446
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Recent applications of infrared (IR) and Raman chemical imaging in plant materials

, , , &

References

  • Gendrin, C., Roggo, Y., and Collet, C. (2008) Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review. J. Pharm. Biomed. Anal. 48(3): 533–553. doi:10.1016/j.jpba.2008.08.014.
  • El-Abassy, R. M., Donfack, P., and Materny, A. (2011) Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis. Food Chem. 126(3): 1443–1448. doi:10.1016/j.foodchem.2010.11.132.
  • Rubayiza, A. B., and Meurens, M. (2005) Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy. J. Agric. Food. Chem. 53(12): 4654–4659. doi:10.1021/jf0478657.
  • Holse, M., Larsen, F. H., Hansen, A., and Engelsen, S. B. (2011) Characterization of marama bean (Tylosema esculentum) by comparative spectroscopy: NMR, FT-Raman, FT-IR and NIR. Food Res. Int. 44(1): 373–384. doi:10.1016/j.foodres.2010.10.003.
  • Brarer, R., and Cole, A. R. H. (1949) Infra-Red spectroscopy with the reflecting microscope in physics, chemistry and biology. Nature 163: 198–201. doi:10.1038/163198a0.
  • You, Z. H., and Cheng, F. (2014) The development of infrared microspectroscopy (IMS) and its applications in agricultural and aquatic products. Appl. Spectrosc. Rev. 49(1): 83–96. doi:10.1080/05704928.2013.798803.
  • Kalasinsky, V. F. (1996) Biomedical applications of infrared and Raman microscopy. Appl. Spectrosc. Rev. 31(3): 193–249. doi:10.1080/05704929608000570.
  • Wetzel, D. L. (2012) Mid-IR and near-IR chemical imaging: Complementary for biological materials. Vib. Spectrosc. 60: 29–33. doi:10.1016/j.vibspec.2012.01.005.
  • Wetzel, D. L., and Nasse, M. J. (2011) Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells. Nucl. Instrum. Methods Phys. Res. Sect. a-Accelerators Spectrometers Detectors Assoc. Equip. 649(1): 179–183. doi:10.1016/j.nima.2011.01.052.
  • Evans, C. L., and Xie, X. S. (2008) Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. (Palo. Alto. Calif.) 1: 883–909. doi:10.1146/annurev.anchem.1.031207.112754.
  • Noothalapati, H., Sasaki, T., Kaino, T., Kawamukai, M., Ando, M., Hamaguchi, H. O., and Yamamoto, T. (2016) Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis. Sci. Rep. 6: 27789–27799. doi:10.1038/srep27789.
  • Ravn, C., Skibsted, E., and Bro, R. (2008) Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms-comparing common calibration approaches. J. Pharm. Biomed. Anal. 48(3): 554–561. doi:10.1016/j.jpba.2008.07.019.
  • Shewry, P. R., Mills, E. N. C., Parker, M. L., Wellner, N., Toole, G., and Feeney, K. (2005) Chemical imaging: The distribution of ions and molecules in developing and mature wheat grain. J. Cereal Sci. 41(2): 193–201. doi:10.1016/j.jcs.2004.09.003.
  • Salzer, R., and Siesler, H. W. (2014) Infrared and Raman spectroscopic imaging. 2nd ed. Wiley, Weinheim, Germany.
  • Jaaskelainen, A. S., Holopainen-Mantila, U., Tamminen, T., and Vuorinen, T. (2013) Endosperm and aleurone cell structure in barley and wheat as studied by optical and Raman microscopy. J. Cereal Sci. 57(3): 543–550. doi:10.1016/j.jcs.2013.02.007.
  • Liu, D. L., Wellner, N., Parker, M. L., Morris, V. J., and Cheng, F. (2015) In situ mapping of the effect of additional mutations on starch granule structure in amylose-extender (ae) maize kernels. Carbohydr. Polym. 118: 199–208. doi:10.1016/j.carbpol.2014.11.006.
  • Casdorff, K., Klausler, O., Gabriel, J., Amen, C., Lehringer, C., Burgert, I., and Keplinger, T. (2018) About the influence of a water-based priming system on the interactions between wood and one-component polyurethane adhesive studied by atomic force microscopy and confocal Raman spectroscopy imaging. Int. J. Adhes. Adhes. 80: 52–59. doi:10.1016/j.ijadhadh.2017.10.001.
  • Yang, T. X., Zhao, B., Hou, R. Y., Zhang, Z. Y., Kinchla, A. J., Clark, J. M., and He, L. L. (2016) Evaluation of the penetration of multiple classes of pesticides in fresh produce using surface-enhanced Raman scattering mapping. J. Food Sci. 81(11): T2891–T2901. doi:10.1111/1750-3841.13520.
