985) Human serum vitamin B12 assay methods – A review. Clin. Biochem. 18: 261–266.
  • Karmi, O., Zayed, A., Baraghethi, S., Qadi, M., and Ghanem, R. (2011) Measurement of vitamin B12 concentration: A review on available methods. IIOAB J. 2: 23–32.
  • Irving, J. B., and Judith, R. M. (1997) Ultraviolet and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scattering spectroscopy. Phys. Med. Biol. 42: 803.
  • Carey, P. R. (1978) Resonance Raman spectroscopy in biochemistry and biology. Q. Rev. Biophys. 11: 309–370.
  • Liao, H., Nehl, C. L., and Hafner, J. H. (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1: 201–208.
  • Capps, B. F., Hobbs, N. L., and Fox, S. H. (1949) A method for the microbiological assay of vitamin B12. J. Bio. Chem. 178: 517.
  • Hoffmann, C. E., and Stokstad, E. L. (1949) The microbiological assay of vitamin B12 with Lactobacillus leichmannii. J. Biol. Chem. 181: 635–644.
  • Ford, J. E. (1952) The microbiological assay of vitamin B12. Brit. J. Nutr. 6: 324–330.
  • Skeggs, H. R., Nepple, H. M., Valentik, K. A., Huff, J. W., and Wright, L. D. (1950) Observations on the use of Lactobacillus leichmannii 4797 in the microbiological assay of vitamin B12. J. Biol. Chem. 184: 211–221.
  • Kelleher, B. P., and Broin, S. D. O. (1991) Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J. Clin. Pathol. 44: 592–595.
  • Shojania, A. M. (1980) Problems in the diagnosis and investigation of megaloblastic anemia. Can. Med. Assoc. J. 122: 999–1004.
  • Engvall, E., and Perlmann, P. (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8: 871–874.
  • Frater-Schroder, M., Kierat, L., Andres, R. Y., and Römer, J. (1982) Solid-phase immunoassay for the vitamin B12-binding protein transcobalamin II in human serum. Anal. Biochem. 124: 92–101.
  • Greibe, E., and Nexo, E. (2011) Vitamin B12 absorption judged by measurement of holotranscobalamin, active vitamin B12: Evaluation of a commercially available EIA kit. Clin. Chem. Lab. Med. 49: 1883–1885.
  • Hampel, D., Shahab-Ferdows, S., Domek, J. M., Siddiqua, T., Raqib, R., and Allen, L. H. (2014) Competitive chemiluminescent enzyme immunoassay for vitamin B12 analysis in human milk. Food Chem. 153: 60–65.
  • Nexo, E., Christensen, A.-L., Petersen, T. E., and Fedosov, S. N. (2000) Measurement of transcobalamin by ELISA. Clin. Chem. 46: 1643–1649.
  • Kumar, L. S. S., and Thakur, M. (2011) Competitive immunoassay for analysis of vitamin B 12. Anal. Biochem. 418: 238–246.
  • Lau, K. S., Gottlieb, C., Wasserman, L. R., and Herbert, V. (1965) Measurement of serum vitamin B12 level using radioisotope dilution and coated charcoal. Blood 26: 202–214.
  • Green, R., Newmark, P. A., Musso, A. M., and Mollin, D. L. (1974) The use of chicken serum for measurement of serum vitamin B12 concentration by radioisotope dilution: description of method and comparison with microbiological assay results. Br. J. Haematol. 27: 507–526.
  • Kihara, K., Nakamura, H., Sakata, H., Sugimura, H., Sato, K., Tsunoda, S., Demura, H., Horikawa, N., and Tanaka, A. (1985) Basic and clinical studies on the simultaneous measurement of serum and red blood cell folate and serum vitamin B12 concentrations using Corning vitamin B12 (57Co)/folate (125I) radioassay kit. Kakuigaku 22: 233–244.
  • Sakata, H., Iino, Y., Kihara, K., Sugimura, H., Sato, K., Demura, R., and Demura, H. (1989) Basic and clinical studies on the simultaneous measurement of serum and red blood cell folate and vitamin B12 concentrations using Baxter travenol (57Co)vitamin B12/(125I)folate radioassay kit. Kakuigaku 26: 263–270.
  • Wide, L. and Killander, A. (1971) A radiosorbent technique for the assay of serum vitamin b12. Scand. J. Clin. Lab. Invest. 27: 151–159.
  • Kumar, S. S., Chouhan, R. S., and Thakur, M. S. (2010) Trends in analysis of vitamin B12. Anal. Biochem. 398: 139–149.
