1,450
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS)

, , , , , , & show all

References

  • Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Hochella, M. F.; Rejeski, D.; Hull, M. S. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. doi:10.3762/bjnano.6.181.
  • Montaño, M. D.; Majestic, B. J.; Jämting, Å. K.; Westerhoff, P.; Ranville, J. F. Methods for the Detection and Characterization of Silica Colloids by Microsecond SpICP-MS. Anal. Chem. 2016, 88, 4733–4741. doi:10.1021/acs.analchem.5b04924.
  • Laborda, F.; Bolea, E.; Jiménez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86, 2270–2278. doi:10.1021/ac402980q.
  • Kawaguchi, H.; Fukasawa, N.; Mizuike, A. Investigation of Airborne Particles by Inductively Coupled Plasma Emission Spectrometry Calibrated with Monodisperse Aerosols. Spectrochim. Acta Part B At. Spectrosc. 1986, 41, 1277–1286. doi:10.1016/0584-8547(86)80006-4.
  • Stephan, C.; Neubauer, K.; Shelton, C. Single Particle Inductively Coupled Plasma Mass Spectrometry: Understanding How and Why. Perkin Elmer Inc. White paper, 2014, 1–5.
  • Peters, R.; Herrera-Rivera, Z.; Undas, A.; Lee, M.; van der, Marvin, H.; Bouwmeester, H.; Weigel, S. Single Particle ICP-MS Combined with a Data Evaluation Tool as a Routine Technique for the Analysis of Nanoparticles in Complex Matrices. J. Anal. At. Spectrom. 2015, 30, 1274–1285. doi:10.1039/C4JA00357H.
  • Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 9361–9369. doi:10.1021/ac201952t.
  • Hochella, M. F.; Mogk, D. W.; Ranville, J.; Allen, I. C.; Luther, G. W.; Marr, L. C.; McGrail, B. P.; Murayama, M.; Qafoku, N. P.; Rosso, K. M.; et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science 2019, 363, eaau8299. doi:10.1126/science.aau8299.
  • Johnson, M. E.; Hanna, S.; Bustos, A. R. M.; Nelson, B. C.; Petersen, E. J.; Yu, L. L. Using Single Particle ICP-MS as a Tool for Understanding Metallic Nanoparticle Transformation during Nanotoxicity Assays. Gaithersburg, MD: NIST, 2014.
  • Bao, D.; Oh, Z. G.; Chen, Z. Characterization of Silver Nanoparticles Internalized by Arabidopsis Plants Using Single Particle ICP-MS Analysis. Front. Plant Sci. 2016, 7, 32. doi:10.3389/fpls.2016.00032.
  • Witzler, M.; Küllmer, F.; Günther, K. Validating a Single-Particle ICP-MS Method to Measure Nanoparticles in Human Whole Blood for Nanotoxicology. Anal. Lett. 2018, 51, 587–599. doi:10.1080/00032719.2017.1327538.
  • Malysheva, A.; Lombi, E.; Voelcker, N. H. Bridging the Divide between Human and Environmental Nanotoxicology. Nat. Nanotechnol. 2015, 10, 835–844. doi:10.1038/nnano.2015.224.
  • Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48, 10291–10300. doi:10.1021/es502422v.
  • Afrand, M.; Toghraie, D.; Ruhani, B. Effects of Temperature and Nanoparticles Concentration on Rheological Behavior of Fe3O4–Ag/EG Hybrid Nanofluid: An Experimental Study. Exp. Therm. Fluid Sci. 2016, 77, 38–44. doi:10.1016/j.expthermflusci.2016.04.007.
  • Tiede, K.; Hassellöv, M.; Breitbarth, E.; Chaudhry, Q.; Boxall, A. B. A. Considerations for Environmental Fate and Ecotoxicity Testing to Support Environmental Risk Assessments for Engineered Nanoparticles. J. Chromatogr. A 2009, 1216, 503–509. doi:10.1016/j.chroma.2008.09.008.
