2,322
Views
123
CrossRef citations to date
0
Altmetric
Reviews

Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review

ORCID Icon & ORCID Icon

References

  • Lewis, B., and von Elbe, G. (1987) Combustion, flames and explosions of gases. 3rd ed. Academic Press, London, UK.
  • Law, C. K. (2006) Combustion physics. Cambridge University Press, New York, USA.
  • Moore, R. H., Shook, M., Beyersdorf, A., Corr, C., Herndon, S., Knighton, W. B., Miake-Lye, R., Thornhill, K. L., Winstead, E. L., Yu, Z., Ziemba, L. D., and Anderson, B. E. (2015) Influence of jet fuel composition on aircraft engine emissions: A synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS Missions. Energy Fuel 29(4): 2591–2600. doi:10.1021/ef502618w.
  • Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., and Jensen, A. D. (2010) Oxy-fuel combustion of solid fuels. Prog. Energy Combust. 36(5): 581–625. doi:10.1016/j.pecs.2010.02.001.
  • Dreier, T., Chrystie, R., Endres, T., and Schulz, C. (2006) Laser-based combustion diagnostics. In Encyclopedia of analytical chemistry, Meyers, R. A., Ed., John Wiley & Sons, Ltd.
  • Hassel, E. P., and Linow, S. (2000) Laser diagnostics for studies of turbulent combustion. Meas. Sci. Technol. 11: R37–R57. doi:10.1088/0957-0233/11/2/201.
  • Hanson, R. K., Spearrin, R. M., and Goldenstein, C. S. (2016) Spectroscopy and optical diagnostics for gases. Springer International Publishing, Switzerland.
  • Echbreth, A. C. (1996) Laser diagnostics for combustion temperature and species. 2nd ed. Gordon and Breach Science Publishers, Netherlands.
  • Hanson, R. K. (2011) Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33(1): 1–40. doi:10.1016/j.proci.2010.09.007.
  • Ehn, A., Zhu, J., Li, X., and Kiefer, J. (2017) Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering. Appl. Spectrosc. 71(3): 341–366. doi:10.1177/0003702817690161.
  • Goldenstein, C. S., Spearrin, R. M., Jeffries, J. B., and Hanson, R. K. (2017) Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. 60: 132–176. doi:10.1016/j.pecs.2016.12.002.
  • Lackner, M. (2007) Tunable diode laser absorption spectroscopy (TDLAS) in the process industries – A review. Rev. Chem. Eng. 23(2): 65–147. doi:10.1515/REVCE.2007.23.2.65.
  • Allen, M. G. (1998) Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9(4): 545–562. doi:10.1088/0957-0233/9/4/001.
  • Hendricks, A. G., Vandsburger, U., Saunders, W. R., and Baumann, W. T. (2006) The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics. Meas. Sci. Technol. 17(1): 139–144. doi:10.1088/0957-0233/17/1/023.
  • Schulz, C., and Sick, V. (2005) Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. 31(1): 75–121. doi:10.1016/j.pecs.2004.08.002.
  • Seitzman, J. M., and Hanson, R. K. (1992) Planar fluorescence imaging: Basic concepts for scalar and velocity measurements. In Combustings flow diagnostics, Durão, D. F. G., Heitor, M. V., Whitelaw, J. H., Witze, P. O., Eds., Springer Netherlands, Dordrecht, pp. 137–157.
  • Rakovský, J., ermák, P., Musset, O., and Veis, P. (2014) A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim. Acta B 101: 269–287. doi:10.1016/j.sab.2014.09.015.
  • Song, K., Lee, Y.-I., and Sneddon, J. (1997) Applications of laser-induced breakdown spectrometry. Appl. Spectrosc. Rev. 32(3): 183–235. doi:10.1080/05704929708003314.
  • Sigrist, M. W. (2003) Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev. Sci. Instrum. 74(1): 486–490. doi:10.1063/1.1512697.
  • Elia, A., Lugarà, P. M., Di Franco, C., and Spagnolo, V. (2009) Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 9(12): 9616–9628. doi:10.3390/s91209616.
  • Kiefer, J., and Ewart, P. (2011) Laser diagnostics and minor species detection in combustion using resonant four-wave mixing. Prog. Energy Combust. 37(5): 525–564. doi:10.1016/j.pecs.2010.11.001.
  • Hall, R. J., and Eckbreth, A. C. (1981) Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS). Opt. Eng. 20(4): 494–500. doi:10.1117/12.7972754.
  • Roy, S., Gord, J. R., and Patnaik, A. K. (2010) Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energy Combust. 36(2): 280–306. doi:10.1016/j.pecs.2009.11.001.
  • Cai, W., and Kaminski, C. F. (2017) Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows. Prog. Energy Combust. 59: 1–31. doi:10.1016/j.pecs.2016.11.002.
  • Slabaugh, C., Pratt, A., and Lucht, R. (2015) Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions. Appl. Phys. B-Lasers O 118(1): 109–130. doi:10.1007/s00340-014-5960-5.
  • Nygren, J., Hult, J., Richter, M., Aldén, M., Christensen, M., Hultqvist, A., and Johansson, B. (2002) Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine. Proc. Combust. Inst. 29(1): 679–685. doi:10.1016/S1540-7489(02)80087-6.
  • Kiefer, J., Tröger, J. W., Li, Z., Seeger, T., Alden, M., and Leipertz, A. (2012) Laser-induced breakdown flame thermometry. Combust. Flame 159(12): 3576–3582. doi:10.1016/j.combustflame.2012.08.005.