  • Snyder, L. R., Dolan, J. W., and Gant, J. R. (1979) Gradient elution in high-performance liquid chromatography. I. Theoretical basis for reversed-phase systems. J. Chromatogr. A 165: 3–30.
  • Stefova, M., Stafilov, T., Stojanoski, K., and Cepreganova-Krstic, B. (1997) Determination of vitamin B12 in multivitamin tablets by high performance liquid chromatography. Anal. Lett. 30: 2723–2731.
  • Chatzimichalakis, P. F., Samanidou, V. F., Verpoorte, R., and Papadoyannis, I. N. (2004) Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J. Sep. Sci. 27: 1181–1188.
  • Papadoyannis, I. N., Tsioni, G. K., and Samanidou, V. F. (1997) Simultaneous determination of nine water and fat soluble vitamins after SPE separation and RP-HPLC analysis in pharmaceutical preparations and biological fluids. J. Liq. Chromatogr. R. T. 20: 3203–3231.
  • Sami, R., Li, Y., Qi, B., Wang, S., Zhang, Q., Han, F., Ma, Y., Jing, J., and Jiang, L. (2014) HPLC analysis of water-soluble vitamins (B2, B3, B6, B12, and C) and fat-soluble vitamins (E, K, D, A, and β-Carotene) of Okra (Abelmoschus esculentus). J. Chem. 2014: 6.
  • Ewing, A. G., Wallingford, R. A., and Olefirowicz, T. M. (1989) Capillary electrophoresis. Anal. Chem. 61: 292A–303A.
  • Karger, B. L., Cohen, A. S., and Guttman, A. (1989) High-performance capillary electrophoresis in the biological sciences. J. Chromatogr. B: Biomed. Sci. Appl. 492: 585–614.
  • Lambert, D., Adjalla, C., Felden, F., Benhayoun, S., Nicolas, J. P., and Guéant, J. L. (1992) Identification of vitamin B12 and analogues by high- performance capillary electrophoresis and comparison with high-performance liquid chromatography. J. Chromatogr. A 608: 311–315.
  • Glass, G. B. J., Boyd, L. J., Gellin, G. A., and Stephanson, L. (1954) Uptake of radioactive vitamin B12 by the liver in humans: Test for measurement of intestinal absorption of vitamin B12 and intrinsic factor activity. Arch. Biochem. Biophys. 51: 251–257.
  • Glass, G. B., Boyd, L. J., and Gellin, G. A. (1955) Surface scintillation measurements in humans of the uptake of parenterally administered radioactive vitamin B12. Blood 10: 95–114.
  • Doscherholmen, A., and Hagen, P. S. (1957) Radioactive vitamin B12 absorption studies: results of direct measurement of radioactivity in the blood. Blood 12: 336–346.
  • Goldberg, S. R., Trivedi, B. K., and Oliner, L. (1957) Radioactive vitamin B12 studies. Experience with the urinary excretion test and the measurement of absorbed plasma radioactivity. J. Lab. Clin. Med. 49: 583–589.
  • Reizenstein, P. G., Cronkite, E. P., and Cohn, S. H. (1961) Measurement of absorption of vitamin B12 by whole-body gamma spectrometry. Blood 18: 95–101.
  • Tait, C. E., and Hesp, R. (1976) Measurement of 57Co vitamin B12 uptake using a static whole body counter. Brit. J. Radiol. 49: 948–950.
  • Smith, T., and Hesp, R. (1979) Measurement of 57Co-labelled vitamin B12 using a liquid-scintillator whole-body counter. Brit. J. Radiol. 52: 832–835.
  • Cardarelli, J. A., Slingerland, D. W., Burrows, B. A., and Miller, A. (1985) Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera. J. Nucl. Med. 26: 941–943.
  • Kristensen, H. P., and Hald, T. (1962) Measurement of plasma radioactivity following oral administration of 57Co-labelled B12. A simple diagnostic test. Dan. Med. Bull. 9: 167–170.
  • Nelp, W. B., McAfee, J. G., and Wagner Jr, H. N. (1963) Single measurement of plasma radioactive vitamin B12 as a test for pernicious anemia. J. Lab. Clin. Med. 61: 158–165.
  • Carkeet, C., Dueker, S. R., Lango, J., Buchholz, B. A., Miller, J. W., Green, R., Hammock, B. D., Roth, J. R., and Anderson, P. J. (2006) Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled14C-cobalamin. PNAS 103: 5694–5699.
  • Vogel, J. S., Turteltaub, K. W., Finkel, R., and Nelson, D. E. (1995) Accelerator mass spectrometry. Anal. Chem. 67: 353A–359A.
