580
Views
16
CrossRef citations to date
0
Altmetric
Reviews

A brief review on mass/optical spectrometry for imaging analysis of biological samples

, , , , &
Pages 57-85 | Received 25 Aug 2018, Accepted 28 Aug 2018, Published online: 07 Dec 2018

References

  • Lagarrigue, M., Lavigne, R., Guevel, B., Com, E., Chaurand, P., and Pineau, C. (2012) Matrix-assisted laser desorption/ionization imaging mass spectrometry: A promising technique for reproductive research. Biol. Reprod. 86: 74.
  • Yasunaga, M., Furuta, M., Ogata, K., Koga, Y., Yamamoto, Y., Takigahira, M., and Matsumura, Y. (2013) The significance of microscopic mass spectrometry with high resolution in the visualisation of drug distribution. Sci. Rep. 3: 3050.
  • Walch, A., Rauser, S., Deininger, S. O., and Hofler, H. (2008) MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochem. Cell. Biol. 130: 421–434.
  • Groseclose, M. R., Andersson, M, Hardesty, W. M., and Caprioli, R. M. (2007) Identification of proteins directly from tissue: In situ tryptic digestions coupled with imaging mass spectrometry. J. Mass. Spectrom. 42: 254–262.
  • Dani, F. R., Francese, S., Mastrobuoni, G., Felicioli, A., Caputo, B., Simard, F., Pieraccini, G., Moneti, G., Coluzzi, M., della Torre, A., and Turillazzi, S. (2008) Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling. PLoS One. 3: e2822.
  • Amantonico, A., Urban, P. L., Fagerer, S. R., Balabin, R. M., and Zenobi, R. (2010) Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal. Chem. 82: 7394–7400.
  • Chughtai, K., and Heeren, R. M. (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem. Rev. 110: 3237–3277.
  • Kikuchi, K. (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem. Soc. Rev. 39: 2048–2053.
  • Lee, D. E., Koo, H., Sun, I. C., Ryu, J. H., Kim, K., and Kwon, I. C. (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 41: 2656–2672.
  • Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., Adam, V., Eckschlager, T., Hubalek, J., Stiborova, M., Kaiser, J., and Kizek, R. (2012) Modern micro and nanoparticle-based imaging techniques. Sensors (Basel). 12: 14792–14820.
  • Ametamey, S. M., Honer, M., and Schubiger, P. A. (2008) Molecular imaging with PET. Chem. Rev. 108: 1501–1516.
  • Zheng, X. K., Zeng, S. L., Hu, J., Wu, L., and Hou, X. D. (2018) Applications of silica-based nanoparticles for multimodal bioimaging. Appl. Spectrosc. Rev. 53: 377–394.
  • Zhou, R. H., Li, M., Wang, S. L., Wu, P., Wu, L., and Hou, X. D. (2014) Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. Nanoscale. 6: 14319–14325.
  • Zheng, X. K., Wang, S. L., Wu, L. S., and Hou, X. D. (2018) Microwave-assisted facile synthesis of mono-dispersed Ba/Ho co-doped nanohydroxyapatite for potential application as binary CT imaging contrast agent. Microchem. J. 141: 330–336.
  • Xu, H., Li, Q., Wang, L., He, Y., Shi, J., Tang, B., and Fan, C. (2014) Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 43: 2650–2661.
  • Yan, L., Zhang, Y., Xu, B., and Tian, W. (2016) Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale. 8: 2471–2487.
  • Thomson, J. J. (1913) Bakerian lecture:—rays of positive electricity. Proc. R. Soc. Lond. A. 89: 1–20.
  • Heeren, R. M. A. (2015) Getting the picture: The coming of age of imaging MS. Int. J. Mass Spectrom. 377: 672–680.
  • McDonnell, L. A., and Heeren, R. M. (2007) Imaging mass spectrometry. Mass. Spectrom. Rev. 26: 606–643.