  • Wynn, C. M., Palmacci, S., Clark, M. L., and Kunz, R. R. (2012) Dynamic photoacoustic spectroscopy for trace gas detection. Appl. Phys. Lett. 101(18): 184103. doi:10.1063/1.4764515.
  • Bohlin, A., and Kliewer, C. J. (2013) Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot. J. Chem. Phys. 138(22): 221101. doi:10.1063/1.4810876.
  • Wright, P., Terzija, N., Davidson, J. L., Garcia-Castillo, S., Garcia-Stewart, C., Pegrum, S., Colbourne, S., Turner, P., Crossley, S. D., Litt, T., Murray, S., Ozanyan, K. B., and McCann, H. (2010) High-speed chemical species tomography in a multi-cylinder automotive engine. Chem. Eng. J. 158(1): 2–10. doi:10.1016/j.cej.2008.10.026.
  • Tsekenis, S. A., Wilson, D., Lengden, M., Hyvönen, J., Leinonen, J., Shah, A., Andersson, Ö., and McCann, H. (2017) Towards in-cylinder chemical species tomography on large-bore IC engines with pre-chamber. Flow Meas. Instrum. 53: 116–125. doi:10.1016/j.flowmeasinst.2016.04.006.
  • Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J. M., Gamache, R. R., Harrison, J. J., Hartmann, J. M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G., and Wagner, G. (2013) The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130: 4–50. doi:10.1016/j.jqsrt.2013.07.002.
  • Rothman, L. S., Gordon, I. E., Barber, R. J., Dothe, H., Gamache, R. R., Goldman, A., Perevalov, V. I., Tashkun, S. A., and Tennyson, J. (2010) HITEMP, the High-Temperature Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 111: 2139–2150. doi:10.1016/j.jqsrt.2010.05.001.
  • Hinkley, E. D. (1976) Laser spectroscopic instrumentation and techniques: Long-path monitoring by resonance absorption. Opt. Quant. Electron. 8(2): 155–167. doi:10.1007/BF00619441.
  • Hanson, R. K., Kuntzand, P. A., and Kruger, C. H. (1977) High-resolution spectroscopy of combustion gases using a tunable IR diode laser. Appl. Opt. 16: 2045–2047. doi:10.1364/AO.16.002045.
  • Arroyo, M. P., and Hanson, R. K. (1993) Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser. Appl. Opt. 32(30): 6104–6116. doi:10.1364/AO.32.006104.
  • Upschulte, B. L., Sonnenfroh, D. M., and Allen, M. G. (1999) Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser. Appl. Opt. 38(9): 1506–1512. doi:10.1364/AO.38.001506.
  • Hira, N., and Yasir, J. (2013) Recent advancements in spectroscopy using tunable diode lasers. Laser Phys. Lett. 10(4): 043001. doi:10.1088/1612-2011/10/4/043001.
  • Razeghi, M., Lu, Q. Y., Bandyopadhyay, N., Zhou, W., Heydari, D., Bai, Y., and Slivken, S. (2015) Quantum cascade lasers: from tool to product. Opt. Express 23(7): 8462–8475. doi:10.1364/OE.23.008462.
  • Zeller, W., Naehle, L., Fuchs, P., Gerschuetz, F., Hildebrandt, L., and Koeth, J. (2010) DFB lasers between 760 nm and 16 μm for sensing applications. Sensors (Basel, Switzerland) 10(4): 2492–2510. doi:10.3390/s100402492.
  • Michalzik, R. (2013) VCSELs: A research review. In VCSELs: Fundamentals, technology and applications of vertical-cavity surface-emitting lasers, Michalzik, R., Ed., Springer, Berlin, Heidelberg, pp. 3–18.
  • Huber, R., Wojtkowski, M., and Fujimoto, J. G. (2006) Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express 14(8): 3225–3237. doi:10.1364/OE.14.003225.
  • Kranendonk, L. A., An, X., Caswell, A. W., Herold, R. E., Sanders, S. T., Huber, R., Fujimoto, J. G., Okura, Y., and Urata, Y. (2007) High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Opt. Express 15(23): 15115–15128. doi:10.1364/OE.15.015115.
  • Tittel, F. K., Bakhirkin, Y., Kosterev, A. A., and Wysocki, G. (2006) Recent advances in trace gas detection using quantum and interband cascade lasers. Rev. Laser Eng. 34(4): 275–282. doi:10.2184/lsj.34.275.
  • Vurgaftman, I., Weih, R., Kamp, M., Meyer, J. R., Canedy, C. L., Kim, C. S., Kim, M., Bewley, W. W., Merritt, C. D., Abell, J., and Höfling, S. (2015) Interband cascade lasers. J. Phys. D: Appl. Phys. 48(12): 123001. doi:10.1088/0022-3727/48/12/123001.
  • Vitiello, M. S., Scalari, G., Williams, B., and De Natale, P. (2015) Quantum cascade lasers: 20 years of challenges. Opt. Express 23(4): 5167–5182. doi:10.1364/OE.23.005167.
  • Li, J. S., Chen, W., and Fischer, H. (2013) Quantum cascade laser spectrometry techniques: A new trend in atmospheric chemistry. Appl. Spectrosc. Rev. 48(7): 523–559. doi:10.1080/05704928.2012.757232.
  • Werblinski, T., Engel, S. R., Engelbrecht, R., Zigan, L., and Will, S. (2013) Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications. Opt. Express 21(11): 13656–13667. doi:10.1364/OE.21.013656.
  • Witzel, O., Klein, A., Meffert, C., Wagner, S., Kaiser, S., Schulz, C., and Ebert, V. (2013) VCSEL-based, high-speed, in situ TDLAS for incylinder water vapor measurements in IC engines. Opt. Express 21(17): 19951–19965. doi:10.1364/OE.21.019951.