  • Vogel, J. S. and Turteltaub, K. W. (1998) Accelerator mass spectrometry as a bioanalytical tool for nutritional research. In Mathematical modeling in experimental nutrition, A., Clifford, H.-G., Müller, Eds., Springer, New York, pp. 397–410.
  • Nie, S., and Zare, R. N. (1997) Optical detection of single molecules. Annu. Rev. Biophys. Biomol. Struct. 26: 567–596.
  • Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., and Otto, C. (2003) Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J. 84: 3968–3981.
  • Tiantian, C., Huaimin, G., Xiaojuan, Y., and Fangfang, L. (2011) Normal raman and SERS spectroscopy of the vitamin E. J. Phys. Conf. Ser. 277: 012010.
  • Hancewicz, T. M., and Petty, C. (1995) Quantitative analysis of vitamin a using Fourier transform Raman spectroscopy. Spectrochim. Acta Part A: Mol. Spectrosc. 51: 2193–2198.
  • Lee, B. (2003) Review of the present status of optical fiber sensors. Opt. Fiber Technol. 9: 57–79.
  • Velasco-Garcia, M. N. (2009) Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 20: 27–33.
  • Schartner, E. P., Tsiminis, G., François, A., Kostecki, R., Warren-Smith, S. C., Nguyen, L. V., Heng, S., Reynolds, T., Klantsataya, E., Rowland, K. J., Abell, A. D., Ebendorff-Heidepriem, H., and Monro, T. M. (2015) Taming the light in microstructured optical fibers for sensing. Int. J. Appl. Glass Sci. 6: 229–239.
  • Valeur, B., and Brochon, J.-C., New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences. Springer Berlin Heidelberg, New York, 2001.
  • Chen, J., Li, B. Q., Cui, Y. Q., Yu, E., and Zhai, H. L. (2015) A fast and effective method of quantitative analysis of VB1, VB2 and VB6 in B-vitamins complex tablets based on three-dimensional fluorescence spectra. J. Food Compos. Anal. 41: 122–128.
  • Ferraro, J. R., Nakamoto, K., and Brown, C. W. (2003) Introductory Raman Spectroscopy. Academic Press, San Diego.
  • Naumann, D. (2001) FT-infrared and FT-Raman spectroscopy in biomedical research. Appl. Spectrosc. Rev. 36: 239–298.
  • Movasaghi, Z., Rehman, S., and Rehman, I. U. (2007) Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42: 493–541.
  • Marazuela, D., and Moreno-Bondi, M. C. (2002) Fiber-optic biosensors–an overview. Anal. Bioanal. Chem. 372: 664–682.
  • Vanexan, R. J., and Hardy, M. H. Localization of vitamin a by autofluorescence during induced metaplastic changes in cultures of skin. In Vitro 15: 631–640.
  • Song, Z., and Hou, S. (2003) Sub-picogram determination of Vitamin B12 in pharmaceuticals and human serum using flow injection with chemiluminescence detection. Anal. Chim. Acta 488: 71–79.
  • Akbay, N., and Gök, E. (2008) Determination of vitamin B12 using a chemiluminescence flow system. J. Anal. Chem. 63: 1073–1077.
  • Mark, D., Haeberle, S., Roth, G., Von Stetten, F., and Zengerle, R. (2010) Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 39: 1153–1182.
  • Lok, K. S., Muttalib, S. Z. b. A., Lee, P. P. F., Kwok, Y. C., and Nguyen, N.-T. (2012) Rapid determination of vitamin B12 concentration with a chemiluminescence lab on a chip. Lab. Chip. 12: 2353–2361.
  • Kamruzzaman, M., Alam, A.-M., Kim, K. M., Lee, S. H., Kim, Y. H., Kabir, A. N. M. H., Kim, G.-M., and Dang, T. D. (2012) Chemiluminescence microfluidic system of gold nanoparticles enhanced luminol-silver nitrate for the determination of vitamin B12. Biomed. Microdevices 15: 195–202.
  • Murillo Pulgarin, J. A., Garcia Bermejo, L. F., and Sanchez Garcia, M. N. (2011) Flow injection chemiluminescence determination of vitamin B12 using on-line UV-persulfate photooxidation and charge coupled device detection. Luminescence 26: 536–542.
  • Murillo Pulgarín, J. A., García Bermejo, L. F., and Sánchez García, M. N. (2011) Chemiluminescent determination of vitamin b12 using charge coupled device (CCD). Anal. Lett. 44: 2593–2605.
