791
Views
1
CrossRef citations to date
0
Altmetric
Abstracts

Enhanced quantification of wollastonite and calcite in limestone using fluorescence correction based on continuous wavelet transformation for Raman

ORCID Icon, , , &

References

  • Landsberg, G.; Mandelstam, L. Űber die Liehtzerstreuung in Kristallen. Z Phys. 1928, 50 50, 769–780. doi:10.1007/BF01339412
  • Hopep, G. A.; Woodsy, R.; Munce, C. G. Raman Microprobe Mineral Identification. Miner. Eng. 2001, 14, 1565–1577. doi:10.1016/S0892-6875(01)00175-3
  • Burke, E. A. J. Raman Microspectrometry of Fluid Inclusions. Lithos 2001, 55, 139–158. doi:10.1016/S0024-4937(00)00043-8
  • Wang, A.; Jolliff, B. L.; Haskin, L. A. Raman Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions. J. Geophys. Res. 1995, 100, 21189–21199. doi:10.1029/95JE02133
  • Smith, D.; Carabatos-Nédelec, C. Raman Spectroscopy Applied to Crystals: Phenomena and Principles, Concepts and Conventions. In Handbook of Raman Spectroscopy, Lewis, I., Edwards, H., Eds., Marcel Dekker Inc.: New York, NY, 2001; pp 349–422.
  • Nasdala, L.; Smith, D. C.; Kaindl, R.; Ziemann, M. A. Raman Spectroscopy : Analytical Perspectives in Mineralogical Research. In Spectroscopic Methods in Mineralogy 6, Beran, A., Libowitzky, E., Eds., European Mineralogical Union: London, 2004; pp 281–344
  • Vítek, P.; Ali, E. M. A.; Edwards, H. G. M.; Jehlička, J.; Cox, R.; Page, K. Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Evaluation of Portable Raman Spectrometer with 1064 nm Excitation for Geological and Forensic Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 86, 320–327. doi:10.1016/j.saa.2011.10.043
  • Cai, W.; Wang, L.; Pan, Z.; Zuo, J.; Xu, C.; Shao, X. Application of the Wavelet Transform Method in Quantitative Analysis of Raman Spectra. J. Raman Spectrosc. 2001, 32, 207–209. doi:10.1002/jrs.688
  • Irish, D. E.; Chen, H. Feature Article the Application of Raman Spectroscopy to Chemical Analysis. Appl. Spectrosc. 1971, 25, 1–6. doi:10.1366/000370271774371119
  • Matousek, P.; Towrie, M.; Ma, C.; Kwok, W. M.; Phillips, D.; Toner, W. T.; Parker, A. W. Fluorescence Suppression in Resonance Raman Spectroscopy Using a High-Performance Picosecond Kerr Gate. J. Raman Spectrosc. 2001, 32, 983–988. doi:10.1002/jrs.784
  • Becker, R. S. Theory and Interpretation of Fluorescence and Phosphorescence. Wiley Interscience: Hoboken, NJ, 1969.
  • Urmos, J.; Sharma, S.; Mackenzie, F. Characterization of Some Biogenic Carbonates with Raman Spectroscopy. Am. Miner. 1991, 76, 641–646.
  • Reisfeld, R.; Gaft, M.; Boulon, G.; Panczer, C.; Jørgensen, C. In Natural Fluor-Apatites. J. Lumin. 1996, 69, 343–353. doi:10.1016/S0022-2313(96)00114-7
  • Wang, J.; Wu, X.; Mullins, O. C. Fluorescence of Limestones and Limestone Components. Appl. Spectrosc. 1997, 51, 1890–1895. doi:10.1366/0003702971939712
  • Efremov, E. V.; Buijs, J. B.; Gooijer, C.; Ariese, F. Fluorescence Rejection in Resonance Raman Spectroscopy Using a Picosecond-Gated Intensified Charge-Coupled Device Camera. Appl. Spectrosc. 2007, 61, 571–578. doi:10.1366/000370207781269873
  • Frosch, T.; Tarcea, N.; Schmitt, M.; Thiele, H.; Langenhorst, F.; Chemie, P.; Gani, D.; Raman, Z. UV Raman Imaging s a Promising Tool for Astrobiology : Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites Demonstrated on the Three Martian Meteorites : Sayh. al. Anal. Chem. 2007, 79, 1101–1108. doi:10.1021/ac0618977
  • Johnson, C. R.; Asher, S. A New Selective Technique for Characterization of Polycyclic Aromatic Hydrocarbons in Complex Samples : UV Resonance Raman Spectrometry of Coal Liquids. Anal. Chem. 1984, 56, 2258–2261. doi:10.1021/ac00276a065