  • Goldenstein, C. S., Almodóvar, C. A., Jeffries, J. B., Hanson, R. K., and Brophy, C. M. (2014) High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine. Meas. Sci. Technol. 25: 105104. doi:10.1088/0957-0233/25/10/105104.
  • Sanders, S. T., Baldwin, J. A., Jenkins, T. P., Baer, D. S., and Hanson, R. K. (2000) Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines. Proc. Combust. Inst. 28(1): 587–594. doi:10.1016/S0082-0784(00)80258-1.
  • Li, H., Farooq, A., Jeffries, J. B., and Hanson, R. K. (2007) Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube. Appl. Phys. B-Lasers O 89: 407–416. doi:10.1007/s00340-007-2781-9.
  • Hanson, R. K., and Davidson, D. F. (2014) Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. 44: 103–114. doi:10.1016/j.pecs.2014.05.001.
  • Schultz, I. A., Goldenstein, C. S., Strand, C. L., Jeffries, J. B., Hanson, R. K., and Goyne, C. P. (2014) Hypersonic scramjet testing via diode laser absorption in a reflected shock tunnel. J. Propuls. Power 30(6): 1586–1594. doi:10.2514/1.B35220.
  • Sur, R., Wang, S., Sun, K., Davidson, D. F., Jeffries, J. B., and Hanson, R. K. (2015) High-sensitivity interference-free diagnostic for measurement of methane in shock tubes. J. Quant. Spectrosc. Radiat. Transf. 156: 80–87. doi:10.1016/j.jqsrt.2015.01.023.
  • Teichert, H., Fernholz, T., and Ebert, V. (2003) Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl. Opt. 42(12): 2043–2051. doi:10.1364/AO.42.002043.
  • Chao, X., Jeffries, J., and Hanson, R. (2013) Real-time, in situ, continuous monitoring of CO in a pulverized-coal-fired power plant with a 2.3 µm laser absorption sensor. Appl. Phys. B-Lasers O 110(3): 359–365. doi:10.1007/s00340-012-5262-8.
  • Deguchi, Y., Kamimoto, T., Wang, Z. Z., Yan, J. J., Liu, J. P., Watanabe, H., and Kurose, R. (2014) Applications of laser diagnostics to thermal power plants and engines. Appl. Therm. Eng. 73(2): 1453–1464. doi:10.1016/j.applthermaleng.2014.05.063.
  • Reid, J., and Labrie, D. (1981) Second-harmonic detection with tunable diode lasers – Comparison of experiment and theory. Appl. Phys. B-Lasers O 26(3): 203–210. doi:10.1007/BF00692448.
  • York, T., McCann, H., and Ozanyan, K. B. (2011) Agile sensing systems for tomography. IEEE Sens. J. 11(12): 3086–3105. doi:10.1109/JSEN.2011.2164905.
  • McCann, H., Wright, P., and Daun, K. (2015) Chemical species tomography. In Industrial tomography: Systems and applications, Wang, M., Ed., Woodhead Publishing, Cambridge, UK, pp. 135–174.
  • Martin, P. A. (2002) Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chem. Soc. Rev. 31: 201–210. doi:10.1039/b003936p.
  • Bolshov, M. A., Kuritsyn, Y. A., and Romanovskii, Y. V. (2015) Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta B 106: 45–66. doi:10.1016/j.sab.2015.01.010.
  • Klingbeil, A. E., Jeffries, J. B., and Hanson, R. K. (2007) Design of a fiber-coupled mid-infrared fuel sensor for pulse detonation engines. AIAA J. 45(4): 772–778. doi:10.2514/1.26504.
  • Spearrin, R. M., Li, S., Davidson, D. F., Jeffries, J. B., and Hanson, R. K. (2015) High-temperature iso-butene absorption diagnostic for shock tube kinetics using a pulsed quantum cascade laser near 11.3 μm. Proc. Combust. Inst. 35(3): 3645–3651. doi:10.1016/j.proci.2014.04.002.
  • D. S. Baer, V. N. (1996) Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers. AIAA J. 34(3): 489–493. doi:10.2514/3.13094.
  • Yang, H., Guo, X., Zhou, W., Chen, B., Hu, J., Su, M., and Cai, X. (2015) Investigation on liquid film of urea water solutions with diode laser absorption spectroscopy. Exp. Fluids 56(4): 73. doi:10.1007/s00348-015-1941-7.
  • Kamimoto, T., Deguchi, Y., Shisawa, Y., Kitauchi, Y., and Eto, Y. (2016) Development of fuel composition measurement technology using laser diagnostics. Appl. Therm. Eng. 102: 596–603. doi:10.1016/j.applthermaleng.2016.03.075.
  • Stacewicz, T., Bielecki, Z., Wojtas, J., Magryta, P., Mikolajczyk, J., and Szabra, D. (2016) Detection of disease markers in human breath with laser absorption spectroscopy. Opto-Electron. Rev. 24(2): 82–94. doi:10.1515/oere-2016-0011.
  • Jatana, G., Geckler, S., Koeberlein, D., and Partridge, W. (2017) Design and development of a probe-based multiplexed multi-species absorption spectroscopy sensor for characterizing transient gas-parameter distributions in the intake systems of I.C. engines. Sens. Actuators B-Chem. 240: 1197–1204. doi:10.1016/j.snb.2016.08.183.
  • Zhou, X. (2005) Diode-laser absorption sensors for combustion control, Ph.D. dissertation, Stanford University, Department of Mechanical Engineering.
