329
Views
6
CrossRef citations to date
0
Altmetric
Reviews

The use of vibrational spectroscopy in the geographic characterization of human teeth: a systematic review

ORCID Icon, , , &

References

  • Lin, D., Huang, Y., He, F., Gu, S., Zhang, G., Chen, Y., and Shang, Y. (2007) Expression survey of genes critical for tooth development in the human embryonic tooth germ. Develop. Dynam. 236: 1307–1312.
  • Lagocka, R., Sikorska-Bochinska, J., Nocen, I., Jakubowska, K., Gora, M., and Buczkowska-Radlinska, J. (2011) Influence of the mineral composition of drinking water taken from surface water intake in enhancing regeneration process in mineralized human teeth tissue. Polish J. Environ. Stud. 20(2): 411–416.
  • Alaluusua, S., Lukinmaa, P., Torppa, J., Tuomisto, J., and Vartiainen, T. (1999) Developing teeth as biomarker of dioxin exposure. Lancet 353(9148): 206.
  • Boskey, A. L., and Mendelsohn, R. (2005) Infrared spectroscopic characterization of mineralized tissues. Vibrat Spectrosc. 38: 107–114.
  • Kirchner, M. T., Edwards, H. G. M., Lucy, D., and Pollard, A. M. (1998) Ancient and modern specimen of human teeth: A Fourier transform Raman spectroscopic study. J. Raman Spectrosc. 28: 171–178.
  • Wentrup-Byrne, E., Armstrong, C. A., Armstrong, R. S., and Collins, B. M. (1997) Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J Raman Spectrosc. 28: 151–158.
  • Faillace, K. E., Bethard, J. D., and Marks, M. K. (2017) The applicability of dental wear in age estimation for a modern American population. Am. J. Phys. Anthropol 164(4): 776–787.
  • Farah, C. S., Booth, D. R., & Knott, S. C. (1999) Dental maturity of children in Perth, Western Australia, and its application in forensic age estimation. J. Clin. Forensic Med. 6: 14–18.
  • Aitken, J. B., Carter, E. A., Eastgate H., Hackett, M. J., Harris, H. H., Levina, A., Lee Y., Chen, C., Lai, B., Vogt, S., and Lay, P. A. (2010) Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems. Radiat Phys. Chem. 79: 176–184.
  • Carden, A., and Morris, M. D. (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J. Biomed. Opt. 5(3): 259–268.
  • Cozzolino, D. (2014) Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data analysis, and examples. Appl. Spectrosc. Rev. 49(7): 564–584.
  • Vance, C. K., Tolleson, D. R., Kinoshita, K., Rodriguez, J. & Foley, J. W. (2016) Near infrared spectroscopy in wildlife and biodiversity. J. Near Infrared Spectrosc. 24: 1–25.
  • Demirjian, A., Goldstein, H., and Tanner, J. M. (1973) A new system of dental age assessment. Human Biol. 45(2): 211–227.
  • AlQahtani, S. J., Hector, M. P., and Liversidge, H. M. (2010) Brief communication: The London atlas of human tooth development and eruption. Am. J. Phys. Anthropol 142: 481–490.
  • Eid, R. M. R., Simi, R., Friggi, M. N. P., and Fisberg, M. (2002) Assessment of dental maturity of Brazillian children aged 6 to 14 years using Demirjian’s method. Int. J.Paediatr. Dentist. 12: 423–428.
  • Esan, T. A., Yengopal, V., and Schepartz, L. A. (2017) The Demirjian versus the Willems method for dental age estimation in different populations: A meta-analysis of published studies. PLoS One 12(11): e0186682. DOI: 10.1371/journal.pone.0186682.
  • Maber, M., Liversidge, H. M., and Hector, M. P. (2006) Accuracy of age estimation of radiographic methods using developing teeth. Forens. Sci. Int. 159: S68–S73.