  • Yang, T. X., Zhang, Z. Y., Zhao, B., Hou, R. Y., Kinchla, A., Clark, J. M., and He, L. L. (2016) Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal. Chem. 88(10): 5243–5250. doi:10.1021/acs.analchem.6b00320.
  • Yang, T. X., Zhao, B., Kinchla, A. J., Clark, J. M., and He, L. L. (2017) Investigation of pesticide penetration and persistence on harvested and live basil leaves using surface-enhanced Raman scattering mapping. J. Agric. Food. Chem. 65(17): 3541–3550. doi:10.1021/acs.jafc.7b00548.
  • Turker-Kaya, S., and Huck, C. W. (2017) A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules 22(1): 168–188. doi:10.3390/molecules22010168.
  • Thygesen, L. G., Lokke, M. M., Micklander, E., and Engelsen, S. B. (2003) Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends Food Sci. Technol. 14(1): 50–57. doi:10.1016/S0924-2244(02)00243-1.
  • Feng, X. P., Peng, C., Chen, Y., Liu, X. D., Feng, X. J., and He, Y. (2017) Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging. Sci. Rep. 7: 1–10. doi:10.1038/s41598-017-16254-z.
  • Brewer, L. R., and Wetzel, D. L. (2010) Phenotypic expression in wheat revealed using FT-IR microspectroscopy. Vib. Spectrosc. 52(1): 93–96. doi:10.1016/j.vibspec.2009.08.006.
  • Erkinbaev, C., Henderson, K., and Paliwal, J. (2017) Discrimination of gluten-free oats from contaminants using near infrared hyperspectral imaging technique. Food Control 80: 197–203. doi:10.1016/j.foodcont.2017.04.036.
  • Eksi-Kocak, H., Mentes-Yilmaz, O., and Boyaci, I. H. (2016) Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. Eur. Food Res. Technol. 242(2): 271–277. doi:10.1007/s00217-015-2538-3.
  • Fan, Y. Y., Wang, T., Qiu, Z. J., Peng, J. Y., Zhang, C., and He, Y. (2017) Fast Detection of striped stem-borer (chilo suppressalis walker) infested rice seedling based on visible/near-infrared hyperspectral imaging system. Sensors 17(11): 2470–2483. doi:10.3390/s17112470.
  • Lee, H., Kim, M. S., Qin, J. W., Park, E., Song, Y. R., Oh, C. S., and Cho, B. K. (2017) Raman hyperspectral imaging for detection of watermelon seeds infected with acidovorax citrulli. Sensors 17(10): 2188–2199. doi:10.3390/s17102188.
  • Pu, H. B., Liu, D., Wang, L., and Sun, D. W. (2016) Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging. Food Anal. Methods 9(1): 235–244. doi:10.1007/s12161-015-0186-7.
  • Manickavasagan, A., Ganeshmoorthy, K., Claereboudt, M. R., Al-Yahyai, R., and Khriji, L. (2014) Non-destructive measurement of total soluble solid (TSS) content of dates using near infrared (NIR) imaging. Emirates J. Food Agric. 26(11): 970–976. doi:10.9755/ejfa.v26i11.18102.
  • Guo, W. C., Zhao, F., and Dong, J. L. (2016) Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging. Food Anal. Methods 9(1): 38–47. doi:10.1007/s12161-015-0165-z.
  • Li, B. C., Hou, B. L., Zhang, D. W., Zhou, Y., Zhao, M. T., Hong, R. J., and Huang, Y. S. (2016) Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging. Optik 127(5): 2624–2630. doi:10.1016/j.ijleo.2015.11.193.
  • Chen, J. B., Sun, S. Q., and Zhou, Q. (2013) Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging. Anal. Bioanal. Chem. 405(29): 9385–9400. doi:10.1007/s00216-013-7366-3.
  • Higa, S., Kobori, H., and Tsuchikawa, S. (2013) Mapping of leaf water content using near-infrared hyperspectral imaging. Appl. Spectrosc. 67(11): 1302–1307. doi:10.1366/13-07028.
  • Zhang, C., Liu, F., Kong, W. W., and He, Y. (2015) Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors 15(7): 16576–16588. doi:10.3390/s150716576.
  • Killeen, D. P., Van Klink, J. W., Smallfield, B. M., Gordon, K. C., and Perry, N. B. (2015) Herbicidal beta-triketones are compartmentalized in leaves of leptospermum species: Localization by Raman microscopy and rapid screening. New Phytol. 205(1): 339–349. doi:10.1111/nph.12970.
  • Zhang, X., Chen, S., Ramaswamy, S., Kim, Y. S., and Xu, F. (2017) Obtaining pure spectra of hemicellulose and cellulose from poplar cell wall Raman imaging data. Cellulose 24(11): 4671–4682. doi:10.1007/s10570-017-1486-4.