  • Zhou, X., Liu, X., Jeffries, J. B., and Hanson, R. K. (2005) Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines. Meas. Sci. Technol. 16(12): 2437–2445. doi:10.1088/0957-0233/16/12/006.
  • Zhou, X., Liu, X., Jeffries, J. B., and Hanson, R. K. (2003) Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14(8): 1459–1468. doi:10.1088/0957-0233/14/8/335.
  • Liu, X., Jeffries, J. B., Hanson, R. K., Hinckley, K. M., and Woodmansee, M. A. (2006) Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature. Appl. Phys. B-Lasers O 82: 469–478. doi:10.1007/s00340-005-2078-9.
  • Li, S., Farooq, A., and Hanson, R. K. (2011) H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm. Meas. Sci. Technol. 22(12): 125301. doi:10.1088/0957-0233/22/12/125301.
  • Ouyang, X., and Varghese, P. L. (1990) Selection of spectral lines for combustion diagnostics. Appl. Opt. 29(33): 4884–4890. doi:10.1364/AO.29.004884.
  • Li, F., Yu, X., Gu, H., Li, Z., Zhao, Y., Ma, L., Chen, L., and Chang, X. (2011) Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors. Appl. Opt. 50(36): 6697–6707. doi:10.1364/AO.50.006697.
  • Klein, A., Witzel, O., and Ebert, V. (2014) Rapid, time-division multiplexed, direct absorption- and wavelength modulation-spectroscopy. Sensors 14: 21497–21513. doi:10.3390/s141121497.
  • Liu, J. T. C., Rieker, G. B., Jeffries, J. B., Gruber, M. R., Carter, C. D., Mathur, T., and Hanson, R. K. (2005) Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44(31): 6701–6711. doi:10.1364/AO.44.006701.
  • Pan, R., Jeffries, J. B., Dreier, T., and Schulz, C. (2015) Measurements of liquid film thickness, concentration and temperature of aqueous NaCl solution by NIR absorption spectroscopy. Appl. Phys. B-Lasers O 120(3): 397–406. doi:10.1007/s00340-015-6149-2.
  • Sanders, S. T., Mattison, D. W., Ma, L., Jeffries, J. B., and Hanson, R. K. (2002) Wavelength-agile diode-laser sensing strategies for monitoring gas properties in optically harsh flows: Application in cesium-seeded pulse detonation engine. Opt. Express 10(12): 505–514. doi:10.1364/OE.10.000505.
  • Göran Blume, N., and Wagner, S. (2015) Broadband supercontinuum laser absorption spectrometer for multiparameter gas phase combustion diagnostics. Opt. Lett. 40(13): 3141–3144. doi:10.1364/OL.40.003141.
  • Dulov, E. N., and Khripunov, D. M. (2007) Voigt lineshape function as a solution of the parabolic partial differential equation. J. Quant. Spectrosc. Radiat. Transf. 107(3): 421–428. doi:10.1016/j.jqsrt.2007.03.003.
  • Mendenhall, M. H. (2007) Fast computation of Voigt functions via Fourier transforms. J. Quant. Spectrosc. Radiat. Transf. 105(3): 519–524. doi:10.1016/j.jqsrt.2006.11.014.
  • Xu, L., Liu, C., Zheng, D., Cao, Z., and Cai, W. (2014) Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy. Rev. Sci. Instrum. 85(12): 123108. doi:10.1063/1.4903356.
  • Werle, P., Mücke, R., and Slemr, F. (1993) The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B-Lasers O 57(2): 131–139. doi:10.1007/BF00425997.
  • Li, J., Yu, B., Zhao, W., and Chen, W. (2014) A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectrosc. Rev. 49(8): 666–691. doi:10.1080/05704928.2014.903376.
  • Schilt, S., Thévenaz, L., and Robert, P. (2003) Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 42(33): 6728–6738. doi:10.1364/AO.42.006728.
  • Rieker, G. B. (2009) Wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Ph.D. dissertation, Stanford University, Department of Mechanical Engineering.
  • Huang, Q.-x., Wang, F., Zhang, H.-d., Yan, J.-h., Ni, M.-j., and Cen, K.-f. (2013) In-situ CO measurement of gas and oil combustion flame using near infrared tunable diode laser with direct and modulated absorption signals. Opt. Commun. 306: 99–105. doi:10.1016/j.optcom.2013.05.047.
  • Li, H., Rieker, G. B., Liu, X., Jeffries, J. B., and Hanson, R. K. (2006) Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45(5): 1052–1061. doi:10.1364/AO.45.001052.
  • Liu, J. T. C., Jeffries, J. B., and Hanson, R. K. (2004) Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows. Appl. Phys. B-Lasers O 78(3–4): 503–511. doi:10.1007/s00340-003-1380-7.
  • Wang, F., Cen, K. F., Li, N., Huang, Q. X., Chao, X., Yan, J. H., and Chi, Y. (2010) Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser. Flow Meas. Instrum. 21(3): 382–387. doi:10.1016/j.flowmeasinst.2010.04.009.
  • Liu, J. T. C., Jeffries, J. B., and Hanson, R. K. (2004) Large-modulation-depth 2f spectroscopy with diode lasers for rapid temperature and species measurements in gases with blended and broadened spectra. Appl. Opt. 43(35): 6500–6509. doi:10.1364/AO.43.006500.
  • Philippe, L. C., and Hanson, R. K. (1993) Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 32(30): 6090–6103. doi:10.1364/AO.32.006090.
  • Silver, J. A. (1999) Diode laser measurements of concentration and temperature in microgravity combustion. Meas. Sci. Technol. 10: 845–852. doi:10.1088/0957-0233/10/10/303.
