551
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Mass spectrometry for evolved gas analysis: An update

&

References

  • Materazzi, S., and Risoluti, R. (2014) Evolved gas analysis by mass spectrometry. Appl. Spectrosc. Rev. 49(8): 635–665. doi:10.1080/05704928.2014.887021.
  • Risoluti, R., Fabiano, M. A., Gullifa, G., Vecchio Ciprioti, S., and Materazzi, S. (2017) FTIR-evolved gas analysis in recent thermoanalytical investigations. Appl. Spectrosc. Rev. 52(1): 39–72. doi:10.1080/05704928.2016.1207658.
  • Materazzi, S., Gentili, A., and Curini, R. (2006) Applications of evolved gas analysis: Part 1: EGA by infrared spectroscopy. Talanta. 68(3): 489–496. doi:10.1016/j.talanta.2005.04.055.
  • Materazzi, S., Gentili, A., and Curini, R. (2006) Applications of evolved gas analysis. Part 2: EGA by mass spectrometry. Talanta. 69(4): 781–794. doi:10.1016/j.talanta.2005.12.007.
  • Materazzi, S., and Curini, R. (2001) The coupling of mass spectrometry with thermoanalytical instruments: Applications of evolved gas analysis. Appl. Spectrosc. Rev. 36(2–3): 169. doi:10.1081/ASR-100106155.
  • May, M. (2017) A double mass measurement combining thermogravimetric analysis with MS. Am. Lab. 49(5): 38–40.
  • Haque, S. M., and Ratemi, E. S. (2017) Drug development and analysis review. Pharm. Chem. J. 50(12): 837–850. doi:10.1007/s11094-017-1543-1.
  • Fischer, M., Wohlfahrt, S., Varga, J., Matuschek, G., Saraji-Bozorgzad, M. R., Walte, A., Denner, T., and Zimmermann, R. (2017) Evolution of volatile flavor compounds during roasting of nut seeds by thermogravimetry coupled to fast-cycling optical heating gas chromatography-–mass spectrometry with electron and photoionization. Food Anal. Methods. 10(1): 49–62. doi:10.1007/s12161-016-0549-8.
  • Cao, X., Zou, K., and Xu, G. (2016) Research and application of TG–MS synchronous pulse external standard method for determination of carbon content of catalysts. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Pet. Process. Sect.). 32(3): 622–628. doi:10.3969/j.issn.1001-8719.2016.03.025.
  • Bauernhuber, A., Markovits, T., Trif, L., and Csanády, Á. (2017) Adhesion of steel and PMMA by means of laser radiation (vol. 885). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013414503&doi = 10.4028%2fwww.scientific.net%2fMSF.885.61&partnerID=40&md5=558b1c21a5bd8622d5cfa2b081b566d2.
  • Yao, Z., and Ma, X. (2017) A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis. Energy. 141: 1156–1165. doi:10.1016/j.energy.2017.10.008.
  • Hirsch, S. G., Barel, B., Shpasser, D., Segal, E., and Gazit, O. M. (2017) Correlating chemical and physical changes of photo-oxidized low-density polyethylene to the activation energy of water release. Polym. Test. 64: 194–199. doi:10.1016/j.polymertesting.2017.10.005.
  • Özsin, G., and Pütün, A. E. (2017) Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis. Energy Convers. Manage. 149: 675–685. doi:10.1016/j.enconman.2017.07.059.
  • Windrich, F., Kappert, E. J., Malanin, M., Eichhorn, K.-J., Häuβler, L., Benes, N. E., and Voit, B. (2016) In-situ imidization analysis in microscale thin films of an ester-type photosensitive polyimide for microelectronic packaging applications. Eur. Polym. J. 84: 279–291. doi:10.1016/j.eurpolymj.2016.09.020.
  • Garrido, M. A., Font, R., and Conesa, J. A. (2016) Kinetic study and thermal decomposition behavior of viscoelastic memory foam. Energy Convers. Manage. 119: 327–337. doi:10.1016/j.enconman.2016.04.048.
  • Han, T. U., Kim, Y.-M., Watanabe, A., Teramae, N., Park, Y.-K., and Kim, S. (2017) Pyrolysis kinetic analysis of poly(methyl methacrylate) using evolved gas analysis-mass spectrometry. Korean J. Chem. Eng. 34(4): 1214–1221. doi:10.1007/s11814-016-0354-5.
  • Materazzi, S., Peluso, G., Ripani, L., and Risoluti, R. (2017) High-throughput prediction of AKB48 in emerging illicit products by NIR spectroscopy and chemometrics. Microchem. J. 134: 277–283. doi:10.1016/j.microc.2017.06.014.
  • Lisa, G., Hamciuc, C., Hamciuc, E., and Tudorachi, N. (2016) Thermal and thermo-oxidative stability and probable degradation mechanism of some polyetherimides. J. Anal. Appl. Pyrolysis. 118: 144–154. doi:10.1016/j.jaap.2016.01.012.
  • Matsunaga, H., Habu, H., and Miyake, A. S. (2017) Analysis of evolved gases during the thermal decomposition of ammonium diniramide under pressure. Sci. Technol. Energetic Mater. 78(3–4): 75–80.
  • Feng, X., Böhme, B., Bobnar, M., Simon, P., Carrillo-Cabrera, W., Burkhardt, U., Schmidt, M., Schwarz, U., Baitinger, M., Straßner, T., and Grin, Y. (2017) An amorphous phase of zinc and silicon at composition Zn2Si5(:H, OH). Z. Anorg. Allg. Chem. 643(1): 106–113. doi:10.1002/zaac.201600340.
  • De Angelis Curtis, S., Kubiak, M., Kurdziel, K., Materazzi, S., and Vecchio, S. (2010) Crystal structure and thermoanalytical study of a cadmium(II) complex with 1-allylimidazole. J. Anal. Appl. Pyrolysis. 87(1): 175–179. doi:10.1016/j.jaap.2009.11.007.
  • De Angelis Curtis, S., Kurdziel, K., Materazzi, S., and Vecchio, S. (2008) Crystal structure and thermoanalytical study of a manganese(II) complex with 1-allylimidazole. J. Therm. Anal. Calorim. 92(1): 109–114. doi:10.1007/s10973-007-8747-7.
  • De Angelis Curtis, S., Kurdziel, K., Materazzi, S., and Vecchio, S. (2010) Crystal structure and thermoanalytical study of cobalt(II) and nickel(II) complexes with 2,2′-bis-(4,5-dimethylimidazole). Thermochim. Acta. 510(1–2): 75–81. doi:10.1016/j.tca.2010.06.025.
  • Farhang, F., Oliver, T. K., Rayson, M., Brent, G., Stockenhuber, M., and Kennedy, E. (2016) Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chem. Eng. J. 303: 439–449. doi:10.1016/j.cej.2016.06.008.
  • Shahbazi, S., Stratz, S. A., Auxier, J. D., II, Hanson, D. E., Marsh, M. L., and Hall, H. L. (2017) Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates. J. Radioanal. Nucl. Chem. 311(1): 617–626. doi:10.1007/s10967-016-5005-0.