  • Bolea-Fernandez, E.; Leite, D.; Rua-Ibarz, A.; Liu, T.; Woods, G.; Aramendia, M.; Resano, M.; Vanhaecke, F. On the Effect of Using Collision/Reaction Cell (CRC) Technology in Single-Particle ICP-Mass Spectrometry (SP-ICP-MS). Anal. Chim. Acta 2019, 1077, 95–106. doi:10.1016/j.aca.2019.05.077.
  • Praetorius, A.; Gundlach-Graham, A.; Goldberg, E.; Fabienke, W.; Navratilova, J.; Gondikas, A.; Kaegi, R.; Günther, D.; Hofmann, T.;  Kammer, F. von der, Single-Particle Multi-Element Fingerprinting (SpMEF) Using Inductively-Coupled Plasma Time-of-Flight Mass Spectrometry (ICP-TOFMS) to Identify Engineered Nanoparticles against the Elevated Natural Background in Soils. Environ. Sci. Nano 2017, 4, 307–314. doi:10.1039/C6EN00455E.
  • Maynard, A. D.; Aitken, R. J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M. A.; Ryan, J.; Seaton, A.; Stone, V.; et al. Safe Handling of Nanotechnology. Nature 2006, 444, 267–269. doi:10.1038/444267a.
  • Maynard, A. D.; Aitken, R. J. “Safe Handling of Nanotechnology” Ten Years On. Nat. Nanotechnol. 2016, 11, 998–1000. doi:10.1038/nnano.2016.270.
  • Warheit, D. B. Hazard and Risk Assessment Strategies for Nanoparticle Exposures: How Far Have We Come in the past 10 Years? F1000Res. 2018, 7, 376. doi:10.12688/f1000research.12691.1.
  • Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G. V.; Jolivet, J.-P.; Wiesner, M. R. Towards a Definition of Inorganic Nanoparticles from an Environmental, Health and Safety Perspective. Nat. Nanotechnol. 2009, 4, 634–641. doi:10.1038/nnano.2009.242.
  • Mitrano, D. M.; Lombi, E.; Dasilva, Y. A. R.; Nowack, B. Unraveling the Complexity in the Aging of Nanoenhanced Textiles: A Comprehensive Sequential Study on the Effects of Sunlight and Washing on Silver Nanoparticles. Environ. Sci. Technol. 2016, 50, 5790–5799. doi:10.1021/acs.est.6b01478.
  • Wagener, S.; Dommershausen, N.; Jungnickel, H.; Laux, P.; Mitrano, D.; Nowack, B.; Schneider, G.; Luch, A. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat. Environ. Sci. Technol. 2016, 50, 5927–5934. doi:10.1021/acs.est.5b06137.
  • Strenge, I.; Engelhard, C. Capabilities of Fast Data Acquisition with Microsecond Time Resolution in Inductively Coupled Plasma Mass Spectrometry and Identification of Signal Artifacts from Millisecond Dwell Times during Detection of Single Gold Nanoparticles. J. Anal. At. Spectrom. 2016, 31, 135–144. doi:10.1039/C5JA00177C.
  • Mackevica, A.; Olsson, M. E.; Hansen, S. F. Quantitative Characterization of TiO2 Nanoparticle Release from Textiles by Conventional and Single Particle ICP-MS. J. Nanopart. Res. 2018, 20, 6. doi:10.1007/s11051-017-4113-2.
  • Bocca, B.; Caimi, S.; Senofonte, O.; Alimonti, A.; Petrucci, F. ICP-MS Based Methods to Characterize Nanoparticles of TiO2 and ZnO in Sunscreens with Focus on Regulatory and Safety Issues. Sci. Total Environ. 2018, 630, 922–930. doi:10.1016/j.scitotenv.2018.02.166.
  • Dan, Y.; Shi, H.; Stephan, C.; Liang, X. Rapid Analysis of Titanium Dioxide Nanoparticles in Sunscreens Using Single Particle Inductively Coupled Plasma–Mass Spectrometry. Microchem. J. 2015, 122, 119–126. doi:10.1016/j.microc.2015.04.018.
  • de la Calle, I.; Menta, M.; Klein, M.; Séby, F. Screening of TiO2 and Au Nanoparticles in Cosmetics and Determination of Elemental Impurities by Multiple Techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta 2017, 171, 291–306. doi:10.1016/j.talanta.2017.05.002.