  • Li, H., Zhou, X., Jeffries, J. B., and Hanson, R. K. (2007) Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption. AIAA J. 45(2): 390–398. doi:10.2514/1.24774.
  • Rieker, G. B., Jeffries, J. B., and Hanson, R. K. (2009) Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48(29): 5546–5560. doi:10.1364/AO.48.005546.
  • Chao, X., Jeffries, J. B., and Hanson, R. K. (2009) Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers. Meas. Sci. Technol. 20(11): 115201 (9pp). doi:10.1088/0957-0233/20/11/115201.
  • Peng, Z., Ding, Y., Che, L., Li, X., and Zheng, K. (2011) Calibration-free wavelength modulated TDLAS under high absorbance conditions. Opt. Express 19(23): 23104–23110. doi:10.1364/OE.19.023104.
  • Lan, L. J., Ding, Y. J., Peng, Z. M., Du, Y. J., and Liu, Y. F. (2014) Calibration-free wavelength modulation for gas sensing in tunable diode laser absorption spectroscopy. Appl. Phys. B-Lasers O 117(4): 1211–1219. doi:10.1007/s00340-014-5945-4.
  • Rieker, G. B., Li, H., Liu, X., Jeffries, J. B., Hanson, R. K., Allen, M. G., Wehe, S. D., Mulhall, P. A., and Kindle, H. S. (2007) A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas. Sci. Technol. 18(5): 1195–1204. doi:10.1088/0957-0233/18/5/005.
  • Spearrin, R. M., Goldenstein, C. S., Jeffries, J. B., and Hanson, R. K. (2013) Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24: 055107 (11pp). doi:10.1088/0957-0233/24/5/055107.
  • Kluczynski, P., and Axner, O. (1999) Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38(27): 5803–5815. doi:10.1364/AO.38.005803.
  • Schultz, I. A., Goldenstein, C. S., Jeffries, J. B., Hanson, R. K., Rockwell, R. D., and Goyne, C. P. (2014) Diode laser absorption sensor for combustion progress in a model scramjet. J. Propuls. Power 30(3): 550–557. doi:10.2514/1.B34905.
  • Sun, K., Chao, X., Sur, R., Goldenstein, C. S., Jeffries, J. B., and Hanson, R. K. (2013) Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24(12): 125203. doi:10.1088/0957-0233/24/12/125203.
  • Goldenstein, C. S., Strand, C. L., Schultz, I. A., Sun, K., Jeffries, J. B., and Hanson, R. K. (2014) Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 53(3): 356–367. doi:10.1364/AO.53.000356.
  • Qu, Z., Ghorbani, R., Valiev, D., and Schmidt, F. M. (2015) Calibration-free scanned wavelength modulation spectroscopy-application to H2O and temperature sensing in flames. Opt. Express 23(12): 16492–16499. doi:10.1364/OE.23.016492.
  • Goldenstein, C. S., Spearrin, R. M., Schultz, I. A., Jeffries, J. B., and Hanson, R. K. (2014) Wavelength-modulation spectroscopy near 1.4 µm for measurements of H2O and temperature in high-pressure and temperature gases. Meas. Sci. Technol. 25: 055101. doi:10.1088/0957-0233/25/5/055101.
  • Goldenstein, C. S., Schultz, I. A., Spearrin, R. M., Jeffries, J. B., and Hanson, R. K. (2014) Scanned-wavelength-modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B-Lasers O 116(3): 717–727. doi:10.1007/s00340-013-5755-0.
  • Spearrin, R. M., Goldenstein, C. S., Schultz, I. A., Jeffries, J. B., and Hanson, R. K. (2014) Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Appl. Phys. B-Lasers O 117(2): 689–698. doi:10.1007/s00340-014-5884-0.
  • Sun, K., Sur, R., Jeffries, J., Hanson, R., Clark, T., Anthony, J., Machovec, S., and Northington, J. (2014) Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier. Appl. Phys. B-Lasers O 117(1): 411–421. doi:10.1007/s00340-014-5850-x.
  • Sur, R., Sun, K., Jeffries, J., Hanson, R., Pummill, R., Waind, T., Wagner, D., and Whitty, K. (2014) TDLAS-based sensors for in situ measurement of syngas composition in a pressurized, oxygen-blown, entrained flow coal gasifier. Appl. Phys. B-Lasers O 116(1): 33–42. doi:10.1007/s00340-013-5644-6.
  • Sur, R., Sun, K., Jeffries, J. B., Socha, J. G., and Hanson, R. K. (2015) Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel 150: 102–111. doi:10.1016/j.fuel.2015.02.003.
  • Ouyang, X., and Varghese, P. L. (1989) Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers. Appl. Opt. 28: 3979–3984. doi:10.1364/AO.28.003979.
  • Wang, J., Maiorov, M., Jeffries, J. B., Garbuzov, D. Z., Connolly, J. C., and Hanson, R. K. (2000) A potential remote sensor of CO in vehicle exhausts using 2.3 micron diode lasers. Meas. Sci. Technol. 11(11): 1576–1584. doi:10.1088/0957-0233/11/11/306.
  • Smith, C. H., Goldenstein, C. S., and Hanson, R. K. (2014) A scanned-wavelength-modulation absorption-spectroscopy sensor for temperature and H2O in low-pressure flames. Meas. Sci. Technol. 25: 115501 (13pp). doi:10.1088/0957-0233/25/11/115501.
  • Goldenstein, C. S., Schultz, I. A., Jeffries, J. B., and Hanson, R. K. (2013) Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Appl. Opt. 52(33): 7950–7962. doi:10.1364/AO.52.007950.