  • Mohammed, R. B., Sanghvi, P., Perumalla, K. K., Srinivasaraju, D., Srinivas, J., Kalyan, U. S. and Rasool S. K. M. D. I. (2015) Accuracy of four dental age estimation methods in Southern Indian children. J. Clin. Diagnost. Res. 9(1): HC01–HC08,. DOI: 10.7860/JCDR/2015/10141.5495.
  • Sinha, S., Umapathy, D., Shashikanth, M. C., Misra, N., Mehra, A., and Singh, K. (2014) Dental age estimation by Demirjian’s and Nolla’s method: A comparative study among children attending a dental college in Lucknow (UP). J. Indian Acad. Oral Med. Radiol. 26(3): 279–286.
  • Willems, G., Lee, S., Uys, A., Bernitz, H., Cadenas de Llano-Perula, M., Fieuws, S., and Thevissen, P. (2017) Age estimation based on Willems method versus new country-specific method in South African black children. Int. J. Legal Med. 132: 599–607. DOI: 10.1007/s00414-017-1686-3.
  • Duany, L. F., Zinner, D. D., and Jablon, J. M. (1972) Epidemiologic studies of caries-free and caries-active students. II. Diet, dental plaque and oral hygiene. J. Dental Res. 51(3): 727–733.
  • Gupta, P., Gupta, N., Pawar, A. P., Birajdar, S. S., Natt, A. S., and Singh, H. P. (2013) Role of sugar and sugar substitutes in dental caries: A review. ISRN Dentist. 2013: 1–5. doi: 10.1155/2013/519421.
  • Kashket, S., Van Houte, J., Lopez, L. R., and Stocks, S. (1991) Lack of correlation between food retention on the human dentition and consumer perception of food stickiness. J. Dent Res. 70(10): 1314–1319.
  • Thylstrup, A., and Federskov, O. (1994) Textbook of clinical cariology, 2nd ed., Blackwell Munksgaard, Copenhagen.
  • Taylor, H. R. (1991) Ethnic admixture in African American ancestry as reflected in dental patterns, University of Nevada, ProQuest Dissertations Publishing, Las Vegas.
  • Lovejoy, C. O. (1985) ‘Dental wear in the Libben population: Its functional pattern and role in the determination of adult skeletal age at death. Am. J. Phys. Anthropol 68(1): 47–56.
  • Huysmans, M. C. D. N. J. M., Chew, H. P., and Ellwood, R. P. (2011) Clinical studies of dental erosion and erosive wear. Caries Res. 45: 60–68.
  • Moorrees, C. F. A., Fanning, E. A., and Hunt, E. E. Jr. (1963) Age variation of formation stages for ten permanent teeth. J. Dent Res. 42(6): 1490–1496.
  • Marroquin, T. Y., Karkhanis, S., Kvaal, S. I., Vasudavan, S., Kruger, E., and Tennant, M. (2017) Age estimation in adults by dental imaging assessment systematic review. Forens. Sci. Int. 275: 203–211.
  • Gant, D. G., Silverstone, L. M., Featherstone, M. L., and Hicks, M. J. (1994) Structural comparison of sound and demineralized human and bovine enamel. J. Dent Res.63: 273.
  • Koshy, S., and Tandon, S. (1998) Dental age assessment: the applicability of Demirjian’s method in South Indian children. Forens. Sci. Int. 94: 73–85.
  • Prince, D. A., Kimmerle, E. H., and Konigsberg, L. W. (2008) A Bayesian approach to estimate skeletal age-at-death utilising dental wear. J. Forens. Sci. 53(3): 588–593.
  • Pestle, W. J., Ahmad, F., Vesper, B. J., Cordell, G. A., and Colvard, M. D. (2014) Ancient bone collagen assessment by hand-held vibrational spectroscopy. J. Archaeol. Sci. 42: 381–389.