  • Aznar, R.; Barahona, F.; Geiss, O.; Ponti, J.; José Luis, T.; Barrero-Moreno, J. Quantification and Size Characterisation of Silver Nanoparticles in Environmental Aqueous Samples and Consumer Products by Single Particle-ICPMS. Talanta 2017, 175, 200–208. doi:10.1016/j.talanta.2017.07.048.
  • Goetz, N.; von, Fabricius, L.; Glaus, R.; Weitbrecht, V.; Günther, D.; Hungerbühler, K. Migration of Silver from Commercial Plastic Food Containers and Implications for Consumer Exposure Assessment. Food Addit. Contam. Part A 2013, 30, 612–620. doi:10.1080/19440049.2012.762693.
  • Mackevica, A.; Olsson, M. E.; Hansen, S. F. Silver Nanoparticle Release from Commercially Available Plastic Food Containers into Food Simulants. J. Nanopart. Res. 2016, 18, 5. doi:10.1007/s11051-015-3313-x.
  • Ramos, K.; Gómez-Gómez, M. M.; Cámara, C.; Ramos, L. Silver Speciation and Characterization of Nanoparticles Released from Plastic Food Containers by Single Particle ICPMS. Talanta 2016, 151, 83–90. doi:10.1016/j.talanta.2015.12.071.
  • Folens, K.; Van Acker, T.; Bolea-Fernandez, E.; Cornelis, G.; Vanhaecke, F.; Du Laing, G.; Rauch, S. Identification of Platinum Nanoparticles in Road Dust Leachate by Single Particle Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2018, 615, 849–856. doi:10.1016/j.scitotenv.2017.09.285.
  • Montaño, M. D.; Olesik, J. W.; Barber, A. G.; Challis, K.; Ranville, J. F. Single Particle ICP-MS: Advances toward Routine Analysis of Nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. doi:10.1007/s00216-016-9676-8.
  • Merrifield, R. C.; Stephan, C.; Lead, J. Determining the Concentration Dependent Transformations of Ag Nanoparticles in Complex Media: Using SP-ICP-MS and Au@Ag Core-Shell Nanoparticles as Tracers. Environ. Sci. Technol. 2017, 51, 3206–3213. doi:10.1021/acs.est.6b05178.
  • Yang, Y.; Long, C. L.; Li, H. P.; Wang, Q.; Yang, Z. G. Analysis of Silver and Gold Nanoparticles in Environmental Water Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2016, 563–564, 996–1007. doi:10.1016/j.scitotenv.2015.12.150.
  • Azodi, M.; Sultan, Y.; Ghoshal, S. Dissolution Behavior of Silver Nanoparticles and Formation of Secondary Silver Nanoparticles in Municipal Wastewater by Single-Particle ICP-MS. Environ. Sci. Technol. 2016, 50, 13318–13327. doi:10.1021/acs.est.6b03957.
  • Azimzada, A.; Tufenkji, N.; Wilkinson, K. J. Transformations of Silver Nanoparticles in Wastewater Effluents: Links to Ag Bioavailability. Environ. Sci. Nano 2017, 4, 1339–1349. doi:10.1039/C7EN00093F.
  • Newman, K.; Metcalfe, C.; Martin, J.; Hintelmann, H.; Shaw, P.; Donard, A. Improved Single Particle ICP-MS Characterization of Silver Nanoparticles at Environmentally Relevant Concentrations. J. Anal. At. Spectrom. 2016, 31, 2069–2077. doi:10.1039/C6JA00221H.
  • Tuoriniemi, J.; Jürgens, M. D.; Hassellöv, M.; Cornelis, G. Size Dependence of Silver Nanoparticle Removal in a Wastewater Treatment Plant Mesocosm Measured by FAST Single Particle ICP-MS. Environ. Sci: Nano 2017, 4, 1189–1197. doi:10.1039/C6EN00650G.
  • Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Detection of Zinc Oxide and Cerium Dioxide Nanoparticles during Drinking Water Treatment by Rapid Single Particle ICP-MS Methods. Anal. Bioanal. Chem. 2016, 408, 5137–5145. doi:10.1007/s00216-016-9432-0.