  • Neumann, M., Teschner, D., Knop-Gericke, A., Reschetilowski, W., and Armbrüster, M. (2016) Controlled synthesis and catalytic properties of supported In-Pd intermetallic compounds. J. Catal. 340: 49–59. doi:10.1016/j.jcat.2016.05.006.
  • Xue, S., Wu, W., Bian, X., and Wu, Y. (2017) Dehydration, hydrolysis and oxidation of cerium chloride heptahydrate in air atmosphere. J. Rare Earths. 35(11): 1156–1163. doi:10.1016/j.jre.2017.06.001.
  • Li, M., Gu, Q., Li, X., and Yu, X. (2016) Dehydrogenation properties of chromium-based ammine borohydrides: CrCl3·nNH3/3LiBH4 (n = 3, 4 and 5). Int. J. Hydrogen Energy. 41(2): 733–739. doi:10.1016/j.ijhydene.2015.11.025.
  • Kurdziel, K., Głowiak, T., Materazzi, S., and Jezierska, J. (2003) Crystal structure and physico-chemical properties of cobalt(II) and manganese(II) complexes with imidazole-4-acetate anion. Polyhedron. 22(23): 3123–3128. doi:10.1016/j.poly.2003.07.004.
  • Moss, M., and Lombardo, S. J. (2016) Evolved gas analysis during sintering of barium titanate. Adv. Appl. Ceram. 115(5): 264–271. doi:10.1080/17436753.2015.1135590.
  • Shen, P.-P., Zhu, M.-M., Ren, N., Zhang, J.-J., and Wang, S.-P. (2017) Four novel lanthanide complexes with 4-ethylbenzoic acid and 5,5′-dimethy-2,2′-bipyridine: Structures, luminescent, thermal properties and bacteriostatic activities. Appl. Organomet. Chem. 31(12). doi:10.1002/aoc.3886.
  • Massaro, A., Colombini, M. P., and Ribechini, E. (2016) Fructose and inulin: Behaviour under analytical pyrolysis. J. Anal. Appl. Pyrolysis. 121: 205–212. doi:10.1016/j.jaap.2016.07.021.
  • Domán, A., Madarász, J., and László, K. (2017) In situ evolved gas analysis assisted thermogravimetric (TG–FTIR and TG/DTA–MS) studies on non-activated copper benzene-1,3,5-tricarboxylate. Thermochim. Acta. 647: 62–69. doi:10.1016/j.tca.2016.11.013.
  • Materazzi, S., Vecchio, S., Wo, L. W., and De Angelis Curtis, S. (2012). TG–MS and TG–FTIR studies of imidazole-substituted coordination compounds: Co(II) and Ni(II)-complexes of bis(1-methylimidazol-2-yl)ketone. Thermochim. Acta. 543: 183–187. doi:10.1016/j.tca.2012.05.013.
  • Risoluti, R., Piazzese, D., Napoli, A., and Materazzi, S. (2016) Study of [2-(2′-pyridyl)imidazole] complexes to confirm two main characteristic thermoanalytical behaviors of transition metal complexes based on imidazole derivatives. J. Anal. Appl. Pyrolysis. 117: 82–87. doi:10.1016/j.jaap.2015.11.018.
  • Materazzi, S., Risoluti, R., and Napoli, A. (2015) EGA–MS study to characterize the thermally induced decomposition of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base. Thermochim. Acta. 606: 90–94. doi:10.1016/j.tca.2015.03.009.
  • Materazzi, S., Napoli, A., Risoluti, R., Finamore, J., and D'Arienzo, S. (2014) Characterization of thermally induced mechanisms by mass spectrometry-evolved gas analysis (EGA–MS): A study of divalent cobalt and zinc biomimetic complexes with N-heterocyclic dicarboxylic ligands. Int. J. Mass Spectrom. 365–366: 372–376. doi:10.1016/j.ijms.2014.03.013.
  • Materazzi, S., Finamore, J., Risoluti, R., and Napoli, A. (2014) Biomimetic complexes of Co(II), Cu(II) and Ni(II) with 2-aminomethylbenzimidazole. EGA-MS characterization of the thermally induced decomposition. Microchem. J. 115: 27–31. doi:10.1016/j.microc.2014.02.006.
  • Risoluti, R., Gullifa, G., Fabiano, M. A., and Materazzi, S. (2015) Biomimetic complexes of Co(II), Mn(II), and Ni(II) with 2-propyl-4,5-imidazoledicarboxylic acid. EGA-MS characterization of the thermally induced decomposition. Russ. J. Gen. Chem. 85(10): 2374–2377. doi:10.1134/S1070363215100242.
  • Papadopoulos, C., Cristóvão, B., Ferenc, W., Hatzidimitriou, A., Ciprioti, S. V., Risoluti, R., and Lalia-Kantouri, M. (2016) Thermoanalytical, magnetic and structural investigation of neutral Co(II) complexes with 2,2′-dipyridylamine and salicylaldehydes. J. Therm. Anal. Calorim. 123(1): 717–729. doi:10.1007/s10973-015-4976-3.
  • Materazzi, S., Curini, R., and D'Ascenzo, G. (1996) Thermoanalytical study of benzimidazole complexes with transition metal ions: Copper (II) complexes. Thermochim. Acta. 286(1): 1–15. doi:10.1016/0040-6031(96)02949-8.
  • Crea, F., Falcone, G., Foti, C., Giuffrè, O., and Materazzi, S. (2014) Thermodynamic data for Pb2+ and Zn2+ sequestration by biologically important S-donor ligands, at different temperatures and ionic strengths. New J. Chem. 38(8): 3973–3983. doi:10.1039/c4nj00830h.
  • Bretti, C., Crea, F., De Stefano, C., Foti, C., Materazzi, S., and Vianelli, G. (2013) Thermodynamic properties of dopamine in aqueous solution. Acid–base properties, distribution, and activity coefficients in NaCl aqueous solutions at different ionic strengths and temperatures. J. Chem. Eng. Data. 58(10): 2835–2847. doi:10.1021/je400568u.
  • Materazzi, S., Foti, C., Crea, F., Risoluti, R., and Finamore, J. (2014) Biomimetic complexes of divalent cobalt and zinc with N-heterocyclic dicarboxylic ligands. Thermochim. Acta. 580: 7–12. doi:10.1016/j.tca.2014.01.025.
  • Risoluti, R., Gullifa, G., Fabiano, M. A., Wo, L. W., and Materazzi, S. (2017) Biomimetic complexes of Cd(II), Mn(II), and Zn(II) with 2-aminomethylbenzimidazole. EGA/MS characterization of the thermally induced decomposition. Russ. J. Gen. Chem. 87(2): 300–304. doi:10.1134/S1070363217020244.