  • Poschenrieder, W. P. (1972) Multiple-focusing time-of-flight mass spectrometers Part II. TOFMS with equal energy acceleration. Int. J. Mass Spectrom. Ion. Physics. 9: 357–373.
  • Schueler, B., Sander, P., and Reed, D. A. (1990) A time-of-flight secondary ion microscope. Vacuum. 41: 1661–1664.
  • Gessel, M. M., Norris, J. L., and Caprioli, R. M. (2014) MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery. J. Proteomics. 107: 71–82.
  • Heeren, R. M. A., Kükrer-Kaletaş, B., Taban, I. M., MacAleese, L., and McDonnell, L. A. (2008) Quality of surface: The influence of sample preparation on MS-based biomolecular tissue imaging with MALDI-MS and (ME-)SIMS. Appl. Surf. Sci. 255: 1289–1297.
  • Goodwin, R. J., Pennington, S. R., and Pitt, A. R. (2008) Protein and peptides in pictures: Imaging with MALDI mass spectrometry. Proteomics. 8: 3785–3800.
  • Sugiura, Y., Shimma, S., and Setou, M. (2006) Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J. Mass Spectrom. Soc. Jpn. 54: 45–48.
  • Kaletas, B. K., van der Wiel, I. M., Stauber, J., Lennard, J. D., Guzel, C., Kros, J. M., Luider, T. M., and Heeren, R. M. (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics. 9: 2622–2633.
  • Rao, T., Shao, Y., Hamada, N., Li, Y., Ye, H., Kang, D., Shen, B., Li, X., Yin, X., Zhu, Z., Li, H., Xie, L., Wang, G., and Liang, Y. (2017) Pharmacokinetic study based on a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass microscope combined with a novel relative exposure approach: A case of octreotide in mouse target tissues. Anal. Chim. Acta. 952: 71–80.
  • Jurchen, J. C., Rubakhin, S. S., and Sweedler, J. V. (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J. Am. Soc. Mass. Spectrom. 16: 1654–1659.
  • Qiao, H., Spicer, V., and Ens, W. (2008) The effect of laser profile, fluence, and spot size on sensitivity in orthogonal-injection matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid. Commun. Mass. Spectrom. 22: 2779–2790.
  • Thiery-Lavenant, G., Zavalin, A. I., and Caprioli, R. M. (2013) Targeted multiplex imaging mass spectrometry in transmission geometry for subcellular spatial resolution. J. Am. Soc. Mass. Spectrom. 24: 609–614.
  • Takáts, Z., Wiseman, J. M., Gologan, B., and Cooks, R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306: 471–473.
  • Shelley, J. T., Badal, S. P., Engelhard, C., and Hayen, H. (2018) Ambient desorption/ionization mass spectrometry: Evolution from rapid qualitative screening to accurate quantification tool. Anal. Bioanal. Chem. 410: 4061–4076.
  • Cooks, R. G., Ouyang, Z., Takats, Z., and Wiseman, J. M. (2006) Detection technologies. Ambient mass spectrometry. Science. 311: 1566–1570.
  • Laskin, J., Heath, B. S., Roach, P. J., Cazares, L., and Semmes, O. J. (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84: 141–148.
  • Nemes, P., and Vertes, A. (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry Anal. Chem. 79: 8098–8106.
  • Boxer, S. G., Kraft, M. L., and Weber, P. K. (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 38: 53–74.
  • Heeren, R. M. A., McDonnell, L. A., Amstalden, E., Luxembourg, S. L., Altelaar, A. F. M., and Piersma, S. R. (2006) Why don’t biologists use SIMS? A critical evaluation of imaging MS. Appl. Surf. Sci. 252: 6827–6835.
  • Solon, E. G., Schweitzer, A., Stoeckli, M., and Prideaux, B. (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J. 12: 11–26.
  • Touboul, D., Kollmer, F., Niehuis, E., Brunelle, A., and Laprevote, O. (2005) Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass. Spectrom. 16: 1608–1618.