  • Proulx, K.; Hadioui, M.; Wilkinson, K. J. Separation, Detection and Characterization of Nanomaterials in Municipal Wastewaters Using Hydrodynamic Chromatography Coupled to ICPMS and Single Particle ICPMS. Anal. Bioanal. Chem. 2016, 408, 5147–5155. doi:10.1007/s00216-016-9451-x.
  • Yang, Y.; Luo, L.; Li, H. P.; Wang, Q.; Yang, Z. G.; Qu, Z. P.; Ding, R. Analysis of Metallic Nanoparticles and Their Ionic Counterparts in Complex Matrix by Reversed-Phase Liquid Chromatography Coupled to ICP-MS. Talanta 2018, 182, 156–163. doi:10.1016/j.talanta.2018.01.077.
  • Lu, S.; Tan, Z.; Liu, P.; Zhao, H.; Liu, D.; Yu, S.; Cheng, P.; Win, M. S.; Hu, J.; Tian, L.; et al. Single Particle Aerosol Mass Spectrometry of Coal Combustion Particles Associated with High Lung Cancer Rates in Xuanwei and Fuyuan, China. Chemosphere 2017, 186, 278–286. doi:10.1016/j.chemosphere.2017.07.161.
  • Ma, L.; Li, M.; Zhang, H.; Li, L.; Huang, Z.; Gao, W.; Chen, D.; Fu, Z.; Nian, H.; Zou, L.; et al. Comparative Analysis of Chemical Composition and Sources of Aerosol Particles in Urban Beijing during Clear, Hazy, and Dusty Days Using Single Particle Aerosol Mass Spectrometry. J. Clean. Prod. 2016, 112, 1319–1329. doi:10.1016/j.jclepro.2015.04.054.
  • Arndt, J.; Deboudt, K.; Anderson, A.; Blondel, A.; Eliet, S.; Flament, P.; Fourmentin, M.; Healy, R. M.; Savary, V.; Setyan, A.; et al. Scanning Electron Microscopy-Energy Dispersive X-Ray Spectrometry (SEM-EDX) and Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) Single Particle Analysis of Metallurgy Plant Emissions. Environ. Pollut. 2016, 210, 9–17. doi:10.1016/j.envpol.2015.11.019.
  • Hadri, H. E.; M.; Louie, S.; A.; Hackley, V. Assessing the Interactions of Metal Nanoparticles in Soil and Sediment Matrices – A Quantitative Analytical Multi-Technique Approach. Environ. Sci. Nano 2018, 5, 203–214. doi:10.1039/C7EN00868F.
  • Mahdi, K. N. M.; Peters, R. J. B.; Klumpp, E.; Bohme, S.; Ploeg, M.; van der; Ritsema, C.; Geissen, V. Silver Nanoparticles in Soil: Aqueous Extraction Combined with Single-Particle ICP-MS for Detection and Characterization. Environ. Nanotechnol. Monit. Manage. 2017, 7, 24–33. doi:10.1016/j.enmm.2016.12.002.
  • Hadri, H. E.; A.; Hackley, V.  Investigation of Cloud Point Extraction for the Analysis of Metallic Nanoparticles in a Soil Matrix. Environ. Sci. Nano 2017, 4, 105–116. doi:10.1039/C6EN00322B.
  • Hsiao, I.-L.; Bierkandt, F. S.; Reichardt, P.; Luch, A.; Huang, Y.-J.; Jakubowski, N.; Tentschert, J.; Haase, A. Quantification and Visualization of Cellular Uptake of TiO2 and Ag Nanoparticles: Comparison of Different ICP-MS Techniques. J. Nanobiotechnol. 2016, 14, 50. doi:10.1186/s12951-016-0203-z.
  • Campagnolo, L.; Massimiani, M.; Vecchione, L.; Piccirilli, D.; Toschi, N.; Magrini, A.; Bonanno, E.; Scimeca, M.; Castagnozzi, L.; Buonanno, G.; et al. Silver Nanoparticles Inhaled during Pregnancy Reach and Affect the Placenta and the Foetus. Nanotoxicology 2017, 11, 687–698. doi:10.1080/17435390.2017.1343875.