  • Sanders, S. T., Wang, J., Jeffries, J. B., and Hanson, R. K. (2001) Diode-laser absorption sensor for line-of-sight gas temperature distributions. Appl. Opt. 40(24): 4404–4415. doi:10.1364/AO.40.004404.
  • Liu, X., Jeffries, J. B., and Hanson, R. K. (2007) Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy. AIAA J. 45(2): 411–419. doi:10.2514/1.26708.
  • Ma, L. H., Lau, L. Y., and Ren, W. (2017) Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy. Appl. Phys. B-Lasers O 123(3): 83. doi:10.1007/s00340-017-6645-7.
  • Liu, C., Xu, L., and Cao, Z. (2013) Measurement of nonuniform temperature and concentration distributions by combining line-of-sight TDLAS with regularization methods. Appl. Opt. 52(20): 4827–4842. doi:10.1364/AO.52.004827.
  • Prucker, S., Meier, W., and Stricker, W. (1994) A flat flame burner as calibration source for combustion research: Temperatures and species concentrations of premixed H2/air flames. Rev. Sci. Instrum. 65(9): 2908–2911. doi:10.1063/1.1144637.
  • Simmons, F. S. (2000) Rocket exhaust plume phenomenology. The Aerospace Press, El Segundo, California.
  • Dasch, C. J. (1992) One-dimensional tomography: A comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31(8): 1146–1152. doi:10.1364/AO.31.001146.
  • Villarreal, R., and Varghese, P. (2005) Frequency-resolved absorption tomography with tunable diode lasers. Appl. Opt. 44(31): 6786–6795. doi:10.1364/AO.44.006786.
  • Daun, K. J., Thomson, K. A., Liu, F., and Smallwood, G. J. (2006) Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl. Opt. 45(19): 4638–4646. doi:10.1364/AO.45.004638.
  • Guha, A., and Schoegl, I. (2014) Tomographic laser absorption spectroscopy using Tikhonov regularization. Appl. Opt. 53(34): 8095–8103. doi:10.1364/AO.53.008095.
  • Liu, C., Xu, L., Li, F., Cao, Z., Tsekenis, S., and McCann, H. (2015) Resolution-doubled one-dimensional wavelength modulation spectroscopy tomography for flame flatness validation of a flat-flame burner. Appl. Phys. B-Lasers O 120(3): 407–416. doi:10.1007/s00340-015-6150-9.
  • Liu, C., Xu, L., Cao, Z., and McCann, H. (2014) Reconstruction of axisymmetric temperature and gas concentration distributions by combining fan-beam TDLAS with onion-peeling deconvolution. IEEE T. Instrum. Meas. 63(12): 3067–3075. doi:10.1109/TIM.2014.2315737.
  • Hsich, J. (2009) Computed tomography principles, design, artifacts, and recent advances. SPIE Press, Bellingham, Washington, USA.
  • Liu, C., Cao, Z., Li, F., Lin, Y., and Xu, L. (2017) Flame monitoring of a model swirl injector using 1D tunable diode laser absorption spectroscopy tomography. Meas. Sci. Technol. 28(5): 054002. doi:10.1088/1361-6501/aa5aee.
  • Gorenflo, R., and Vessella, S. (1993) Abel integral equations: Analysis and applications. Springer-Verlag, Berlin, Heidelberg.
  • Kesson, E. O. A. A., and Daun, K. J. (2008) Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization. Appl. Opt. 47(3): 407–416. doi:10.1364/AO.47.000407.
  • Ginat, D. T., and Gupta, R. (2014) Advances in computed tomography imaging technology. Annu. Rev. Biomed. Eng. 16(1): 431–453. doi:10.1146/annurev-bioeng-121813-113601.
  • Tsekenis, S. A., Tait, N., and McCann, H. (2015) Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images. Rev. Sci. Instrum. 86(3): 035104. doi:10.1063/1.4913922.
  • Daun, K. J., Grauer, S. J., and Hadwin, P. J. (2016) Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information. J. Quant. Spectrosc. Radiat. Transf. 172: 58–74. doi:10.1016/j.jqsrt.2015.09.011.
  • Pan, X., Sidky, E. Y., and Vannier, M. (2009) Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl. 25(12): 123009. doi:10.1088/0266-5611/25/12/123009.
  • Beiting, E. J. (1992) Fiber-optic fan-beam absorption tomography. Appl. Opt. 31(9): 1328–1343. doi:10.1364/AO.31.001328.
  • Beister, M., Kolditz, D., and Kalender, W. A. (2012) Iterative reconstruction methods in X-ray CT. Phys. Medica 28: 94–108. doi:10.1016/j.ejmp.2012.01.003.
  • Kak, A. C., and Slaney, M. (2001) Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics, Philadelphia, USA.
  • Gordon, R., Bender, R., and Herman, G. T. (1970) Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3): 471–481. doi:10.1016/0022-5193(70)90109-8.
  • Hansen, P. C., and Saxild-Hansen, M. (2012) AIR Tools-A MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236(8): 2167–2178. doi:10.1016/j.cam.2011.09.039.
  • Hindle, F. P., Carey, S. J., Ozanyan, K., Winterbone, D. E., Clough, E., and McCann, H. (2001) Measurement of gaseous hydrocarbon distribution by a near-infrared absorption tomography system. J. Electron. Imaging 10(3): 593–600. doi:10.1117/1.1377306.
  • Gordon, R. (1974) A tutorial on ART (algebraic reconstruction techniques). IEEE Trans. Nucl. Sci. 21(3): 78–93. doi:10.1109/TNS.1974.6499238.
  • Andersen, A. H., and Kak, A. C. (1984) Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 6(1): 81–94. doi:10.1177/016173468400600107.
