216
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Recent research on inherent molecular structure, physiochemical properties, and bio-functions of food and feed-type Avena sativa oats and processing-induced changes revealed with molecular microspectroscopic techniques

&

References

  • Butt, M. S., Tahir-Nadeem, M., Khan, M. K. I., Shabir, R., and Butt, M. S. (2008) Oat: Unique among the cereals. Eur. J. Nutr. 47: 68–79.
  • Varma, P., Bhankharia, H., and Bhatia, S. (2016) Oats: A multi-functional grain. J. Clin. Prev. Cardiol. 5: 9.
  • Gustav, L. and Fuhr, M. (2006) Low Lignin Hull, High Oil Groat Oat Grain in Lactating Dairy Cow Rations.
  • Chappell, A., Scott, K. P., Griffiths, I. A., Cowan, A. A., Hawes, C., Wishart, J., et al. (2017) The agronomic performance and nutritional content of oat and barley varieties grown in a northern maritime environment depends on variety and growing conditions. J. Cereal Sci. 74: 1–10.
  • Cerquiglini, C., Claro, J., Giusti, A. M., Karumathy, G., Mancini, D., Marocco, E., et al. (2016) Food outlook June 2016. Food and Agriculture Organization of the United Nations, Rome, 14.
  • McCartney, J. F. D. (2004) Fodder oats in North America. In Fodder oats: A world overview. Suttie, J. M., Reynolds, S. G., Eds. Food and Agriculture Organization of the United Nations, Rome.
  • Prates, L. L. and Yu, P. (2017) Detect unique molecular structure associated with physiochemical properties in CDC varieties of oat grain with unique nutrient traits [Feed Type vs. Milling Type] in comparison with barley grain using advanced molecular spectroscopy as a non-destructive b. J. Cereal Sci. 74: 37–45.
  • Sterna, V., Zute, S., and Brunava, L. (2016) Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia 8: 252–256.
  • Yu, P. (2007) Protein molecular structures, protein SubFractions, and protein availability affected by heat processing: A review. Am. J. Biochem. Biotechnol. 3: 70–90.
  • Zhang, X. and Yu, P. (2012) Relationship of carbohydrate molecular spectroscopic features in combined feeds to carbohydrate utilization and availability in ruminants. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 92: 225–233.
  • Calvo, N. L., Kaufman, T. S., and Maggio, R. M. (2015) A PCA-based chemometrics-assisted ATR-FTIR approach for the classification of polymorphs of cimetidine: Application to physical mixtures and tablets. J. Pharm. Biomed. Anal. 107: 419–425.
  • Jaiswal, P., Jha, S. N., Borah, A., Gautam, A., Grewal, M. K., and Jindal, G. (2015) Detection and quantification of soymilk in cow-buffalo milk using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Food Chem. 168:41–47.
  • Wood, P. J. and J. Weisz, P. F. (1991) Potential for beta-glucan Enrichment in brans derived from oat (Avena satina L.) cultivars of different (1-3),(1-4)-beta-D-glucan concentrations. Cereal Chem. 68: 48–51.
  • Tester, R. F., Karkalas, J., and Qi, X. (2004) Starch - composition, fine structure and architecture. J. Cereal Sci. 39: 151–165.
  • White, D. A., Fisk, I. D., and Gray, D. A. (2006) Characterisation of oat (Avena sativa L.) oil bodies and intrinsically associated E-vitamers. J. Cereal Sci. 43: 244–249.
  • Yan, W., Frégeau-Reid, J., Pageau, D., and Martin, R. (2016) Genotype-by-environment interaction and trait associations in two genetic populations of oat. Crop Sci. 56: 1136.
  • Peterson, D. M. and Wood, D. F. (1997) Composition and structure of high-oil oat. J. Cereal Sci. 26: 121–128.
  • Damiran, D. and Yu, P. (2010) Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): A novel approach. J. Agric. Food Chem. 58: 2377–2387.
  • Biel, W., Bobko, K., and Maciorowski, R. (2009) Chemical composition and nutritive value of husked and naked oats grain. J. Cereal Sci. 49: 413–418.
  • Gozho, G. N. and Mutsvangwa, T. (2008) Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows. J. Dairy Sci. 91: 2726–2735.
  • Nutrient requirements of dairy cattle— NRC. The National Academy Press, Washington, DC, USA.; 2001.
  • Detmann, E., Valadares Filho, S. C., Pina, D. S., Henriques, L. T., Paulino, M. F., Magalhães, Ka., et al. (2008) Prediction of the energy value of cattle diets based on the chemical composition of the feeds under tropical conditions. Anim. Feed Sci. Technol. 143: 127–147.