  • Migliorati, V., Ballirano, P., Gontrani, L., Materazzi, S., Ceccacci, F., and Caminiti, R. (2013) A combined theoretical and experimental study of solid octyl and decylammonium chlorides and of their aqueous solutions. J. Phys. Chem. B. 117(25): 7806–7818. doi:10.1021/jp403103w.
  • Aiello, D., Materazzi, S., Risoluti, R., Thangavel, H., Di Donna, L., Mazzotti, F., Casadonte, F., Siciliano, C., Sindona, G., and Napoli, A. (2015) A major allergen in rainbow trout (Oncorhynchus mykiss): Complete sequences of parvalbumin by MALDI tandem mass spectrometry. Mol. Biosyst. 11(8): 2373–2382. doi:10.1039/c5mb00148j.
  • Risoluti, R., Fabiano, M. A., Gullifa, G., Wo, L. W., and Materazzi, S. (2017) Biomimetic complexes of Cd(II), Mn(II), and Zn(II) with 1,1-diaminobutane–Schiff base. EGA/MS study of the thermally induced decomposition. Russ. J. Gen. Chem. 87(3): 564–568. doi:10.1134/S107036321703029X.
  • Shen, P.-P., Wu, X.-H., Ren, N., Zhang, J.-J., and Wang, S.-P. (2017) Lanthanide complexes with 2,3-dimethoxybenzoic acid and terpyridine: Crystal structures, thermal properties, and antibacterial activities. Z. Anorg. Allg. Chem. 643(14): 889–894. doi:10.1002/zaac.201700057.
  • Szostak, E., and Migdał-Mikuli, A. (2017) Thermal analysis, phase transitions and molecular reorientations in [Fe(OS(CH3)2)6](ClO4)2. J. Therm. Anal. Calorim. 129(2): 1151–1158. doi:10.1007/s10973-017-6181-z.
  • Rabee, A. I. M., Mekhemer, G. A. H., Osatiashtiani, A., Isaacs, M. A., Lee, A. F., Wilson, K., and Zaki, M. I. (2017) Acidity-reactivity relationships in catalytic esterification over ammonium sulfate-derived sulfated zirconia. Catalyst. 7(7): 204–219. doi:10.3390/catal7070204.
  • Gallego, J., Sierra-Gallego, G., Tapia, J., Mondragón, F., and Batiot-Dupeyrat, C. (2016) Activation of CO2 on Ni/La2O3: Non-isothermal kinetic study on the basis of thermogravimetric studies. React. Kinet., Mech. Catal. 119(1): 179–193. doi:10.1007/s11144-016-1032-7.
  • Jianfei, L., Dawei, H., Qinghe, Y., and Hong, N. (2016) Analysis of coke on fixed bed residue hydrotreating catalysts. Pet. Process. Petrochemicals. 47(10): 1–5.
  • Liu, X., Wang, J.-Y., Yang, X.-M., Wang, Y.-L., and Hao, J.-W. (2017) Application of TG/FTIR TG/MS and cone calorimetry to understand flame retardancy and catalytic charring mechanism of boron phosphate in flame-retardant PUR–PIR foams. J. Therm. Anal. Calorim. 130(3): 1817–1827. doi:10.1007/s10973-017-6564-1.
  • Cordoba, M., Miranda, C., Lederhos, C., Coloma-Pascual, F., Ardila, A., Fuentes, G. A., Pouilloux, Y., and Ramírez, A. (2017) Catalytic performance of Co3O4 on different activated carbon supports in the benzyl alcohol oxidation. Catalyst. 7(12): 384. doi:10.3390/catal7120384.
  • Zybert, M., Tarka, A., Mierzwa, B., and Raróg-Pilecka, W. (2017) Cobalt-lanthanum catalyst precursors for ammonia synthesis: Determination of calcination temperature and storage conditions. Polish J. Chem. Technol. 19(2): 61–66. doi:10.1515/pjct-2017-0029.
  • Sebestyén, Z., Barta-Rajnai, E., Bozi, J., Blazsó, M., Jakab, E., Miskolczi, N., and Czégény, Z. (2017) Catalytic pyrolysis of biomass and plastic mixtures using HZSM-5 zeolite. Energy Procedia. 105: 718–723. doi:10.1016/j.egypro.2017.03.381.
  • Sun, X. D., Li, S. H., Wang, L.-J., Gu, W.-B., Shi, C. L., Dong, X. Y. M., Wang, Y-Z., Wang, W.-M., Yang, Z.-Y., Wang, Y., and Zhu, J. H. (2017) Impact of proton: Capturing tobacco specific N-nitrosamines (TSNA) with HZSM-5 zeolite. Chem. Eng. J. 323: 180–190. doi:10.1016/j.cej.2017.04.064.
  • Kosri, C., Deekamwong, K., Sophiphun, O., Osakoo, N., Chanlek, N., Föttinger, K., and Wittayakun, J. (2017) Comparison of Fe/HBEA catalysts from incipient wetness impregnation with various loading on phenol hydroxylation. React. Kinet., Mech. Catal. 121(2): 751–761. doi:10.1007/s11144-017-1160-8.
  • Risoluti, R., Materazzi, S., Gregori, A., and Ripani, L. (2016) Early detection of emerging street drugs by near infrared spectroscopy and chemometrics. Talanta. 153: 407–413. doi:10.1016/j.talanta.2016.02.044.
  • Pahalagedara, M. N., Pahalagedara, L. R., Kriz, D., Chen, S.-Y., Beaulieu, F., Thalgaspitiya, W., and Suib, S. L. (2016) Copper aluminum mixed oxide (CuAl MO) catalyst: A green approach for the one-pot synthesis of imines under solvent-free conditions. Appl. Catal. B. 188: 227–234. doi:10.1016/j.apcatb.2016.02.007.
  • Ge, P., Zhang, L., Ding, S., Li, D., and Nie, H. (2017) Correlation of deactivation of Ni–Mo–W/Al2O3 during ultra-low-sulfur diesel production with surface carbon species. China Pet. Process. Petrochemical Technol. 19(2): 1–7.
  • Gao, Z., Wang, L., Ma, H., and Li, Z. (2017) Durability of catalytic performance of the chlorine-doped catalyst Ni(Clx)/ZrO2 for selective methanation of CO in H2-rich gas. Appl. Catal. A. 534: 78–84. doi:10.1016/j.apcata.2017.02.001.
  • Sobańska, K., Pietrzyk, P., and Sojka, Z. (2017) Generation of reactive oxygen species via electroprotic interaction of H2O2 with ZrO2 gel: Ionic sponge effect and pH-switchable peroxidase- and catalase-like activity. ACS Catalysis. 7(4): 2935–2947. doi:10.1021/acscatal.7b00189.
  • Park, J., Lee, J.-H., Chung, Y.-M., and Suh, Y.-W. (2017) Exfoliated HNb3O8 nanosheets of enhanced acidity prepared by efficient contact of K2CO3 with Nb2O5. Adv. Powder Technol. 28(10): 2524–2531. doi:10.1016/j.apt.2017.07.002.