  • Gierlinger, N., and Schwanninger, M. (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 140(4): 1246–1254. doi:10.1104/pp.105.066993.
  • Zhang, X., Chen, S., and Xu, F. (2017) Combining Raman imaging and multivariate analysis to visualize lignin, cellulose, and hemicellulose in the plant cell wall. Jove-J. Visualized Exp. (124): e55910. doi:10.3791/55910.
  • Zeng, Y. N., Yarbrough, J. M., Mittal, A., Tucker, M. P., Vinzant, T. B., Decker, S. R., and Himmel, M. E. (2016) In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy. Biotechnol. Biofuels 9: 256–272. doi:10.1186/s13068-016-0669-9.
  • Szymanska-Chargot, M., Chylinska, M., Pieczywek, P. M., Rosch, P., Schmitt, M., Popp, J., and Zdunek, A. (2016) Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta 243(4): 935–945. doi:10.1007/s00425-015-2456-4.
  • Szymanska-Chargot, M., Pieczywek, P. M., Chylinska, M., and Zdunek, A. (2016) Hyperspectral image analysis of Raman maps of plant cell walls for blind spectra characterization by nonnegative matrix factorization algorithm. Chemometrics Intellig. Lab. Syst. 151: 136–145. doi:10.1016/j.chemolab.2015.12.015.
  • Chylinska, M., Szymanska-Chargot, M., and Zdunek, A. (2014) Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods 10: 14–23. doi:10.1186/1746-4811-10-14.
  • Sun, L., Singh, S., Joo, M., Vega-Sanchez, M., Ronald, P., Simmons, B. A., Adams, P., and Auer, M. (2016) Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnol. Bioeng. 113(1): 82–90. doi:10.1002/bit.25690.
  • Warren, F. J., Perston, B. B., Galindez-Najera, S. P., Edwards, C. H., Powell, P. O., Mandalari, G., Campbell, G. M., Butterworth, P. J., and Ellis, P. R. (2015) Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure. Plant J. 84(3): 634–646. doi:10.1111/tpj.13031.
  • Wellner, N., Georget, D. M. R., Parker, M. L., and Morris, V. J. (2011) In situ Raman microscopy of starch granule structures in wild type and ae mutant maize kernels. Starch-Starke 63(3): 128–138. doi:10.1002/star.201000107.
  • Dong, G., Guo, J., Wang, C., Liang, K. H., Lu, L. G., Wang, J., and Zhu, D. Z. (2017) Differentiation of storage time of wheat seed based on near infrared hyperspectral imaging. Int. J. Agric. Biol. Eng. 10(2): 251–258.
  • Ravikanth, L., Chelladurai, V., Jayas, D. S., and White, N. D. G. (2016) Detection of broken kernels content in bulk wheat samples using near-infrared hyperspectral imaging. Agric. Res. 5(3): 285–292. doi:10.1007/s40003-016-0227-5.
  • Karuppiah, K., Senthilkumar, T., Jayas, D. S., and White, N. D. G. (2016) Detection of fungal infection in five different pulses using near. Infrared hyperspectral imaging. J. Stored Prod. Res. 65: 13–18. doi:10.1016/j.jspr.2015.11.005.
  • Chu, X., Wang, W., Yoon, S. C., Ni, X. Z., and Heitschmidt, G. W. (2017) Detection of aflatoxin B-1 (AFB(1)) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging. Biosys. Eng. 157: 13–23. doi:10.1016/j.biosystemseng.2017.02.005.
  • Senthilkumar, T., Jayas, D. S., White, N. D. G., Fields, P. G., and Grafenhan, T. (2017) Detection of ochratoxin a contamination in stored wheat using near-infrared hyperspectral imaging. Infrared Phys. Technol. 81: 228–235. doi:10.1016/j.infrared.2017.01.015.
  • Senthilkumar, T., Jayas, D. S., White, N. D. G., Fields, P. G., and Grafenhan, T. (2016) Detection of fungal infection and ochratoxin a contamination in stored wheat using near-infrared hyperspectral imaging. J. Stored Prod. Res. 65: 30–39. doi:10.1016/j.jspr.2015.11.004.
  • Tekle, S., Mage, I., Segtnan, V. H., and Bjornstad, A. (2015) Near-infrared hyperspectral imaging of fusarium-damaged oats (Avena sativa L.). Cereal Chem. 92(1): 73–80. doi:10.1094/CCHEM-04-14-0074-R.
  • Vermeulen, P., Pierna, J. a. F., Van Egmond, H. P., Zegers, J., Dardenne, P., and Baeten, V. (2013) Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Anal. Bioanal. Chem. 405(24): 7765–7772. doi:10.1007/s00216-013-6775-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.