  • Schwamborn, K., and Caprioli, R. M. (2010) MALDI imaging mass spectrometry-painting molecular pictures. Mol. Oncol. 4: 529–538.
  • Kurabe, N., Hayasaka, T., Ogawa, M., Masaki, N., Ide, Y., Waki, M., Nakamura, T., Kurachi, K., Kahyo, T., Shinmura, K., Midorikawa, Y., Sugiyama, Y., Setou, M., and Sugimura, H. (2013) Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer. Sci. 104: 1295–1302.
  • Kawashima, M., Iwamoto, N., Kawaguchi-Sakita, N., Sugimoto, M., Ueno, T., Mikami, Y., Terasawa, K., Sato, T. A., Tanaka, K., Shimizu, K., and Toi, M. (2013) High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer. Sci. 104: 1372–1379.
  • Ayed, M. E., Bonnel, D., Longuespée, R., Castelier, C., Franck, J., Vergara, D., Desmons, A., Tasiemski, A., Kenani, A., and Vinatier, D. (2010) MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Med. Sci. Monit. 16: BR233–BR245.
  • Lemaire, R., Menguellet, S. A., Stauber, J., Marchaudon, V., Lucot, J.-P., Collinet, P., Farine, M.-O., Vinatier, D., Day, R., Ducoroy, P., Salzet, M., and Fournier, I. (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: Fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J. Proteome. Res. 6: 4127–4134.
  • Guo, S., Qiu, L., Wang, Y., Qin, X., Liu, H., He, M., Zhang, Y., Li, Z., and Chen, X. (2014) Tissue imaging and serum lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 406: 4357–4370.
  • Prideaux, B., and Stoeckli, M. (2012) Mass spectrometry imaging for drug distribution studies. J. Proteomics. 75: 4999–5013.
  • Mahoney, C. M., Fahey, A. J., and Belu, A. M. (2008) Three-dimensional compositional analysis of drug eluting stent coatings using cluster secondary ion mass spectrometry. Anal. Chem. 80: 624–632.
  • Luo, Z., He, J., Chen, Y., He, J., Gong, T., Tang, F., Wang, X., Zhang, R., Huang, L., Zhang, L., Lv, H., Ma, S., Fu, Z., Chen, X., Yu, S., and Abliz, Z. (2013) Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal. Chem. 85: 2977–2982.
  • Römpp, A., Guenther, S., Takats, Z., and Spengler, B. (2011) Mass spectrometry imaging with high resolution in mass and space (HR2 MSI) for reliable investigation of drug compound distributions on the cellular level. Anal. Bioanal. Chem. 401: 65–73.
  • Caprioli, R. M., Farmer, T. B., and Gile, J. (1997) Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69: 4751–4760.
  • Rohner, T. C., Staab, D., and Stoeckli, M. (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech. Ageing. Dev. 126: 177–185.
  • Nian, L., Feng, L., Bin, X., Ya-Bing, G., Xiang-Hong, L., Kai-Hua, W., Xue-min, Z., and Song-cheng, Y. (2008) Establishment of imaging mass spectrometry for biological tissues and its application on the proteome analysis of microwave radiated rat hippocampus. Chin. J. Anal. Chem. 36: 421–425.
  • Chen, R., Hui, L., Sturm, R.M., and Li, L. (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging [J]. J. Am. Soc. Mass Spectr. 20(6): 1068-1077.
  • Eberlin, L. S., Ifa, D. R., Wu, C., and Cooks, R. G. (2010) Three-dimensional vizualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew. Chem. Int. Ed. 122: 885–888.
  • Sinha, T. K., Khatib-Shahidi, S., Yankeelov, T. E., Mapara, K., Ehtesham, M., Cornett, D. S., Dawant, B. M., Caprioli, R. M., and Gore, J. C. (2008) Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging Nat. Methods. 5: 57–59.
  • Pan, Z., Gu, H., Talaty, N., Chen, H., Shanaiah, N., Hainline, B. E., Cooks, R. G., and Raftery, D. (2007) Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal. Bioanal. Chem. 387: 539–549.