  • Jia, P., Feng, G., Bo, C., Hu, L., Yang, X., Zhang, L., Zhang, M., and Zhou, Y. (2018) A composition of phosphaphenanthrene groups-containing castor-oil-based phosphate plasticizer for PVC: Synthesis, characterization and property. J Ind. Eng. Chem. 60: 192–205. doi:10.1016/j.jiec.2017.11.006.
  • Ding, H., Huang, K., Li, S., Xu, L., Xia, J., and Li, M. (2017) Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane composites based on ammonium polyphosphate and aluminium hypophosphite. Polym. Test. 62: 325–334. doi:10.1016/j.polymertesting.2017.07.017.
  • Hu, Q., Peng, P., Peng, S., Liu, J., Liu, X., Zou, L., and Chen, J. (2017) Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J. Therm. Anal. Calorim. 128(1): 201–210. doi:10.1007/s10973-016-5907-7.
  • Zhao, X., Babu, H. V., Llorca, J., and Wang, D.-Y. (2016) Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Advances. 6(64): 59226–59236. doi:10.1039/c6ra13168a.
  • Qiu, Y., Wachtendorf, V., Klack, P., Qian, L., Liu, Z., and Schartel, B. (2017) Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset. Polym. Int. 66(12): 1883–1890. doi:10.1002/pi.5466.
  • Feng, C., Liang, M., Jiang, J., Liu, H., and Huang, J. (2016) Synergistic effect of ammonium polyphosphate and triazine-based charring agent on the flame retardancy and combustion behavior of ethylene-vinyl acetate copolymer. J. Anal. Appl. Pyrolysis. 119: 259–269. doi:10.1016/j.jaap.2016.01.004.
  • Leblanc, J., Uchimiya, M., Ramakrishnan, G., Castaldi, M. J., and Orlov, A. (2016) Across-phase biomass pyrolysis stoichiometry, energy balance, and product formation kinetics. Energy Fuels. 30(8): 6537–6546. doi:10.1021/acs.energyfuels.6b01376.
  • Materazzi, S., Gregori, A., Ripani, L., Apriceno, A., and Risoluti, R. (2017) Cocaine profiling: Implementation of a predictive model by ATR–FTIR coupled with chemometrics in forensic chemistry. Talanta. 166: 328–335. doi:10.1016/j.talanta.2017.01.045.
  • Yao, X., Xu, K., and Liang, Y. (2016) Analytical pyrolysis study of peanut shells using TG–MS technique and characterization for the waste peanut shell ash. J. Residuals Sci. Technol. 13(4): 295–305. doi:10.12783/issn.1544-8053/13/4/7.
  • Patwary, F., Matsko, N., and Mittal, V. (2018) Biodegradation properties of melt processed PBS/chitosan bio-nanocomposites with silica, silicate, and thermally reduced graphene. Polymer Composites. 39(2): 386–397. doi:10.1002/pc.23947.
  • Katsumi, N., Yonebayashi, K., Okazaki, M., Nishiyama, S., Nishi, T., Hosaka, A., and Watanabe, C. (2016) Characterization of soil organic matter with different degrees of humification using evolved gas analysis-mass spectrometry. Talanta. 155: 28–37. doi:10.1016/j.talanta.2016.04.007.
  • Moreno, A. I., Font, R., and Conesa, J. A. (2017) Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants. Fuel. 192: 169–177. doi:10.1016/j.fuel.2016.12.022.
  • Perígolo, D. M., de Paula, F. G. F., Rosmaninho, M. G., de Souza, P. P., Lago, R. M., and Araujo, M. H. (2017) Conversion of fatty acids into hydrocarbon fuels based on a sodium carboxylate intermediate. Catal. Today. 279: 260–266. doi:10.1016/j.cattod.2016.04.035.
  • Han, L., Zhang, Y., Lin, K., Jia, X., Zhang, H., Zhong, Y., Wang, Q., and Li, Z. (2017) Developing a novel CaO-based sorbent for promoted CO2 capture and tar reduction. Energy Fuels. 31(5): 5306–5317. doi:10.1021/acs.energyfuels.6b03409.
  • Zhang, Y., He, Z. B., Xue, L., Chu, D. M., and Mu, J. (2016) Influence of a urea-formaldehyde resin adhesive on pyrolysis characteristics and volatiles emission of poplar particleboard. RSC Advances. 6(16): 12850–12861. doi:10.1039/c5ra18068f.
  • Nsaful, F., Collard, F.-X., and Görgens, J. F. (2017) Influence of lignocellulose thermal pretreatment on the composition of condensable products obtained from char devolatilization by means of thermogravimetric analysis–thermal desorption/gas chromatography–mass spectrometry. J. Anal. Appl. Pyrolysis. 127: 99–108. doi:10.1016/j.jaap.2017.08.018.
  • Chen, T., Zhang, J., and Wu, J. (2016) Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Bioresour. Technol. 211: 502–508. doi:10.1016/j.biortech.2016.03.091.
  • Wang, J.-X., Cao, J.-P., Zhao, X.-Y., Liu, T.-L., Wei, F., Fan, X., Zhao, Y.-P., and Wei, X.-Y. (2017) Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres. J. Anal. Appl. Pyrolysis. 125: 279–288. doi:10.1016/j.jaap.2017.03.015.
  • Gunasee, S. D., Carrier, M., Gorgens, J. F., and Mohee, R. (2016) Pyrolysis and combustion of municipal solid wastes: Evaluation of synergistic effects using TGA–MS. J. Anal. Appl. Pyrolysis. 121: 50–61. doi:10.1016/j.jaap.2016.07.001.
  • Christensen, J. H., and Tomasi, G. (2016) A multivariate approach to oil hydrocarbon fingerprinting and spill source identification. In Standard Handbook Oil Spill Environmental Forensics: Fingerprinting and Source Identification: Second Edition (pp: 747–788). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969685662&doi=10.1016%2fB978-0-12-809659-8.00016-4&partnerID=40&md5=68fab87e4790ea88f5f2f1440db4765e.
  • Alipour, M., Kurian, V., Dhir, S., and Gupta, R. (2016) Analysis of syngas cooler fouling from asphaltene gasification. Fuel Process. Technol. 152: 7–14. doi:10.1016/j.fuproc.2016.05.030.
  • Tamburini, D., Sardi, D., Spepi, A., Duce, C., Tinè, M. R., Colombini, M. P., and Bonaduce, I. (2016) An investigation into the curing of urushi and tung oil films by thermoanalytical and mass spectrometric techniques. Polym. Degrad. Stab. 134: 251–264. doi:10.1016/j.polymdegradstab.2016.10.015.
  • Huang, Y., Fan, C., Han, X., and Jiang, X. (2016) A TGA–MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. Oil Shale. 33(2): 125–141. doi:10.3176/oil.2016.2.03.
  • Kok, M. V., and Ozgur, E. (2016) Combustion performance and kinetics of oil shales. Energy Sources, Part A: Recovery, Util. Environ. Eff. 38(8): 1039–1047. doi:10.1080/15567036.2015.1098749.