  • Drescher, A. C., Gadgil, A. J., Price, P. N., and Nazaroff, W. W. (1996) Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing. Atmos. Environ. 30(6): 929–940. doi:10.1016/1352-2310(95)00295-2.
  • Fischer, M. L., Price, P. N., Thatcher, T. L., Schwalbe, C. A., Craig, M. J., Wood, E. E., Sextro, R. G., and Gadgil, A. J. (2001) Rapid measurements and mapping of tracer gas concentrations in a large indoor space. Atmos. Environ. 35(16): 2837–2844. doi:10.1016/S1352-2310(01)00081-4.
  • Wang, F., Cen, K. F., Li, N., Jeffries, J. B., Huang, Q. X., Yan, J. H., and Chi, Y. (2010) Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy. Meas. Sci. Technol. 21(4): 045301(10pp). doi:10.1088/0957-0233/21/4/045301.
  • Kasyutich, V., and Martin, P. (2011) Towards a two-dimensional concentration and temperature laser absorption tomography sensor system. Appl. Phys. B-Lasers O 102(1): 149–162. doi:10.1007/s00340-010-4123-6.
  • Song, J., Hong, Y., Wang, G., and Pan, H. (2013) Algebraic tomographic reconstruction of two-dimensional gas temperature based on tunable diode laser absorption spectroscopy. Appl. Phys. B-Lasers O 112(4): 529–537. doi:10.1007/s00340-013-5435-0.
  • Wang, F., Wu, Q., Huang, Q., Zhang, H., Yan, J., and Cen, K. (2015) Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology. Opt. Commun. 346: 53–63. doi:10.1016/j.optcom.2015.02.015.
  • Xia, H., Kan, R., Xu, Z., He, Y., Liu, J., Chen, B., Yang, C., Yao, L., Wei, M., and Zhang, G. (2017) Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform. Opt. Laser Eng. 90: 10–18. doi:10.1016/j.optlaseng.2016.09.005.
  • Engl, H. W., Hanke, M., and Neubauer, A. (2000) Regularization of inverse problems. Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Tikhonov, A. N., and Arsenin, V. Y. (1977) Solutions of ill-posed problems. Winston & Sons, Washington, DC.
  • Grauer, S. J., Hadwin, P. J., and Daun, K. J. (2016) Bayesian approach to the design of chemical species tomography experiments. Appl. Opt. 55(21): 5772–5782. doi:10.1364/AO.55.005772.
  • Grauer, S. J., Hadwin, P. J., and Daun, K. J. (2017) Improving chemical species tomography of turbulent flows using covariance estimation. Appl. Opt. 56(13): 3900–3912. doi:10.1364/AO.56.003900.
  • Daun, K. J. (2010) Infrared species limited data tomography through Tikhonov reconstruction. J. Quant. Spectrosc. Radiat. Transf. 111(1): 105–115. doi:10.1016/j.jqsrt.2009.08.003.
  • Hansen, P. C., and O'Leary, D. P. (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14: 1487–1503. doi:10.1137/0914086.
  • Yang, W. Q., Spink, D. M., York, T. A., and McCann, H. (1999) An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Meas. Sci. Technol. 10(11): 1065–1069. doi:10.1088/0957-0233/10/11/315.
  • Wright, P., Garcia-Stewart, C., Carey, S., Hindle, F., Pegrum, S., Colbourne, S., Turner, P., Hurr, W., Litt, T., Murray, S., Crossley, S., Ozanyan, K., and McCann, H. (2005) Toward in-cylinder absorption tomography in a production engine. Appl. Opt. 44(31): 6578–6592. doi:10.1364/AO.44.006578.
  • Terzija, N., Davidson, J. L., Garcia-Stewart, C. A., Wright, P., Ozanyan, K. B., Pegrum, S., Litt, T. J., and McCann, H. (2008) Image optimization for chemical species tomography with an irregular and sparse beam array. Meas. Sci. Technol. 19(9): 094007. doi:10.1088/0957-0233/19/9/094007.
  • Wood, M. P., and Ozanyan, K. B. (2013) Concentration and temperature tomography at elevated pressures. IEEE Sens. J. 13(8): 3060–3066. doi:10.1109/JSEN.2013.2260535.
  • Liu, C., Xu, L., Chen, J., Cao, Z., Lin, Y., and Cai, W. (2015) Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Opt. Express 23(17): 22494–22511. doi:10.1364/OE.23.022494.
  • Wood, M. P., and Ozanyan, K. B. (2015) Simultaneous temperature, concentration, and pressure imaging of water vapor in a turbine engine. IEEE Sens. J. 15(1): 545–551. doi:10.1109/JSEN.2014.2349796.
  • Xu, L., Liu, C., Jing, W., Cao, Z., Xue, X., and Lin, Y. (2016) Tunable diode laser absorption spectroscopy-based tomography system for on-line monitoring of two-dimensional distributions of temperature and H2O mole fraction. Rev. Sci. Instrum. 87(1): 013101. doi:10.1063/1.4939052.
  • Wright, P., McCormick, D., Kliment, J., Ozanyan, K., Johnson, M., Black, J., Tsekenis, S. A., Fisher, E., McCann, H., Lengden, M., Wilson, D., Johnstone, W., Archilla, V., González-Núñez, A., Feng, Y., and Nilsson, J. (2016) Implementation of non-intrusive jet exhaust species distribution measurements within a test facility. In Paper presented at the 2016 IEEE Aerospace Conference, pp. 1–14.
  • Beiting, E. J. (1991) Fast optical absorption tomography. Opt. Lett. 16(16): 1280–1282. doi:10.1364/OL.16.001280.