  • Vidmar, J.; Buerki-Thurnherr, T.; Loeschner, K. Comparison of the Suitability of Alkaline or Enzymatic Sample Pre-Treatment for Characterization of Silver Nanoparticles in Human Tissue by Single Particle ICP-MS. J. Anal. At. Spectrom. 2018, 33, 752–761. doi:10.1039/C7JA00402H.
  • Gallocchio, F.; Biancotto, G.; Cibin, V.; Losasso, C.; Belluco, S.; Peters, R.; Van Bemmel, G.; Cascio, C.; Weigel, S.; Tromp, P.; et al. Transfer Study of Silver Nanoparticles in Poultry Production. J. Agric. Food Chem. 2017, 65, 3767–3774. doi:10.1021/acs.jafc.7b00670.
  • Heringa, M. B.; Peters, R. J. B.; Bleys, R. L. A. W.; van der Lee, M. K.; Tromp, P. C.; van Kesteren, P. C. E.; van Eijkeren, J. C. H.; Undas, A. K.; Oomen, A. G.; Bouwmeester, H. Detection of Titanium Particles in Human Liver and Spleen and Possible Health Implications. Part. Fibre Toxicol. 2018, 15, 15. doi:10.1186/s12989-018-0251-7.
  • Vidmar, J.; Loeschner, K.; Correia, M.; Larsen, E. H.; Manser, P.; Wichser, A.; Boodhia, K.; Al-Ahmady, Z. S.; Ruiz, J.; Astruc, D.; et al. Translocation of Silver Nanoparticles in the Ex Vivo Human Placenta Perfusion Model Characterized by Single Particle ICP-MS. Nanoscale 2018, 10, 11980–11991. doi:10.1039/C8NR02096E.
  • Makama, S.; Piella, J.; Undas, A.; Dimmers, W. J.; Peters, R.; Puntes, V. F.; van den Brink, N. W. Properties of Silver Nanoparticles Influencing Their Uptake in and Toxicity to the Earthworm Lumbricus rubellus following Exposure in Soil. Environ. Pollut. 2016, 218, 870–878. doi:10.1016/j.envpol.2016.08.016.
  • Kollander, B.; Widemo, F.; Ågren, E.; Larsen, E. H.; Loeschner, K. Detection of Lead Nanoparticles in Game Meat by Single Particle ICP-MS following Use of Lead-Containing Bullets. Anal. Bioanal. Chem. 2017, 409, 1877–1885. doi:10.1007/s00216-016-0132-6.
  • Keller, A. A.; Huang, Y.; Nelson, J. Detection of Nanoparticles in Edible Plant Tissues Exposed to Nano-Copper Using Single-Particle ICP-MS. J Nanopart Res. 2018, 20 (4), 101. doi:10.1007/s11051-018-4192-8.
  • Kińska, K.; Jiménez-Lamana, J.; Kowalska, J.; Krasnodębska-Ostręga, B.; Szpunar, J. Study of the Uptake and Bioaccumulation of Palladium Nanoparticles by Sinapis alba Using Single Particle ICP-MS. Sci. Total Environ. 2018, 615, 1078–1085. doi:10.1016/j.scitotenv.2017.09.203.
  • Jiménez-Lamana, J.; Wojcieszek, J.; Jakubiak, M.; Asztemborska, M.; Szpunar, J. Single Particle ICP-MS Characterization of Platinum Nanoparticles Uptake and Bioaccumulation by: Lepidium sativum and Sinapis alba Plants. J. Anal. At. Spectrom. 2016, 31, 2321–2329. doi:10.1039/C6JA00201C.
  • Dan, Y.; Ma, X.; Zhang, W.; Liu, K.; Stephan, C.; Shi, H. Single Particle ICP-MS Method Development for the Determination of Plant Uptake and Accumulation of CeO 2 Nanoparticles. Anal. Bioanal. Chem. 2016, 408, 5157–5167. doi:10.1007/s00216-016-9565-1.