  • Wang, Q., Zhang, Y., and Chi, M. (2017) Characteristics analysis in the process of kerogen pyrolysis. Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Pet. Process. Sect.). 33(3): 507–514. doi:10.3969/j.issn.1001-8719.2017.03.015.
  • Kök, M. V., Varfolomeev, M. A., and Nurgaliev, D. K. (2017) Crude oil characterization using TGA–DTA, TGA–FTIR and TGA–MS techniques. J. Pet. Sci. Eng. 154: 537–542. doi:10.1016/j.petrol.2016.12.018.
  • Maaten, B., Loo, L., Konist, A., Pihu, T., and Siirde, A. (2017) Investigation of the evolution of sulphur during the thermal degradation of different oil shales. J. Anal. Appl. Pyrolysis. 128: 405–411. doi:10.1016/j.jaap.2017.09.007.
  • Mendonça, F. G., Gomes, J. P. M., Tristão, J. C., Ardisson, J. D., Soares, R. R., and Lago, R. M. (2016) Novel reductive extraction process to convert the bio-oil aqueous acid fraction into fuels with the recovery of iron from wastes. Fuel. 184: 36–41. doi:10.1016/j.fuel.2016.06.099.
  • Rüger, C. P., Neumann, A., Sklorz, M., Schwemer, T., and Zimmermann, R. (2017) Thermal analysis coupled to ultrahigh resolution mass spectrometry with collision induced dissociation for complex petroleum samples: Heavy oil composition and asphaltene precipitation effects. Energy Fuels. 31(12): 13144–13158. doi:10.1021/acs.energyfuels.7b01778.
  • Spörl, J. M., Ota, A., Son, S., Massonne, K., Hermanutz, F., and Buchmeiser, M. R. (2016) Carbon fibers prepared from ionic liquid-derived cellulose precursors. Mater. Today Commun. 7: 1–10. doi:10.1016/j.mtcomm.2016.02.002.
  • Yu, D., Chen, M., Wei, Y., Niu, S., and Xue, F. (2016) An assessment on co-combustion characteristics of Chinese lignite and eucalyptus bark with TG–MS technique. Powder Technol. 294: 463–471. doi:10.1016/j.powtec.2016.03.016.
  • Barta-Rajnai, E., Wang, L., Sebestyén, Z., Barta, Z., Khalil, R., Skreiberg, Ø., Grønli, M., Jakab, E., and Czégény, Z. (2017) Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce. Appl. Energy. 204: 1043–1054. doi:10.1016/j.apenergy.2017.05.057.
  • Zhao, H., Li, Y., Song, Q., Wang, X., and Shu, X. (2017) Drying, re-adsorption characteristics, and combustion kinetics of Xilingol lignite in different atmospheres. Fuel. 210: 592–604. doi:10.1016/j.fuel.2017.09.011.
  • Huang, Y., Hu, Y., Ye, F., and Fang, Y. (2017) Lignin Pyrolysis and in situ hydrodeoxygenation over MoO3: Interaction between MoO3 and lignin. Energy Fuels. 31(8): 8356–8362. doi:10.1021/acs.energyfuels.7b01490.
  • Kim, Y.-M., Han, T. U., Hwang, B., Lee, Y., Watanabe, A., Teramae, N., Kim, S.-S., Park, Y.-K., and Kim, S. (2017) New approach for the kinetic analysis of cellulose using EGA–MS. Polym. Test. 60: 12–17. doi:10.1016/j.polymertesting.2017.02.004.
  • Agustin, M. B., Nakatsubo, F., and Yano, H. (2016) Products of low-temperature pyrolysis of nanocellulose esters and implications for the mechanism of thermal stabilization. Cellulose. 23(5): 2887–2903. doi:10.1007/s10570-016-1004-0.
  • Yoshida, S., Masuo, Y., Shibata, D., Haruta, M., Doi, T., and Inaba, M. (2017) Adsorbed water on nano-silicon powder and its effects on charge and discharge characteristics as anode in lithium-ion batteries. J. Electrochem. Soc. 164(1): A6084–A6087. doi:10.1149/2.01111701jes.
  • Riello, D., Zetterström, C., Parr, C., Braulio, M. A. L., Moreira, M., Gallo, J. B., and Pandolfelli, V. C. (2016) AlF3 reaction mechanism and its influence on α-Al2O3 mineralization. Ceram. Int. 42(8): 9804–9814. doi:10.1016/j.ceramint.2016.03.074.
  • Wang, J., Li, Z., and Liu, C. (2016) A new kind of blue hybrid electroluminescent device. J. Nanosci. Nanotechnol. 16(4): 3763–3767. doi:10.1166/jnn.2016.11816.
  • Pahalagedara, L., Kriz, D. A., Wasalathanthri, N., Weerakkody, C., Meng, Y., Dissanayake, S., Pahalagedara, M., Luo, Z., Suib, S. L., Nandi, P., and Meyer, R. J. (2017) Benchmarking of manganese oxide materials with CO oxidation as catalysts for low temperature selective oxidation. Appl. Catal. B. 204: 411–420. doi:10.1016/j.apcatb.2016.11.043.
  • Sergi, M., Compagnone, D., Curini, R., D'Ascenzo, G., Del Carlo, M., Napoletano, S., and Risoluti, R. (2010) Micro-solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids. Anal. Chim. Acta. 675(2): 132–137. doi:10.1016/j.aca.2010.07.011.
  • Au, H., Rubio, N., and Shaffer, M. S. P. (2017) Brominated graphene as a versatile precursor for multifunctional grafting. Chem. Sci. 9(1): 209–217. doi:10.1039/c7sc03455e.
  • Marchetti, L., Sabbieti, M. G., Menghi, M., Materazzi, S., Hurley, M. M., and Menghi, G. (2002) Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts. Histol. Histopathol. 17(4): 1061–1066.
  • Risoluti, R., Materazzi, S., Sorrentino, F., Maffei, L., and Caprari, P. (2016) Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for ß-thalassemia screening. Talanta. 159: 425–432. doi:10.1016/j.talanta.2016.06.037.
  • Wang, J., Wang, L., Fan, H., Wang, H., Hu, Y., and Wang, Z. (2017) Highly porous copper oxide sorbent for H2S capture at ambient temperature. Fuel. 209: 329–338. doi:10.1016/j.fuel.2017.08.003.
  • Koscheev, A. P., Gubanova, D. P., Minashkin, V. M., Bondarenko, S. A., and Shoranova, L. O. (2017) On application of thermal desorption mass spectrometry for detection of beryllium hydroxide. Ecology, Environment and Conservation. 23(1): 507–514.
  • Popa, A., Sasca, V., Bajuk-Bogdanović, D., and Holclajtner-Antunović, I. (2016) Acidic nickel salts of Keggin type heteropolyacids supported on SBA-15 mesoporous silica. J. Porous Mater. 23(1): 211–223. doi:10.1007/s10934-015-0072-0.