  • Pal, S., Ozanyan, K. B., and McCann, H. (2008) A computational study of tomographic measurement of carbon monoxide at minor concentrations. Meas. Sci. Technol. 19: 094018 (10pp). doi:10.1088/0957-0233/19/9/094018.
  • Terzija, N., Karagiannopoulos, S., Begg, S., Wright, P., Ozanyan, K., and McCann, H. (2015) Tomographic imaging of the liquid and vapour fuel distributions in a single-cylinder direct-injection gasoline engine. Int. J. Engine Res. 16(4): 565–579. doi:10.1177/1468087414544178.
  • Twynstra, M. G., and Daun, K. J. (2012) Laser-absorption tomography beam arrangement optimization using resolution matrices. Appl. Opt. 51(29): 7059–7068. doi:10.1364/AO.51.007059.
  • Yu, T., Tian, B., and Cai, W. (2017) Development of a beam optimization method for absorption-based tomography. Opt. Express 25(6): 5982–5999. doi:10.1364/OE.25.005982.
  • Cai, W., Ewing, D. J., and Ma, L. (2008) Application of simulated annealing for multispectral tomography. Comput. Phys. Commun. 179(4): 250–255. doi:10.1016/j.cpc.2008.02.012.
  • Gillet, B., Hardalupas, Y., Kavounides, C., and Taylor, A. M. K. P. (2004) Infrared absorption for measurement of hydrocarbon concentration in fuel/air mixtures (MAST-B-LIQUID). Appl. Therm. Eng. 24(11–12): 1633–1653. doi:10.1016/j.applthermaleng.2003.12.005.
  • Tsekenis, S. A., and Polydorides, N. (2017) Optical access schemes for high speed and spatial resolution optical absorption tomography in energy engineering. IEEE Sens. J. 17(24): 8072–8080. doi:10.1109/JSEN.2017.2715364.
  • Wright, P., Ozanyan, K. B., Carey, S. J., and McCann, H. (2005) Design of high-performance photodiode receivers for optical tomography. IEEE Sens. J. 5(2): 281–288. doi:10.1109/JSEN.2004.841869.
  • Liu, C., Cao, Z., Lin, Y., Xu, L., and McCann, H. (2018) Online cross-sectional monitoring of a swirling flame using TDLAS tomography. IEEE Trans. Instrum. Meas. (99): 1–11. doi:10.1109/TIM.2018.2799098.
  • Kamimoto, T., Deguchi, Y., and Kiyota, Y. (2015) High temperature field application of two dimensional temperature measurement technology using CT tunable diode laser absorption spectroscopy. Flow Meas. Instrum. 46 ( Part A): 51–57. doi:10.1016/j.flowmeasinst.2015.09.006.
  • Jing, W., Cao, Z., Zhang, H., Qu, Q., and Xu, L. (2017) A reconfigurable parallel data acquisition system for tunable diode laser absorption spectroscopy tomography. IEEE Sens. J. 17(24): 8215–8223. doi:10.1109/JSEN.2017.2652497.
  • Ma, L., and Cai, W. (2009) Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy. Opt. Express 17(10): 8602–8613. doi:10.1364/OE.17.008602.
  • Cai, W., and Kaminski, C. F. (2014) A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers. Appl. Phys. Lett. 104(3): 034101. doi:10.1063/1.4862754.
  • Cai, W., and Kaminski, C. (2015) A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry. Appl. Phys. B-Lasers O 119(1): 29–35. doi:10.1007/s00340-015-6012-5.
  • Ma, L., Li, X., Cai, W., Roy, S., Gord, J. R., and Sanders, S. T. (2010) Selection of multiple optimal absorption transitions for nonuniform temperature sensing. Appl. Spectrosc. 64(11): 1274–1282. doi:10.1366/000370210793335052.
  • Cai, W., and Kaminski, C. F. (2014) Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy. Appl. Phys. Lett. 104(15): 154106. doi:10.1063/1.4871976.
  • Ma, L., and Cai, W. (2008) Determination of the optimal regularization parameters in hyperspectral tomography. Appl. Opt. 47(23): 4186–4192. doi:10.1364/AO.47.004186.
  • Cai, W., Ewing, D. J., and Ma, L. (2011) Investigation of temperature parallel simulated annealing for optimizing continuous functions with application to hyperspectral tomography. Appl. Math. Comput. 217(12): 5754–5767.
  • Ma, L., Li, X., Sanders, S. T., Caswell, A. W., Roy, S., Plemmons, D. H., and Gord, J. R. (2013) 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt. Express 21(1): 1152–1162. doi:10.1364/OE.21.001152.
  • Hult, J., Watt, R. S., and Kaminski, C. F. (2007) High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt. Express 15(18): 11385–11395. doi:10.1364/OE.15.011385.
  • Kaminski, C. F., Watt, R. S., Elder, A. D., Frank, J. H., and Hult, J. (2008) Supercontinuum radiation for applications in chemical sensing and microscopy. Appl. Phys. B-Lasers O 92: 367–378. doi:10.1007/s00340-008-3132-1.
  • Niels Göran, B., Volker, E., Andreas, D., and Steven, W. (2016) Broadband fitting approach for the application of supercontinuum broadband laser absorption spectroscopy to combustion environments. Meas. Sci. Technol. 27(1): 015501. doi:10.1088/0957-0233/27/1/015501.
  • Qu, Q., Xu, L., Cao, Z., and Liu, C. (2016) Effects of views and spectral lines numbers on hyperspectral temperature distribution tomography. In Paper presented at 2016 IEEE International Instrumentation and Measurement Technology Conference, pp. 1–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.