  • Bonnel, D., Longuespee, R., Franck, J., Roudbaraki, M., Gosset, P., Day, R., Salzet, M., and Fournier, I. (2011) Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: Application to prostate cancer. Anal. Bioanal. Chem. 401: 149–165.
  • Pirro, V., Eberlin, L. S., Oliveri, P., and Cooks, R. G. (2012) Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst. 137: 2374–2380.
  • Dill, A. L., Eberlin, L. S., Zheng, C., Costa, A. B., Ifa, D. R., Cheng, L., Masterson, T. A., Koch, M. O., Vitek, O., and Cooks, R. G. (2010) Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal. Bioanal. Chem. 398: 2969–2978.
  • Xiong, X.-C., Fang, X., Ou, Y.-Z., Jiang, Y., Huang, Z.-J., and Zhang, Y.-K. (2012) Artificial neural networks for classification and identification of data of biological tissue obtained by mass-spectrometry imaging. Chin. J. Anal. Chem. 40: 43–49.
  • Chen, Y., Tang, F., Li, T.-G., He, J.-M., Abliz, Z., Liu, L.-T., and Wang, X.-H. (2014) Application of factor analysis in imaging mass spectrometric data analysis. Chin. J. Anal. Chem. 42: 1099–1103.
  • Su, Y. Y., Xie, Y. N., Hou, X. D., and Lv, Y. (2013) Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Appl. Spectrosc. Rev. 49: 201–232.
  • Zhang, L. C., Hu, J., Lv, Y., and Hou, X. D. (2010) Recent progress in chemiluminescence for gas analysis. Appl. Spectrosc. Rev. 45: 474–489.
  • Su, Y. Y., Li, X. H., Chen, H., Lv, Y., and Hou, X. D. (2007) Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence. Microchem. J. 87: 56–61.
  • Hu, J., Xu, K. L., Jia, Y., Lv, Y., Li, Y., and Hou, X. D. (2008) Oxidation of ethyl ether on borate glass: Chemiluminescence, mechanism, and development of a sensitive gas sensor. Anal. Chem. 80: 7964–7969.
  • He, Y. H., Lv, Y., Li, Y. M., Tang, H. R., Tang, L., Wu, X., and Hou, X. D. (2007) Dielectric barrier discharge-induced chemiluminescence: Potential application as GC detector. Anal. Chem. 79: 4674–4680
  • Bi, S., Yue, S., Song, W., and Zhang, S. (2016) A target-initiated DNA network caged on magnetic particles for amplified chemiluminescence resonance energy transfer imaging of microRNA and targeted drug delivery. Chem. Commun. 52: 12841–12844.
  • Bag, S., Tseng, J. C., and Rochford, J. (2015) A BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette for imaging of cellular superoxide. Org. Biomol. Chem. 13: 1763–1767.
  • An, W., Mason, R. P., and Lippert, A. R. (2018) Energy transfer chemiluminescence for ratiometric pH imaging. Org. Biomol. Chem. 16: 4176–4182.
  • Lee, E. S., Deepagan, V. G., You, D. G., Jeon, J., Yi, G. R., Lee, J. Y., Lee, D. S., Suh, Y. D., and Park, J. H. (2016) Nanoparticles based on quantum dots and a luminol derivative: Implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chem. Commun. 52: 4132–4135.
  • Cai, L., Deng, L., Huang, X., and Ren, J. (2018) Catalytic chemiluminescence polymer dots for ultrasensitive in vivo imaging of intrinsic reactive oxygen species in mice. Anal. Chem. 90: 6929–6935.
  • Hananya, N., Eldar Boock, A., Bauer, C. R., Satchi-Fainaro, R., and Shabat, D. (2016) Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: Turn-on chemiluminescence probes with color modulation for sensing and imaging. J. Am. Chem. Soc. 138: 13438–13446.