  • Cai, J., Huang, B., Ma, Q., and Zhang, W. (2017) A new process of acidic hydrolysis of residual chlorosilane liquid for the preparation of silica and hydrochloric acid. Korean J. Chem. Eng. 34(6): 1793–1800. doi:10.1007/s11814-017-0093-2.
  • Schäfer, R. A., Dasler, D., Mundloch, U., Hauke, F., and Hirsch, A. (2016) Basic insights into tunable graphene hydrogenation. J. Am. Chem. Soc. 138(5): 1647–1652. doi:10.1021/jacs.5b11994.
  • Zhang, H., Yu, H.-M., Xu, C.-H., Zhang, M.-H., Pan, X.-H., and Gao, Y.-F. (2016) A study of graphene oxidation using thermal analysis-mass spectrometry combined with pulse thermal analysis. Wuli Huaxue Xuebao/ Acta Physico – Chimica Sinica. 32(7): 1634–1638. doi:10.3866/PKU.WHXB201605111.
  • García-Garrido, C., Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., and Criado, J. M. (2016) Combined TGA–MS kinetic analysis of multistep processes. Thermal decomposition and ceramification of polysilazane and polysiloxane preceramic polymers. PCCP. 18(42): 29348–29360. doi:10.1039/c6cp03677e.
  • Whitman, C. A., O'Flynn, J. T., Rayner, A. J., and Corbin, S. F. (2016) Determining the oxidation behavior of metal powders during heating through thermogravimetric and evolved gas analysis using a coupled thermogravimetry-gas chromatography-mass spectrometry technique. Thermochim. Acta. 638: 124–137. doi:10.1016/j.tca.2016.06.019.
  • Zhang, C., Gong, J.-J., Dong, Z.-J., Meng, J., Zhou, S.-C., Yuan, G.-M., and Li, X.-K. (2017) HfC precursor: Synthesis and pyrolysis behavior. Wuji Cailiao Xuebao/J. Inorganic Mater. 32(10): 1095–1101. doi:10.15541/jim20160692.
  • Laganà, A., Bacaloni, A., Castellano, M., Curini, R., De Leva, I., Faberi, A., and Materazzi, S. (2003) Sample preparation for determination of macrocyclic lactone mycotoxins in fish tissue, based on on-line matrix solid-phase dispersion and solid-phase extraction cleanup followed by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 86(4): 729–736.
  • Sergi, M., Gentili, A., Perret, D., Marchese, S., Materazzi, S., and Curini, R. (2007) MSPD extraction of sulphonamides from meat followed by LC tandem MS determination. Chromatographia. 65(11–12): 757–761. doi:10.1365/s10337-007-0245-3.
  • Chernyak, S. A., Ivanov, A. S., Strokova, N. E., Maslakov, K. I., Savilov, S. V., and Lunin, V. V. (2016) Mechanism of thermal defunctionalization of oxidized carbon nanotubes. J. Phys. Chem. C. 120(31): 17465–17474. doi:10.1021/acs.jpcc.6b05178.
  • Arkhipova, E. A., Ivanov, A. S., Strokova, N. E., Chernyak, S. A., Shumyantsev, A. V., Maslakov, K. I., Savilov, S., and Lunin, V. V. (2017) Structural evolution of nitrogen-doped carbon nanotubes: From synthesis and oxidation to thermal defunctionalization. Carbon. 125: 20–31. doi:10.1016/j.carbon.2017.09.013.
  • D'Elia, V., Materazzi, S., Iuliano, G., and Niola, L. (2015) Evaluation and comparison of 1,2-indanedione and 1,8-diazafluoren-9-one solutions for the enhancement of latent fingerprints on porous surfaces. Forensic Sci. Int. 254: 205–214. doi:10.1016/j.forsciint.2015.07.036.
  • Li, M., Xia, J., Ding, H., Ding, C., Wang, M., and Li, S. (2017) Optimal design, characterization, and thermal stability of bio-based Ca/Na/Zn composite stabilizer derived from myrcene for poly(vinyl chloride). Polym. Degrad. Stab. 139: 117–129. doi:10.1016/j.polymdegradstab.2017.03.020.
  • Song, T., Shi, Y., Yao, Z., Gao, H., Liang, F., Jiang, B., Sun, Y., and Kong, L. (2017) A facile route for large-scale synthesis of molybdenum phosphide nanoparticles with high surface area. Phosphorus Sulfur Silicon Relat. Elem. 192(11): 1159–1164. doi:10.1080/10426507.2017.1330829.
  • Materazzi, S., Curini, R., D'Ascenzo, G., and Magri, A. D. (1995) TG–FTIR coupled analysis applied to the studies in urolithiasis: Characterization of human renal calculi. Thermochim. Acta. 264(C): 75–93. doi:10.1016/0040-6031(95)02404-P.
  • Gu, Q., Zhu, K., Sun, Q., Liu, J., Wang, J., Qiu, J., and Wang, J. (2016) A metastable cubic phase of sodium niobate nanoparticles stabilized by chemically bonded solvent molecules. PCCP. 18(48): 33171–33179. doi:10.1039/C6CP07423E.
  • Marei, N. N., Nassar, N. N., Vitale, G., Hassan, A., and Pérez Zurita, M. J. (2017) Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound. Fuel. 207: 423–437. doi:10.1016/j.fuel.2017.06.106.
  • Agas, D., Marchetti, L., Menghi, G., Materazzi, S., Materazzi, G., Capacchietti, M., Hurley, M. M., and Sabbieti, M. G. (2008) Anti-apoptotic Bcl-2 enhancing requires FGF-2/FGF receptor 1 binding in mouse osteoblasts. J. Cell. Physiol. 214(1): 145–152. doi:10.1002/jcp.21170.
  • Gentili, A., Caretti, F., D'Ascenzo, G., Mainero Rocca, L., Marchese, S., Materazzi, S., and Perret, D. (2007) Simultaneous determination of trichothecenes A, B, and D in maize food products by LC–MS–MS. Chromatographia. 66(9–10): 669–676. doi:10.1365/s10337-007-0411-7.
  • Pötschke, J., Richter, V., Gestrich, T., Säuberlich, T., and Meese-Marktscheffel, J. A. (2017) Grain growth inhibition in ultrafine hardmetals. Int. J. Refract. Met. Hard Mater. 66: 95–104. doi:10.1016/j.ijrmhm.2017.03.001.
  • Celluzzi, A., Paolini, A., D'Oria, V., Risoluti, R., Materazzi, S., Pezzullo, M., Casciardi, S., Sennato, S., Bordi, F., and Masotti, A. (2017) Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of mirnas to human cells. Int. J. Nanomed. 13: 1–18. doi:10.2147/IJN.S144155.
  • Engberg, S., Agersted, K., Crovetto, A., Hansen, O., Lam, Y. M., and Schou, J. (2017) Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applications. Thin Solid Films. 628: 163–169. doi:10.1016/j.tsf.2017.03.003.
  • Xu, Z., Xu, G., Fu, X., and Wang, Q. (2017) Thermal decomposition characteristics of ammonium nitrate(V) in the presence of Mn2O3/graphene oxides. Cent. Eur. J. Energetic Mater. 14(3): 636–659. doi:10.22211/cejem/75980.