  • McKinnon, J. J., Walker, A. M., Rossnagel, B. G., Jefferson, P. G., Lardner, H. A., and Wildeman, B. (2010) Effects of processing a new low acid-detergent lignin hull, high oil groat oat cultivar (CDC SO-I) on performance of growing cattle. Can. J. Anim. Sci. 90: 271–274.
  • SeCan Western Canada. No Title [Internet]. https://www.secan.com/?sv¼&category¼Home&%0Atitle¼SeCanWest&args%5Bpage%5D¼cropgroup&args%5Bregion%5D¼WEST
  • Mustafa, A. F., Christensen, D. A., and McKinnon, J. J. (1998) Chemical characterisation and ruminal nutrient degradability of hulled and hull-less oats. J. Sci. Food Agric. 77: 449–455.
  • Petit H, V. and Alary, S. (1999) Milk yield and composition of dairy cows fed concentrate based on naked oats. J. Dairy Sci. 82: 1004–1007.
  • Ekern, A., Havrevoll, O., Haug, A., Berg, J., Lindstad, P., and Skeie, S. (2003) Oat and barley based concentrate supplements for dairy cows. Acta Agric. Scand. Sect. A-Animal Sci. 53: 65–73.
  • van den Broeck, H., Londono, D., Timmer, R., Smulders, M., Gilissen, L., and van der Meer, I. (2015) Profiling of nutritional and health-related compounds in oat varieties. Foods 5: 2.
  • Rahman, M. D. M., Theodoridou, K., and Yu, P. (2016) Using vibrational infrared biomolecular spectroscopy to detect heat-induced changes of molecular structure in relation to nutrient availability of prairie whole oat grains on a molecular basis. J. Anim. Sci. Biotechnol. 7: 52.
  • Doiron, K., Yu, P., McKinnon, J. J., and Christensen, Da. (2009) Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92: 3319–3330.
  • Khan, M. M. R. and Yu, P. (2013) Thermal stability and molecular microstructure of heat-induced cereal grains, revealed with Raman molecular microspectroscopy and differential scanning calorimetry. J. Agric. Food Chem. 61: 6495–6504.
  • Peng, Q., Khan, N. A., Wang, Z., and Yu, P. (2014) Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds. J. Dairy Sci. 97: 446–457.
  • Jayanegara, A., Dewi, S. P., Laylli, N., Laconi, E. B., Nahrowi, N., and Ridla, M. (2016) Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Media Peternak. 39: 134–140.
  • Higgs, R. J., Chase, L. E. a R. D., and Van Amburgh, M. E. (2015) Updating the cornell net carbohydrate and protein system feed library and analyzing model sensitivity to feed inputs. J. Dairy Sci. 98: 6340–6360.
  • Prates, L. L., Valadares, R. F. D., Valadares Filho, S. C., Detmann, E., Santos, S. A., Braga, J. M. S., et al. (2012) Endogenous fraction and urinary recovery of purine derivatives in Nellore and Holstein heifers with abomasal purine infusion. Livest. Sci. 150: 179–186.
  • Tamminga, S., Van Straalen, W. M., Subnel, A. P. J., Meijer, R. G. M., Steg, A., Wever, C. J. G., et al. (1994) The Dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 40: 139–155.
  • Ouellet, D. R., Demers, M., Zuur, G., Lobley, G. E., Seoane, J. R., Nolan, J. V., et al. (2002) Effect of dietary fiber on endogenous nitrogen flows in lactating dairy cows. J. Dairy Sci. 85: 3013–3025.
  • Ban, Y. and Yu, P. (2016) Structural and nutritional characterization of macromolecular complexes in new bioenergy feedstock by infrared radiation with advanced molecular spectroscopy and spectral chemometrics. Appl. Spectrosc. Rev. 51: 822–838.
  • Yu, P., Meier, J. A., Christensen, D. A., Rossnagel, B. G., and McKinnon, J. J. (2003) Using the NRC-2001 model and the DVE/OEB system to evaluate nutritive values of Harrington (malting-type) and Valier (feed-type) barley for ruminants. Anim. Feed Sci. Technol. 107: 45–60.
  • Yu, P. a C. D. and McKinnon, J. J. (2003) Comparison of the National Research Council-2001 model with the Dutch system (DVE/OEB) in the prediction of nutrient supply to dairy cows from forages. J. Dairy Sci. 86: 2178–2192.
  • Yu, P., Block, H., Niu, Z., and Doiron, K. (2007) Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. J. Synchrotron Radiat. 14: 382–390.
  • Russell, J., O'Connor, J. D., Fox, D. G., Van Soest, P. J., and Sniffen, C. J. (1992) A net carbohydrate and protein system for evaluating cattle diets.1. Ruminal fermentation. J. Anim. Sci. 70: 3551–3561.
  • Van Amburgh, M. E. a C.-S. E., Higgs, R. J. a R. D., Recktenwald, E. B., Raffrenato, E., et al. (2015) The Cornell net carbohydrate and protein system: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 98: 6361–6380.