  • Ionita, I. (2009a) Diagnosis of tooth decay using polarized micro-Raman confocal spectroscopy. Romanian Rep. Phys. 61: 567–574.
  • Ionita, I. (2009b) Early diagnosis of tooth decay using fluorescence and polarized Raman spectroscopy. J. Optoelectron. Adv. Mater. 3(10): 1122–1126.
  • Ramakrishnaiah, R., ur Rehman, G., Basavarajappa, S., Khuraif, A. A. A. K., Durgesh, B. H., Khan, A. S., and ur Rehman, I. (2015) Applications of Raman spectroscopy in dentistry: Analysis of tooth structure. Appl. Spectrosc. Rev. 50: 332–350.
  • Penel, G., Leroy, G., Rey, C., and Bres, E. (1998). Micro-Raman spectral study of the PO4 and CO3 vibrational models in synthetic biological apatites. Calcif Tissue Int. 63: 475–481.
  • Smith, R., and Rehman, I. (1994) Fourier transform Raman spectroscopic studies of human bone. J. Mater. Sci. Mater. Med. 5(9-10): 775–778.
  • Rey, C., Renugopalakrishnan, V., Shimizu, M., Collins, B., and Glimcher, M. J. (1991) A resolution-enhanced Fourier transform infrared spectroscopic study of the environment of the CO32- ion in the mineral phase of enamel during its formation and maturation. Calcif Tissue Int. 49(4): 259–268.
  • Rey, C., Shimizu, M., Collins, B., and Glimcher, M. J. (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel, and their evolution with age. I. Investigations in the v4 PO4 domain. Calcif Tissue Int. 46(6): 384–394.
  • Calin, M., Parasca, S. V., Savastru, D., and Manea, D. (2014) Hyperspectral imaging in the medical field: present and future. Appl. Spectrosc. Rev. 49: 435–447.
  • Sowa, M. G., and Mantsch, H. H. (1994a) FT-IR photoacoustic depth profiling spectroscopy of enamel. Calcif Tissue Int. 54: 481–485.
  • Sowa, M. G., & Mantsch, H. H. (1994b) FT-IR step-scan photoacoustic phase analysis and depth profiling of calcified tissue. Appl. Spectrosc. 48(3): 316–319.
  • Garvie-Lok, S. J., Varney, T. L., and Katzenberg, M. A. (2004) Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. J. Archaeol. Sci. 31: 763–776.
  • Hollund, H. I., Ariese, F., Fernandes, R., Jans, M. M. E., and Kars, H. (2013) Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55(3): 507–532.
  • King, C. L., Tayles, N., and Gordon, K. C. (2011) Re-examining the chemical evaluation of diagenesis in human bone apatite. J. Archaeol. Sci. 38: 2222–2230.
  • Nielsen-Marsh, C. M., and Hedges, R. E. M. (2000) Patterns of diagenesis in bone: The effects of site environments. J. Archaeol. Sci. 27: 1139–1150.
  • Surovell, T. A., and Stiner, M. C. (2001) Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. J. Archaeol. Sci. 28: 633–642.
  • Trueman, C. N., Privat, K. L., and Field, J. (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266(3-4): 160–167.
  • Pezzotti, G. (2005) Raman piezo-spectroscopic analysis of natural and synthetic biomaterials. Analyt. Bioanalyt. Chem. 381: 577–590.
  • De Carvalho, F. B., Barbosa, A. F. S., Zanin, F. A. A., Junior, A. B., Junior, L. S., and Pinheiro, A. L. B. (2013) Use of laser fluorescence in dental caries diagnosis: A fluorescence x bimolecular vibrational spectroscopic comparative study. Brazil Dental J. 24(1): 59–63.
  • Tsuda, H., and Arends, J. (1993) Raman spectra of human dental calculus. J. Dent Res. 72(12): 1609–1613.
  • Tsuda, H., and Arends J. (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J. Dent Res. 73(11): 1703–1710.