  • Sałasińska, K., Borucka, M., Celiński, M., Gajek, A., Zatorski, W., Mizera, K., Leszczyńska, M., and Ryszkowska, J. (2017) Thermal stability, fire behavior, and fumes emission of polyethylene nanocomposites with halogen-free fire retardants. Adv. Polym. Tech, in press. doi:10.1002/adv.21914.
  • Skorenko, K., Bernier, R. T., Liu, J., Galusha, B., Goroleski, F., Hughes, B. P., Benier, W., and Jones, W. E., Jr. (2016) Thermal stability of ZnO nanoparticle bound organic chromophores. Dyes Pigm. 131: 69–75. doi:10.1016/j.dyepig.2016.03.011.
  • Hunyadi, D., Majzik, E., Mátyási, J., Balla, J., Domján, A., Szegedi, Á., and Szilágyi, I. M. (2017) WO3-EDA hybrid nanoplates and nanowires: Synthesis, characterization, formation mechanism and thermal decomposition. RSC Advances. 7(74): 46726–46737. doi:10.1039/c7ra10120a.
  • Chen, C.-C., Liaw, H.-J., and Chen, Y.-N. (2017) Flammability characteristics of ionic liquid 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Loss Prev. Process Ind. 49: 620–629. doi:10.1016/j.jlp.2017.06.002.
  • Moura, P. A. S., Bezerra, D. P., Vilarrasa-Garcia, E., Bastos-Neto, M., and Azevedo, D. C. S. (2016) Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption. 22(1): 71–80. doi:10.1007/s10450-015-9738-9.
  • Souza, I. F., Archanjo, B. S., Hurtarte, L. C. C., Oliveros, M. E., Gouvea, C. P., Lidizio, L. R., Achee, C. A., Schaefer, C., and Silva, I. R. (2017) Al-/Fe-(hydr)oxides–organic carbon associations in Oxisols — From ecosystems to submicron scales. Catena. 154: 63–72. doi:10.1016/j.catena.2017.02.017.
  • Xu, J., Zhuo, J., Zhu, Y., Pan, Y., and Yao, Q. (2017) Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry. Energy Fuels. 31(1): 730–737. doi:10.1021/acs.energyfuels.6b02335.
  • Wang, L., Barta-Rajnai, E., Hu, K., Higashi, C., Skreiberg, Ø., Grønli, M., Czégény, Z., Jakab, E., Myrvågnes, V., Várhegyi, G., and Antal, M. J., Jr. (2017) Biomass charcoal properties changes during storage. Energy Procedia. 105: 830–835. doi:10.1016/j.egypro.2017.03.397.
  • Cui, P. Q., Zhou, H. G., Li, C., Wu, S. P., and Xiao, Y. (2016) Characteristics of using layered double hydroxides to reduce the VOCs from bituminous materials. Constr. Build. Mater. 123: 69–77. doi:10.1016/j.conbuildmat.2016.06.117.
  • Guo, M., Jin, J., Lin, Y., Wang, Y., and Hou, F. (2017) Co-pyrolysis characteristics of mixtures of zhundong coaland chlorella and release of NOx precursors during pyrolysis. Taiyangneng Xuebao/Acta Energiae Solaris Sinica. 38(1): 60–66.
  • Xi, Z., and Sun, X. (2016) Effectiveness of thermoplastic powder to retard self-heating and spontaneous combustion of coal. Combust. Sci. Technol. 188(8): 1331–1344. doi:10.1080/00102202.2016.1190346.
  • Biswas, P., Panda, J. N., Nag, D., Chougale, N., Chandaliya, V. K., Ghosh, G., Dash, P. K., and Meikap, B. C. (2017) Hydrogen evolution during devolatilization to predict coking potential of metallurgical coals. Energy Fuels. 31(2): 1091–1099. doi:10.1021/acs.energyfuels.6b01704.
  • Shi, L., Liu, Q., Zhou, B., Guo, X., Li, Z., Cheng, X., Yang, R., and Liu, Z. (2017) Interpretation of methane and hydrogen evolution in coal pyrolysis from the bond cleavage perspective. Energy Fuels. 31(1): 429–437. doi:10.1021/acs.energyfuels.6b02482.
  • Xia, P., Li, K., Zeng, F., Xiao, X., Zhang, J., Xiang, J., and Sun, B. (2017) Pyrolysis characteristic of coals with different metamorphic grades and its instruction to coalbed methane development. World J. Eng. 14(5): 423–432. doi:10.1108/WJE-10-2016-0107.
  • Li, M., Zeng, F., Zhao, Y., Liang, H., and Xiang, J. (2017) Structural evolution around first coalification jump revealed by TG/MS and FTIR. Energy Sources, Part A: Recovery, Util. Environ. Eff. 39(6): 562–569. doi:10.1080/15567036.2016.1243173.
  • Catt, K., Li, H., and Cui, X. T. (2017) Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion. Acta Biomater. 48: 530–540. doi:10.1016/j.actbio.2016.11.039.
  • Byczyński, Ł., Dutkiewicz, M., and Maciejewski, H. (2017) The effect of epoxyurethane modification on surface and thermal properties of fluorinated epoxyfunctional siloxane high-solid coatings. Prog. Org. Coat. 112: 118–126. doi:10.1016/j.porgcoat.2017.07.011.
  • Materazzi, S., Gullifa, G., Fabiano, M. A., Frati, P., Santurro, A., Scopetti, M., Fineschi, V., and Risoluti, R. (2017) New frontiers in thermal analysis: A TG/Chemometrics approach for postmortem interval estimation in vitreous humor. J. Therm. Anal. Calorim. 130(1): 549–557. doi:10.1007/s10973-017-6239-y.
  • Materazzi, S., Risoluti, R., Pinci, S., and Saverio Romolo, F. (2017) New insights in forensic chemistry: NIR/chemometrics analysis of toners for questioned documents examination. Talanta. 174: 673–678. doi:10.1016/j.talanta.2017.06.044.
  • Orsini, S., Parlanti, F., and Bonaduce, I. (2017) Analytical pyrolysis of proteins in samples from artistic and archaeological objects. J. Anal. Appl. Pyrolysis. 124: 643–657. doi:10.1016/j.jaap.2016.12.017.
  • Sankowska, M., Gajek, A., Celiński, M., and Sałasińska, K. (2017) Determination of gaseous products of thermal degradation of thiram. J. Therm. Anal. Calorim. 128(3): 1639–1647. doi:10.1007/s10973-016-6043-0.
  • Perrino, C., Marconi, E., Tofful, L., Farao, C., Materazzi, S., and Canepari, S. (2012) Thermal stability of inorganic and organic compounds in atmospheric particulate matter. Atmos. Environ. 54: 36–43. doi:10.1016/j.atmosenv.2012.02.078.