  • Singh, A., Seo, Y. H., Lim, C.-K., Koh, J., Jang, W.-D., Kwon, I. C., and Kim, S. (2015) Biolighted nanotorch capable of systemic self-delivery and diagnostic imaging. ACS Nano. 9: 9906–9911.
  • Kim, H. J., Seo, Y. H., An, S., Jo, A., Kwon, I. C., and Kim, S. (2018) Chemiluminescence imaging of Duox2-derived hydrogen peroxide for longitudinal visualization of biological response to viral infection in nasal mucosa. Theranostics. 8: 1798–1807.
  • Zhen, X., Zhang, C., Xie, C., Miao, Q., Lim, K. L., and Pu, K. (2016) Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano. 10: 6400–6409.
  • Li, P., Liu, L., Xiao, H., Zhang, W., Wang, L., and Tang, B. (2016) A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J. Am. Chem. Soc. 138: 2893–2896.
  • Green, O., Eilon, T., Hananya, N., Gutkin, S., Bauer, C. R., and Shabat, D. (2017) Opening a gateway for chemiluminescence cell imaging: Distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3: 349–358.
  • Green, O., Gnaim, S., Blau, R., Eldar-Boock, A., Satchi-Fainaro, R., and Shabat, D. (2017) Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc. 139: 13243–13248.
  • Hananya, N., Green, O., Blau, R., Satchi-Fainaro, R., and Shabat, D. (2017) A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angew. Chem. Int. Ed. Engl. 56: 11793–11796.
  • Gnaim, S., Scomparin, A., Das, S., Blau, R., Satchi-Fainaro, R., and Shabat, D. (2018) Direct real-time monitoring of prodrug activation by chemiluminescence. Angew. Chem. Int. Ed. Engl. 57: 9033–9037.
  • Cao, J., Lopez, R., Thacker, J. M., Moon, J. Y., Jiang, C., Morris, S. N., Bauer, J. H., Tao, P., Mason, R. P., and Lippert, A. R. (2015) Chemiluminescent probes for imaging H2S in living animals. Chem. Sci. 6: 1979–1985.
  • Cao, J., Campbell, J., Liu, L., Mason, R. P., and Lippert, A. R. (2016) In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation. Anal. Chem. 88: 4995–5002.
  • Roth-Konforti, M. E., Bauer, C. R., and Shabat, D. (2017) Unprecedented sensitivity in a probe for monitoring cathepsin B: Chemiluminescence microscopy cell-imaging of a natively expressed enzyme. Angew. Chem. Int. Ed. 56: 15633–15638.
  • Ryan, L. S., and Lippert, A. R. (2018) Ultrasensitive chemiluminescent detection of cathepsin B: Insights into the new frontier of chemiluminescent imaging. Angew. Chem. Int. Ed. Engl. 57: 622–624.
  • Niu, J., Fan, J., Wang, X., Xiao, Y., Xie, X., Jiao, X., Sun, C., and Tang, B. (2017) Simultaneous fluorescence and chemiluminescence turned on by aggregation-induced emission for real-time monitoring of endogenous superoxide anion in live cells. Anal. Chem. 89: 7210–7215.
  • Zhang, L., He, N., and Lu, C. (2015) Aggregation-induced emission: A simple strategy to improve chemiluminescence resonance energy transfer. Anal. Chem. 87: 1351–1357.
  • Seo, Y. H., Singh, A., Cho, H. J., Kim, Y., Heo, J., Lim, C. K., Park, S. Y., Jang, W. D., and Kim, S. (2016) Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer. Biomaterials. 84: 111–118.
  • Zhao, C., Cui, H., Duan, J., Zhang, S., and Lv, J. (2018) Self-catalyzing chemiluminescence of luminol-diazonium ion and its application for catalyst-free hydrogen peroxide detection and rat arthritis imaging. Anal. Chem. 90: 2201–2209.
  • Hai, Z., Li, J., Wu, J., Xu, J., and Liang, G. (2017) Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J. Am. Chem. Soc. 139: 1041–1044.