  • Loesche, W. J. (1979) Clinical and microbiological aspects of chemotherapeutic agents used according to the specific plaque hypothesis. J. Dent Res. 58(12): 2404–2412.
  • He, L. H., Carter, E. A., and Swain, M. V. (2007) Characterization of nanoidentation-induced residual stresses in human enamel by Raman microspectroscopy. Analyt. Bioanalyt. Chem. 389: 1185–1192.
  • Hill, W., and Petrou, V. (2000). Caries detection by diode laser Raman spectroscopy. Appl. Spectrosc. 54: 795–799.
  • Choo-Smith, L. P., Hewko, M., and Sowa, M. (2010) Towards early dental caries detection with OCT and polarized Raman spectroscopy. Head Neck Oncol.. 2(1): O43.
  • Gomes, R. N. S., Bhattacharjee, T. T., Carvalho, L. F. C. S., and Soares, L. E. S. (2018) ATR-FTIR spectroscopy and μ-EDXRF spectrometry monitoring of enamel erosion caused by medicaments used in the treatment of respiratory diseases. Microsc Res. Tech. 81(2): 220–227.
  • Zakian, C., Pretty, I., and Ellwood, R. (2009) Near-infrared hyperspectral imaging of teeth for dental caries detection. J. Biomed. Optics. doi: 10.1117/1.3275480.
  • Alias, A., Mohd Hashim, S. R., Mihaly, J., Wajir, J., and Abdul Aziz, F. (2009) An exploratory study of human teeth enamel by using FT-Raman spectroscopy. J. Nucl. Relat. Tech. 6(1): 141–146.
  • Kim, I., Son, J. S., Min, B. K., Kim, Y. K., Kim, K., and Kwon, T. (2016) A simple, sensitive and non-destructive technique for characterising bovine dental enamel erosion: Attenuated total reflection Fourier transform infrared spectroscopy. Int. J. Oral Sci.. 8: 54–60.
  • Hyashizaki, J., Ban, S., Nakagaki, H., Okumura, A., Yoshii, S., and Robinson, C. (2008) Site specific mineral composition and microstructure of human supragingival dental calculus. Arch. Oral Biol. 53(2): 168–174.
  • Kakei, M., Nakahara, H., Kumegawa, M., Yoshikawa, M., & Kunii, S. (2000) Demonstration of the central dark line in crystals of dental calculus. Biochim. Biophys. Acta 1524( 2-3): 189–196.
  • Tsuda, H., Ruben, J., & Arends, J. (1996) Raman spectra of human dentin material. Eur. J. Oral Sci. 104: 123–131.
  • Tramini, P., Bonnet, B., Sabatier, R., and Maury, L. 2001 A method of age estimation using Raman microspectrometry imaging of the human dentin. Forens. Sci. Int. 118: 1–9.
  • Verdelis, K., Crenshaw, M. A., Paschalis, E. P., Doty, S., Atti, E., and Boskey, A. L. (2003) Spectroscopic imaging of mineral maturation in bovine dentin. J. Dent Res. 82(9): 697–702.
  • Zamudio-Ortega, C. M., Contreras-Bulnes, R., Scougall-Vilchis, R. J., Morales-Luckie, R. A., Olea-Mejia, O. F., and Rodriquez-Vilchis, L. E. (2014) Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis. Eur. J. Paediatr. Dentist. 15(3): 275–280.
  • Hendra, P., Jones, C., Warnes, G., and Holze, R. (1994) Fourier transform Raman spectroscopy. Instrumentation and chemical applications. In Angew Chem German Ed. Ellis Harwood Publishers, Michigan, USA, 311 pp.
  • Crawford, P. J. M., Aldred, M., and Bloch-Zupa, A. (2007) Amelogenesis imperfecta. Orphanet J. Rare Dis. 2: 17. doi:10.1186/1750-1172-2-17.