  • Zhang, L., Rong, W., Lu, C., and Zhao, L. (2014) Organo-modified layered double hydroxide-catalyzed Fenton-like ultra-weak chemiluminescence for specific sensing of vitamin B12 in egg yolks. Talanta 129: 126–131.
  • Liu, B. S., Gao, J., and Yang, G. L. (2005) Determination of vitamin B12 concentration by fluorescence quenching with acridine orange-rhodamine 6G energy transfer system. Guang Pu Xue Yu Guang Pu Fen Xi/Spect.Spectral Anal. 25: 1080–1082.
  • Xu, H., Li, Y., Liu, C., Wu, Q., Zhao, Y., Lu, L., and Tang, H. (2008) Fluorescence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection. Talanta 77: 176–181.
  • Shang, Z. B., Wen, Y. J., Yan, X. Q., Sun, H. H., Wang, Y., and Jin, W. J. (2014) Synthesis of a novel fluorescent probe based on 7-nitrobenzo-2-oxa-1,3-diazole skeleton for the rapid determination of vitamin B12 in pharmaceuticals. Luminescence 29: 598–602.
  • Vaishnavi, E. and Renganathan, R. (2013) CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form. Spectrochim. Acta—Part A: Mol. Biom. Spectrosc. 115: 603–609.
  • Gholami, J., Manteghian, M., Badiei, A., Javanbakht, M. and Ueda, H. (2015) Label free detection of vitamin B12 based on fluorescence quenching of graphene oxide nanolayer. Fullerenes, Nanotubes Carbon Nanostructures 23: 878–884.
  • Wang, J., Wei, J., Su, S., and Qiu, J. (2015) Novel fluorescence resonance energy transfer optical sensors for vitamin B12 detection using thermally reduced carbon dots. New J. Chem. 39: 501–507.
  • Oh, Y., Kim, K., Hwang, S., Ahn, H., Oh, J. W., and Choi, J. R. (2016) Recent advances of nanostructure implemented spectroscopic sensors—A brief overview. Appl. Spectrosc. Rev. 51: 656–668.
  • Wang, J., Zhang, H. Z., Li, R. S., and Huang, C. Z. (2016) Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis. TRAC—Trend. Anal. Chem. 80: 429–443.
  • Strobbia, P., Languirand, E., and Cullum, B. M. (2015) Recent advances in plasmonic nanostructures for sensing: A review. Opt. Eng. 54: 100902.
  • Vyas, P., and O'Kane, A. A. (2011) Determination of vitamin B12 in fortified bovine milk-based infant formula powder, fortified soya-based infant formula powder, vitamin premix, and dietary supplements by surface plasmon resonance: Collaborative study. J. AOAC Int. 94: 1217–1226.
  • Cannon, M. J., Myszka, D. G., Bagnato, J. D., Alpers, D. H., West, F. G., and Grissom, C. B. (2002) Equilibrium and kinetic analyses of the interactions between vitamin B12 binding proteins and cobalamins by surface plasmon resonance. Anal. Biochem. 305: 1–9.
  • Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. (1999) Ultrasensitive chemical analysis by raman spectroscopy. Chem. Rev. 99: 2957–2975.
  • Krafft, C., and Sergo, V. (2006) Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Spectroscopy 20: 195–218.
  • Ferraro, J. R., Nakamoto, K., and Brown, C. W. (2003) Introductory Raman Spectroscopy: Second Edition. Academic Press, New York.
  • Tsiminis, G., Chu, F., Warren-Smith, S. C., Spooner, N. A., and Monro, T. M. (2013) Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers. Sensors (Basel, Switzerland) 13: 13163–13177.
  • Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., and Feld, M. S. (2002) Surface-enhanced Raman scattering and biophysics. J. Phys. Con. Mat. 14: R597–R624.
  • Day, P. (1967) A theory of the optical properties of vitamin B 12 and its derivatives. Theor. Chim. Acta 7: 328–341.
  • Mayer, E., Gardiner, D. J., and Hester, R. E. (1973) Resonance Raman spectra of vitamin B12 and some cobalt corrinoid derivatives. J. Chem. Soc., Faraday Transactions 2: Mol. Chem. Phys. 69: 1350–1358.
  • Andruniow, T., Zgierski, M. Z., and Kozlowski, P. M. (2002) Vibrational analysis of methylcobalamin. J. Phys. Chem. A 106: 1365–1373.
  • Mayer, E., Gardiner, D. J., and Hester, R. E. (1973) Resonance Raman spectra of vitamin B12 and dicyanocobalamin. Biochim. et Biophys. Acta (BBA)— Gen. Subjects 297: 568–570.