  • Yue, S., Zhao, T., Bi, S., and Zhang, Z. (2017) Programmable strand displacement-based magnetic separation for simultaneous amplified detection of multiplex microRNAs by chemiluminescence imaging array. Biosens. Bioelectron. 98: 234–239.
  • Liu, Y., Shen, W., Li, Q., Shu, J., Gao, L., Ma, M., Wang, W., and Cui, H. (2017) Firefly-mimicking intensive and long-lasting chemiluminescence hydrogels. Nat. Commun. 8: 1003.
  • Chen, H., Wang, Q., Shen, Q., Liu, X., Li, W., Nie, Z., and Yao, S. (2017) Nitrogen doped graphene quantum dots based long-persistent chemiluminescence system for ascorbic acid imaging. Biosens. Bioelectron. 91: 878–884.
  • Iwano, S., Sugiyama, M., Hama, H., Watakabe, A., Hasegawa, N, Kuchimaru, T., Tanaka, K. Z., Takahashi, M., Ishida, Y., Hata, J., Shimozono, S., Namiki, K., Fukano, T., Kiyama, M., Okano, H., Kizaka-Kondoh, S., McHugh, T. J., Yamamori, T., Hioki, H., Maki, S., and Miyawaki, A. (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science. 359: 935–939.
  • Zeng, S. L., Zhou, R. H., Zheng, X. K., Wu, L., and Hou, X. D. (2017) Mono-dispersed Ba2+-doped nano-hydroxyapatite conjugated with near-infrared Cu-doped CdS quantum dots for CT/fluorescence bimodal targeting cell imaging. Microchem. J. 134: 41–48.
  • Qin, M. Y., Yang, X. Q., Wang, K., Zhang, X. S., Song, J. T., Yao, M. H., Yan, D. M., Liu, B., and Zhao, Y. D. (2015) In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale. 7: 19484–19492.
  • Xia, H.-X., Yang, X.-Q., Song, J.-T., Chen, J., Zhang, M.-Z., Yan, D.-M., Zhang, L., Qin, M.-Y., Bai, L.-Y., Zhao, Y.-D., and Ma, Z.-Y. (2014) Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J. Mater. Chem. B. 2: 1945.
  • Shin, T. H., Choi, Y., Kim, S., and Cheon, J. (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44: 4501–4516.
  • Townsend, D. W., Beyer, T., Kinahan, P. E., Brun, T., Roddy, R., Nutt, R., and Byars, L. G. (1998) The SMART scanner: A combined PET/CT tomograph for clinical oncology. Nuc. Sci. Sym. 2: 1170–1174.
  • Badea, C. T., Ghaghada, K., Espinosa, G., Strong, L., and Annapragada, A. (2011) Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle X-ray contrast agent and 18F-FDG. Med. Imaging. 7965: 796511.
  • Logothetis, N. K. (2008) What we can do and what we cannot do with fMRI. Nature. 453: 869–878.
  • Chou, S.-W., Shau, Y.-H., Wu, P.-C., Yang, Y.-S., Shieh, D.-B., and Chen, C.-C. (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 132: 13270–13278.
  • Bourlinos, A. B., Bakandritsos, A., Kouloumpis, A., Gournis, D., Krysmann, M., Giannelis, E. P., Polakova, K., Safarova, K., Hola, K., and Zboril, R. (2012) Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22: 23327.
  • Wang, P., Qu, Y., Li, C., Yin, L., Shen, C., Chen, W., Yang, S., Bian, X., and Fang, D. (2015) Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J. Nanomed. 10: 749–763.
  • Liu, Y., Ai, K., and Lu, L. (2012) Nanoparticulate X-ray computed tomography contrast agents from design validation to in vivo applications. Accounts Chem. Res. 45: 1817–1827.
  • Hayashi, K., Nakamura, M., and Ishimura, K. (2013) Near-infrared fluorescent silica-coated gold nanoparticle clusters for X-ray computed tomography/optical dual modal imaging of the lymphatic system. Adv. Healthc. Mater. 2: 756–763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.