  • Raffrenato, E. (2011) With Fiber Digestibility in Ruminants and Models Describing These Relationships.
  • Samadi, Y. P. (2011) Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans. J. Dairy Sci. 94: 6092–6102.
  • Damiran, D. and Yu, P. (2010) Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: Comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars. J. Agric. Food Chem. 58: 10553–10559.
  • Liu, N. and Yu, P. (2016) Recent research and progress in food, feed and nutrition with advanced synchrotron-based SR-IMS and DRIFT molecular spectroscopy. Crit. Rev. Food Sci. Nutr. 56: 910–918.
  • Stuart, B. H. (2004) Organic molecules. In Infrared spectroscopy: Fundamentals and applications, John Wiley and Sons, Ltd., West Sussex, England; Hoboken, NJ. 10.1002/0470011149.ch4
  • AZoOptics (2013) What is a globar? Available from: http://www.azooptics.com/Article.aspx?ArticleID=566
  • Yu, P. (2011) Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J. Synchrotron Radiat. 18: 790–801.
  • Yu, P. (2010) Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: A synchrotron-based molecular structure and nutrition research program. Mol. Nutr. Food Res. 54: 1535–1545.
  • Yu, P. (2006) Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy. 20: 229–251.
  • Miller, L. M., Carr, G. L., Jackson, M., Dumas, P., and Williams, G. P. (2000) The impact of infrared synchrotron radiation in biology: Past, present and future. Synchrotron Radiat. News 13: 31–38.
  • Dumas, P., Sockalingum, G. D., and Sulé-Suso, J. (2007) Adding synchrotron radiation to infrared microspectroscopy: What's new in biomedical applications? Trends Biotechnol. 25: 40–44.
  • Yu, P. (2004) Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: A novel approach. Br. J. Nutr. 92: 869–885.
  • Yu, P. (2008) Modeling protein structures in feed and seed tissues using novel synchrotron-based analytical technique. Anim. Feed Sci. Technol. 140: 199–206.
  • Liu, N. and Yu, P. (2010) Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy. J. Agric. Food Chem. 58: 7801–10.
  • Marinkovic, N. S. and Chance, M. R. (2005) Synchrotron infrared microspectroscopy. Meyers, R., Ed., Wiley, New York.
  • Yu, P. (2005) Applications of hierarchical cluster analysis (CLA) and principal component analysis (PCA) in feed structure and feed molecular chemistry research, using synchrotron-based Fourier transform infrared (FTIR) microspectroscopy. J. Agric. Food Chem. 53: 7115–7127.
  • Theodoridou, K., Vail, S., and Yu, P. (2014) Explore protein molecular structure in endosperm tissues in newly developed black and yellow type canola seeds by using synchrotron-based Fourier transform infrared microspectroscopy. Spectrochim. Acta— Part A Mol. Biomol. Spectrosc. 120: 421–427.
  • Yu, P., Christensen, C. R., Christensen, D. A., and McKinnon, J. J. (2005) Ultrastructural-chemical makeup of yellow-seeded (Brassica rapa) and brown-seeded (Brassica napus) canola within cellular dimensions, explored with synchrotron reflection FTIR microspectroscopy. Can. J. Plant Sci. 85: 533–541.
  • Liu, N. and Yu, P. (2010) Using DRIFT molecular spectroscopy with uni- and multivariate spectral techniques to detect protein molecular structure differences among different genotypes of barley. J. Agric. Food Chem. 58: 6264–6269.
  • Yang, L., McKinnon, J. J., Christensen, D. A., Beattie, A. D., and Yu, P. (2014) Characterizing the molecular structure features of newly developed hulless barley cultivars with altered carbohydrate traits (Hordeum vulgare L.) by globar-sourced infrared spectroscopy in relation to nutrient utilization and availability. J. Cereal Sci. 60: 48–59.
  • Li, X., Zhang, Y., and Yu, P. (2016) Association of bio-energy processing-induced protein molecular structure changes with CNCPS-based protein degradation and digestion of co-products in dairy cows. J. Agric. Food Chem. acs.jafc.6b00688. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.jafc.6b00688
  • Herrera-Saldana, R. E., Huber, J. T., and Poore, M. H. (1990) Dry matter, crude protein, and starch degradability of five cereal grains. J. Dairy Sci. 73: 2386–2393.
  • Broderick, G. A. and Craig, W. M. (1980) Effect of heat treatment on ruminal degradation and escape, and intestinal digestibility of cottonseed meal protein. J. Nutr. 110: 2381–2389.
  • Huang, X., Khan, N. A., Zhang, X., and Yu, P. (2015) Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential nitrogen to energy synchronization in dairy cows. J. Dairy Sci. 98: 8836–8845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.