  • Wozniak, W. T., and Spiro, T. G. (1973) Resonance Raman spectra of vitamin B12 derivatives (16). J. Am. Chem. Soc. 95: 3402–3404.
  • Tsai, C. W., and Morris, M. D. (1975) Application of resonance Raman spectrometry to the determination of vitamin b12. Anal. Chim. Acta 76: 193–198.
  • Nestor, J., Spiro, T. G., and Klauminzer, G. (1976) Coherent anti-Stokes Raman scattering (CARS) spectra, with resonance enhancement, of cytochrome c and vitamin B12 in dilute aqueous solution. Proc. National Acad. Sci. 73: 3329–3332.
  • Rajoria, D. S., and Nath, A. (1977) IR spectroscopic studies of some cobalamins. J. Inorg. Nucl. Chem. 39: 1291–1294.
  • Nie, S., Marzilli, L. G., and Yu, N. T. (1989) Near-infrared Fourier transform Raman spectroscopy of photolabile organocobalt B12 and model compounds. 1. Detection of the cobalt-carbon stretching mode in the solid state and in solution. J. Am. Chem. Soc. 111: 9256–9258.
  • Nie, S., Marzilli, P. A., Marzilli, L. G., and Yu, N.-T. (1990) Near-IR Fourier transform Raman spectroscopy of photolabile organocobalt B12 and model compounds. Identification of the Co-C bond stretch in cobalamins. J. Chem. Soc., Chem. Comm. 770–771.
  • Dong, S., Padmakumar, R., Banerjee, R., and Spiro, T. G. (1999) Co-C bond activation in B12-dependent enzymes: Cryogenic resonance Raman studies of methylmalonyl-coenzyme a mutase. J. Am. Chem. Soc. 121: 7063–7070.
  • Stich, T. A., Brooks, A. J., Buan, N. R., and Brunold, T. C. (2003) Spectroscopic and computational studies of Co3+-corrinoids: Spectral and electronic properties of the B12 cofactors and biologically relevant precursors. J. Am. Chem. Soc. 125: 5897–5914.
  • Park, K., and Brunold, T. C. (2013) Combined spectroscopic and computational analysis of the vibrational properties of vitamin B12 in its Co3+, Co2+, and Co1+ oxidation states. J. Phys. Chem. B 117: 5397–5410.
  • Dong, S., Padmakumar, R., Maiti, N., Banerjee, R. and Spiro, T. G. (1998) Resonance Raman spectra show that coenzyme B12 binding to methylmalonyl-coenzyme a mutase changes the Corrin ring conformation but leaves the Co-C bond essentially unaffected (4). J. Am. Chem. Soc. 120: 9947–9948.
  • Huhta, M. S., Chen, H. P., Hemann, C., Hille, C. R., and Marsh, E. N. G. (2001) Protein-coenzyme interactions in adenosylcobalamin-dependent glutamate mutase. Biochem. J. 355: 131–137.
  • Kozlowski, P. M., Andruniow, T., Jarzecki, A. A., Zgierski, M. Z., and Spiro, T. G. (2006) DFT analysis of Co−alkyl and Co−adenosyl vibrational modes in B12-cofactors. Inorg. Chem. 45: 5585–5590.
  • Zhang, Z., Wang, B., Yin, Y., and Mo, Y. (2009) Surface-enhanced Raman spectroscopy of Vitamin B12 on silver particles in colloid and in atmosphere. J. Mol. Struct. 927: 88–90.
  • Ru, E. C. L., and Etchegoin, P. G. (2009) Principles of surface-enhanced Raman spectroscopy. Elsevier B.V., New York.
  • Negri, P., and Dluhy, R. A. (2013) Ag nanorod based surface-enhanced Raman spectroscopy applied to bioanalytical sensing. J. Biophotonics 6: 20–35.
  • Zeng, Z., Liu, Y., and Wei, J. (2016) Recent advances in surface-enhanced Raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. TRAC—Trend. Anal. Chem. 75: 162–173.
  • Dongming, L., Shuhai, J., Jun, W., and Yang, J. (2013) Ordered silver nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of vitamin C in serum. Sens. Actuators, A 201: 416–420.
  • Kokaislová, A. and Matějka, P. (2012) Surface-enhanced vibrational spectroscopy of B vitamins: What is the effect of sers-active metals used? Anal. Bioanal. Chem. 403: 985–993.
  • Pallaoro, A., Braun, G. B., and Moskovits, M. (2015) Biotags based on surface-enhanced Raman can be as bright as fluorescence tags. Nano Lett. 15: 6745–6750.