  • Li, C. C.; Dang, F.; Li, M.; Zhu, M.; Zhong, H.; Hintelmann, H.; Zhou, D. M. Effects of Exposure Pathways on the Accumulation and Phytotoxicity of Silver Nanoparticles in Soybean and Rice. Nanotoxicology 2017, 11, 699–709. doi:10.1080/17435390.2017.1344740.
  • la Calle, I.; De; Pérez-Rodríguez, P.; Soto-Gómez, D.; López-Periago, J. E. Detection and Characterization of Cu-Bearing Particles in Throughfall Samples from Vine Leaves by DLS, AF4-MALLS (-ICP-MS) and SP-ICP-MS. Microchem. J. 2017, 133, 293–301. doi:10.1016/j.microc.2017.03.034.
  • Bettini, S.; Boutet-Robinet, E.; Cartier, C.; Coméra, C.; Gaultier, E.; Dupuy, J.; Naud, N.; Taché, S.; Grysan, P.; Reguer, S.; et al. Food-Grade TiO 2 Impairs Intestinal and Systemic Immune Homeostasis, Initiates Preneoplastic Lesions and Promotes Aberrant Crypt Development in the Rat Colon. Sci. Rep. 2017, 7, 1–13. doi:10.1038/srep40373.
  • Schoon, J.; Geißler, S.; Traeger, J.; Luch, A.; Tentschert, J.; Perino, G.; Schulze, F.; Duda, G. N.; Perka, C.; Rakow, A. Multi-Elemental Nanoparticle Exposure after Tantalum Component Failure in Hip Arthroplasty: In-Depth Analysis of a Single Case. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2415–2423. doi:10.1016/j.nano.2017.08.004.
  • Ramos, K.; Ramos, L.; Gómez-Gómez, M. M. Simultaneous Characterisation of Silver Nanoparticles and Determination of Dissolved Silver in Chicken Meat Subjected to in Vitro Human Gastrointestinal Digestion Using Single Particle Inductively Coupled Plasma Mass Spectrometry. Food Chem. 2017, 221, 822–828. doi:10.1016/j.foodchem.2016.11.091.
  • Hussain, S. M.; Hess, K. L.; Gearhart, J. M.; Geiss, K. T.; Schlager, J. J. In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells. Toxicol in Vitro 2005, 19, 975–983. doi:10.1016/j.tiv.2005.06.034.
  • Malysheva, A.; Ivask, A.; Hager, C.; Brunetti, G.; Marzouk, E. R.; Lombi, E.; Voelcker, N. H. Sorption of Silver Nanoparticles to Laboratory Plastic during (Eco)Toxicological Testing. Nanotoxicology 2016, 10, 385–390. doi:10.3109/17435390.2015.1084059.
  • Roman, M.; Rigo, C.; Castillo-Michel, H.; Munivrana, I.; Vindigni, V.; Mičetić, I.; Benetti, F.; Manodori, L.; Cairns, W. R. L. Hydrodynamic Chromatography Coupled to Single-Particle ICP-MS for the Simultaneous Characterization of AgNPs and Determination of Dissolved Ag in Plasma and Blood of Burn Patients. Anal. Bioanal. Chem. 2016, 408, 5109–5124. doi:10.1007/s00216-015-9014-6.
  • Mozhayeva, D.; Strenge, I.; Engelhard, C. Implementation of Online Preconcentration and Microsecond Time Resolution to Capillary Electrophoresis Single Particle Inductively Coupled Plasma Mass Spectrometry (CE-SP-ICP-MS) and Its Application in Silver Nanoparticle Analysis. Anal. Chem. 2017, 89, 7152–7159. doi:10.1021/acs.analchem.7b01185.
  • Tan, J.; Liu, J.; Li, M.; El Hadri, H.; Hackley, V. A.; Zachariah, M. R. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Anal. Chem. 2016, 88, 8548–8555. doi:10.1021/acs.analchem.6b01544.
  • Lee, W.-C.; Lee, B.-T.; Lee, S.; Hwang, Y. S.; Jo, E.; Eom, I.-C.; Lee, S.-W.; Kim, S.-O. Optimisation, Evaluation and Application of Asymmetrical Flow Field-Flow Fractionation with Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) to Characterise Silver Nanoparticles in Environmental Media. Microchem. J. 2016, 129, 219–230. doi:10.1016/j.microc.2016.06.030.