  • Wasalathanthri, N. D., SantaMaria, T. M., Kriz, D. A., Dissanayake, S. L., Kuo, C.-H., Biswas, S., and Suib, S. L. (2017) Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation. Appl. Catal. B. 201: 543–551. doi:10.1016/j.apcatb.2016.08.052.
  • Zhang, Q., and Kano, J. (2016) A new approach for hydrogen generation from sewage sludge. Bioresour. Technol. 201: 191–194. doi:10.1016/j.biortech.2015.11.055.
  • Martínez, E. J., Gil, M. V., Rosas, J. G., Moreno, R., Mateos, R., Morán, A., and Gómez, X. (2017) Application of thermal analysis for evaluating the digestion of microwave pre-treated sewage sludge. J. Therm. Anal. Calorim. 127(2): 1209–1219. doi:10.1007/s10973-016-5460-4.
  • Kan, T., Strezov, V., and Evans, T. (2016). Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis. Energy Fuels. 30(3): 1564–1570. doi:10.1021/acs.energyfuels.5b02232.
  • Viana, M. M., Rangel, B. F., Júnior, A. N., Melchert, M. B. M., and Dweck, J. (2016) Semi-pilot scale sewage sludge pyrolysis and characterization of obtained fractions by thermal analysis. J. Therm. Anal. Calorim. 123(2): 981–991. doi:10.1007/s10973-015-4821-8.
  • Varga, J., Wohlfahrt, S., Fischer, M., Saraji-Bozorgzad, M. R., Matuschek, G., Denner, T., Reller, A., and Zimmermann, R. (2017) An evolved gas analysis method for the characterization of sulfur vapor. J. Therm. Anal. Calorim. 127(1): 955–960. doi:10.1007/s10973-016-5651-z.
  • Fan, H.-L., Shi, R.-H., Zhang, Z.-R., Zhen, T., Shangguan, J., and Mi, J. (2017) Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal. Appl. Surf. Sci. 394: 394–402. doi:10.1016/j.apsusc.2016.10.071.
  • Bao, Q. W., Liu, J. F., Liu, B. H., and Li, Z. P. (2017) Destabilization and regeneration of LiBH4 using N-containing hydrocarbon based polymers for hydrogen storage. J. Alloys Compd. 703: 580–590. doi:10.1016/j.jallcom.2017.01.308.
  • Braun, W., Erfurt, V., Thaler, F., Menzler, N. H., Spatschek, R., and Singheiser, L. (2016) Kinetic study of iron based storage materials for the use in rechargeable oxide batteries (ROB). ECS Trans. 75: 59–73. doi:10.1149/07543.0059ecst.
  • Li, Y., Zhao, W.-Y., Mi, Z.-H., Yang, L., Zhou, Z.-N., and Zhang, T.-L. (2016) Graphene-modified explosive lead styphnate composites: Stability, compatibility and thermal kinetics. J. Therm. Anal. Calorim. 124(2): 683–691. doi:10.1007/s10973-015-5138-3.
  • Izato, Y.-I., Koshi, M., Miyake, A., and Habu, H. (2017) Kinetics analysis of thermal decomposition of ammonium dinitramide (ADN). J. Therm. Anal. Calorim. 127(1): 255–264. doi:10.1007/s10973-016-5703-4.
  • Romolo, F. S., Ferri, E., Mirasoli, M., D'Elia, M., Ripani, L., Peluso, G., Risoluti, R., Maiolini, E., and Girotti, S. (2015) Field detection capability of immunochemical assays during criminal investigations involving the use of TNT. Forensic Sci. Int. 246: 25–30. doi:10.1016/j.forsciint.2014.10.037.
  • Fettaka, H., and Lefebvre, M. H. (2016) Propylene glycol dinitrate (PGDN) as an explosive taggant. Cent. Eur. J. Energetic Mater. 13(3): 627–640. doi:10.22211/cejem/65007.
  • Xue, T., Cui, Q.-Z., Lv, N., Huang, Q.-A., and Wang, H.-B. (2016) Study on thermal decomposition of 2-chlorobenzalmalononitrile. J. Chin. Mass Spectrom. Soc. 37(1): 23–30. doi:10.7538/zpxb.youxian.2015.0046.
  • Hahn, H., Wagner, R., Schappacher, F., Winter, M., and Nowak, S. (2016) In operando X-shaped cell online electrochemical mass spectrometry (OEMS): New online analysis enables insight into lab scale lithium ion batteries during operation. J. Electroanal. Chem. 772: 52–57. doi:10.1016/j.jelechem.2016.04.023.
  • Kibet, J., Kurgat, C., Limo, S., Rono, N., and Bosire, J. (2016) Kinetic modeling of nicotine in mainstream cigarette smoking. Chem. Central J. 10(1): 60–68. doi:10.1186/s13065-016-0206-8.
  • Materazzi, S., De Angelis Curtis, S., Ciprioti, S. V., Risoluti, R., and Finamore, J. (2014) Thermogravimetric characterization of dark chocolate. J. Therm. Anal. Calorim. 116(1): 93–98. doi:10.1007/s10973-013-3495-3.
  • Polat, S., Apaydin-Varol, E., and Pütün, A. E. (2016) Thermal decomposition behavior of tobacco stem Part I: TGA–FTIR–MS analysis. Energy Sources, Part A: Recovery, Util. Environ. Eff. 38(20): 3065–3072. doi:10.1080/15567036.2015.1129373.
  • Barattucci, A., Di Gioia, M. L., Leggio, A., Minuti, L., Papalia, T., Siciliano, C., Temperini, A., and Bonaccorsi, P. (2014) Stereoselective synthesis of dithia[3.3]cyclophane S,S″-dioxides with planar and central chirality. Eur. J. Org. Chem. 2014(10): 2099–2104. doi:10.1002/ejoc.201301636.
  • Di Gioia, M. L., Leggio, A., Le Pera, A., Siciliano, C., Sindona, G., and Liguori, A. (2004) An efficient and highly selective deprotection of N-Fmoc-α-amino acid and lipophilic N-Fmoc-dipeptide methyl esters with aluminium trichloride and N,N-dimethylaniline. J. Pept. Res. 63(4): 383–387. doi:10.1111/j.1399-3011.2004.00104.x.
  • Hsu, H.-T., Chen, M.-J., Tseng, T.-P., Cheng, L.-H., Huang, L.-J., and Yeh, T.-S. (2016) Kinetics for the distribution of acrylamide in french fries, fried oil and vapour during frying of potatoes. Food Chem. 211: 669–678. doi:10.1016/j.foodchem.2016.05.125.
  • Bevilacqua, M., Bucci, R., Materazzi, S., and Marini, F. (2013) Application of near infrared (NIR) spectroscopy coupled to chemometrics for dried egg-pasta characterization and egg content quantification. Food Chem. 140(4): 726–734. doi:10.1016/j.foodchem.2012.11.018.
  • Li, Y., Qi, T., Chen, M., and Xiao, F. (2016) Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures. J. Mater. Sci. Mater. Electron. 27(11): 11432–11438. doi:10.1007/s10854-016-5269-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.