  • Renugopalakrishnan, V., Garduno-Juarez, R., Guerrero, J. C. H., Lavin, P. N. C., and Ilangovan, K. (1999) An integrated, holistic experimental and theoretical approach applied to the derivation of the 3D structure of bovine amelogenin implicated in amelogenesis imperfecta, a molecular disease characterized by a single point mutation. Revis Soc Quím. Mexico 43(1): 24–29.
  • Zavala-Alonso, V., Loyola-Rodriquez, J. P., Terrones, H., Patino-Marin, N., Martinez-Castanon, G. A., and Anusavice, K. (2012) Analysis of the molecular structure of human enamel with fluorosis using micro-Raman spectroscopy. J. Oral Sci. 54(1): 93–98.
  • Singh, V. K., and Rai, A. K. (2011) Potential of laser induced breakdown spectroscopy for the rapid identification of carious teeth. Lasers Med. Sci. 26(3): 307–315.
  • Walid, T., and Saafan, A. (2006) A quantitative analysis of mercury in silver dental amalgam alloy using laser induced breakdown spectroscopy with a portable Echelle spectrometer. Int. J. Pure Appl. Phys. 2(3): 195–203.
  • Miyazaki, M., Onose, H., and Moore, B. K. (2002) Analysis of the dentin-resin interface by use of laser Raman spectroscopy. Dent Mater. 18: 576–580.
  • Rehman, I., Smith, R., Hench, L. L., and Bonfield, W. (1995) Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J. Biomed. Mater. Res. 29: 1287–1294.
  • Hedzelek, W., Wachowiak, R., Marcinkowska, A., and Domka, L. (2008) Infrared spectroscopic identification of chosen dental materials and natural teeth. Acta Phys. Polon 114(2): 471–484.
  • Edwards, H. G. M., Williams, A. C., and Farwell, D. W. (1995) Paleodental studies using FT-Raman spectroscopy. Biospectroscopy 1: 29–36.
  • Pollard, M., Batt, C., Stern, B., and Young, S. S. M. (2007) Analytical chemistry in archaeology, Cambridge University Press, New York.
  • Michel, V., Ildefonse, P., and Morin, G. (1996) Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeogr Palaeoclimatol Palaeoecol 126: 109–119.
  • Bertoluzza, A., Brasili, P., Castri, L., Facchini, F., Fagnano, C., and Tinti, A. (1998) Preliminary results in dating human skeletal remains by Raman spectroscopy. J. Raman Spectrosc. 28(2–3): 185–188.
  • White, S. C., and Pharoah, M. J. (2004) Oral radiology: Principles and interpretation, 7th ed., Mosby, Toronto.
  • Butalov, V., Feller, L., Yasman, Y., and Schechter, I. (2008) Dental enamel caries (early) diagnosis and mapping by laser Raman spectral imaging. Instrument. Sci. Technol. 36: 235–244.
  • Ko, A. C. T., Choo-Smith, L. P., Hewko, M., and Sowa, M. G. (2006) Detection of early dental caries using polarized Raman spectroscopy. Optics Exp. 14(1): 203–215.
  • Ko, A. C. T., Choo-Smith, L. P., Hewko, M., Leonardi, L., Sowa, M. G., Dong, C. C. S., Williams, P., and Cleghorn, B. (2005) Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J. Biomed. Optics 10(3): 031118. doi:10.1117/1.1915488.
  • Harris, H. H., Vogt, S., Eastgate, H., and Lay, P. A. (2008a) A link between copper and dental caries in human teeth identified by XRF elemental mapping. J. Biologic. Inorg. Chem,. 13: 303–306.
  • Harris, H. H., Vogt, S., Eastgate, H., Legnini, D. J., Hornberger, B., Cai, Z., Lai, B., & Lay, P. A. (2008b) Migration of mercury from dental amalgam through human teeth. J. Synchroton Radiat. 15: 123–128.
  • Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new perspectives e A review. Analyt. Chim. Acta 1026: 8–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.