  • Naasz, S.; Weigel, S.; Borovinskaya, O.; Serva, A.; Cascio, C.; Undas, A. K.; Simeone, F. C.; Marvin, H. J. P.; Peters, R. J. B. Multi-Element Analysis of Single Nanoparticles by ICP-MS Using Quadrupole and Time-of-Flight Technologies. J. Anal. At. Spectrom. 2018, 33, 835–845. doi:10.1039/C7JA00399D.
  • Lamsal, R. P.; Jerkiewicz, G.; Beauchemin, D. Flow Injection Single Particle Inductively Coupled Plasma Mass Spectrometry: An Original Simple Approach for the Characterization of Metal-Based Nanoparticles. Anal. Chem. 2016, 88, 10552–10558. doi:10.1021/acs.analchem.6b02656.
  • Benešová, I.; Dlabková, K.; Zelenák, F.; Vaculovič, T.; Kanický, V.; Preisler, J. Direct Analysis of Gold Nanoparticles from Dried Droplets Using Substrate-Assisted Laser Desorption Single Particle-ICPMS. Anal. Chem. 2016, 88, 2576–2582. doi:10.1021/acs.analchem.5b02421.
  • Miyashita, S.; Mitsuhashi, H.; Fujii, S.; Takatsu, A.; Inagaki, K.; Fujimoto, T. High Transport Efficiency of Nanoparticles through a Total-Consumption Sample Introduction System and Its Beneficial Application for Particle Size Evaluation in Single-Particle ICP-MS. Anal. Bioanal. Chem. 2017, 409, 1531–1545. doi:10.1007/s00216-016-0089-5.
  • Aghaei, M.; Bogaerts, A. Particle Transport through an Inductively Coupled Plasma Torch: Elemental Droplet Evaporation. J. Anal. At. Spectrom. 2016, 31, 631–641. doi:10.1039/C5JA00162E.
  • Kálomista, I.; Kéri, A.; Galbács, G. On the Applicability and Performance of the Single Particle ICP-MS Nano-Dispersion Characterization Method in Cases Complicated by Spectral Interferences. J. Anal. At. Spectrom. 2016, 31, 1112–1122. doi:10.1039/C5JA00501A.
  • Kálomista, I.; Kéri, A.; Ungor, D.; Csapó, E.; Dékány, I.; Prohaska, T.; Galbács, G. Dimensional Characterization of Gold Nanorods by Combining Millisecond and Microsecond Temporal Resolution Single Particle ICP-MS Measurements. J. Anal. At. Spectrom. 2017, 32, 2455–2462. doi:10.1039/C7JA00306D.
  • A.; Sötebier, C.; J.; Kutscher, D.; Rottmann, L.; Jakubowski, N.; Panne, U.; Bettmer, J.  Combination of Single Particle ICP-QMS and Isotope Dilution Analysis for the Determination of Size, Particle Number and Number Size Distribution of Silver Nanoparticles. J. Anal. At. Spectrom. 2016, 31, 2045–2052. doi:10.1039/C6JA00137H.
  • Hetzer, B.; Burcza, A.; Gräf, V.; Walz, E.; Greiner, R. Online-Coupling of AF4 and Single Particle-ICP-MS as an Analytical Approach for the Selective Detection of Nanosilver Release from Model Food Packaging Films into Food Simulants. Food Control 2017, 80, 113–124. doi:10.1016/j.foodcont.2017.04.040.
  • Candás-Zapico, S.; Kutscher, D. J.; Montes-Bayón, M.; Bettmer, J. Single Particle Analysis of TiO2 in Candy Products Using Triple Quadrupole ICP-MS. Talanta 2018, 180, 309–315. doi:10.1016/j.talanta.2017.12.041.
  • Adeleye, A. S.; Oranu, E. A.; Tao, M.; Keller, A. A. Release and Detection of Nanosized Copper from a Commercial Antifouling Paint. Water Res. 2016, 102, 374–382. doi:10.1016/j.watres.2016.06.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.