  • Li, C.; Stair, P. Ultraviolet Raman Spectroscopy Characterization of Sulfated Zirconia Catalysts: fresh, Deactivated and Regenerated. Catal. Lett. 1996, 36, 119–123. doi:10.1007/BF00807606
  • Sharma, S.; Misra, A.; Clegg, S.; Barefield, J.; Wiens, R.; Acosta, T. Time-Resolved Remote Raman Study of Minerals under Supercritical CO 2 and High Temperatures Relevant to Venus Exploration. Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 2010, 368, 3167–3191. doi:10.1098/rsta.2010.0034
  • Bozlee, B. J.; Misra, A. K.; Sharma, S. K.; Ingram, M. Remote Raman and Fluorescence Studies of Mineral Samples. Spectrochim. Acta Part A 2005, 61, 2342–2348. doi:10.1016/j.saa.2005.02.033
  • Misra, A. K.; Sharma, S. K.; Hong, C.; Lucey, P. G.; Lienert, B. Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra. Spectrochim. Acta Part A 2005, 61, 2281–2287. doi:10.1016/j.saa.2005.02.027
  • Romppanen, S.; Häkkänen, H.; Kekkonen, J.; Nissinen, J.; Nissinen, I. Time ‐ Gated Raman and Laser ‐ Induced Breakdown Spectroscopy in Mapping of Eudialyte and Catapleiite. J. Raman Spectrosc. 2019, 1–8. doi:10.1002/jrs.5622
  • Barman, I.; Kong, C.; Singh, G. P.; Dasari, R. R. Effect of Photobleaching on Calibration Model Development in Biological Raman Spectroscopy. J. Biomed. Opt. 2011, 16, 1–10.
  • Esposito, A.; TAlley, C.; Huser, T.; Hollars, C.; Schaldach, C.; Lane, S. M. Analysis of Single Bacterial Spores by Micro-Raman Spectroscopy. Appl. Spectrosc. 2003, 57, 868–871. doi:10.1366/000370203322102979
  • Cadusch, P. J.; Hlaing, M. M.; Wade, S. A.; Mcarthur, S. L.; Stoddart, P. R. Improved Methods for fluorescence Background Subtraction from Raman Spectra. J. Raman Spectrosc. 2013, 44, 1587–1595. doi:10.1002/jrs.4371
  • Macdonald, A. M.; Wyeth, P. On the Use of Photobleaching to Reduce Fluorescence Background in Raman Spectroscopy to Improve the Reliability of Pigment Identification on Painted Textiles. J. Raman Spectrosc. 2006, 37, 830–835. doi:10.1002/jrs.1510
  • Hoang, V. D. Trends in Analytical Chemistry Wavelet-Based Spectral Analysis. Trends Anal. Chem. 2014, 62, 144–153. doi:10.1016/j.trac.2014.07.010
  • Sobron, P.; Sobron, F.; Sanz, A.; Rull, F. Raman Signal Processing Software for Automated Identification of Mineral Phases and Biosignatures on Mars. Appl. Spectrosc. 2008, 62, 364–370. doi:10.1366/000370208784046704
  • Zhang, Z.; Chen, S.; Liang, Y.; Liu, Z.; Zhang, Q.; Ding, L.; Zhou, H. An Intelligent Background-Correction Algorithm for Highly Fluorescent Samples in Raman Spectroscopy. J. Raman Spectrosc. 2009, 41, 659–669. doi:10.1002/jrs.2500
  • Hu, Y.; Jiang, T.; Shen, A.; Li, W.; Wang, X.; Hu, J. A Background Elimination Method Based on Wavelet Transform for Raman Spectra. Chemom. Intell. Lab. Syst. 2007, 85, 94–101. doi:10.1016/j.chemolab.2006.05.004
  • Ma, C.; Shao, X. Continuous Wavelet Transform Applied to Removing the Fluctuating Background in near-Infrared Spectra. J. Chem. Inf. Comput. Sci. 2004, 44, 907–911. doi:10.1021/ci034211+
  • Dörfer, T.; Schumacher, W.; Tarcea, N.; Schmitt, M.; Popp, J. Quantitative Mineral Analysis Using Raman Spectroscopy and Chemometric Techniques. J. Raman Spectrosc. 2009, 41, 684–689. doi:10.1002/jrs.2503
  • Lehtinen, M. Industrial Minerals and Rocks. In Mineral Deposits of Finland, Elsevier Science Publishing Co Inc.: Amsterdam, Netherlands, 2015; pp 685–710.
  • Lehtinen, M. 1999 The Crystalline Limestone Deposits of Ihalainen (Lappeenranta) and Louhi (Kerimäki) in SE Finland and Their Production History. Industrial Minerals: Deposits and New Developments in Fennoscandia. Proceedings of the International Conference. Institute of Geology, Karelian Research Center, Petrozavodsk.
  • Keeling, P. The Wollastonite Deposit at Lappeenranta (Willmanstrand), S.E. Finland. Trans. J. Br. Ceram. Soc 1963, 62, 877–894.
  • Dumond, M. Wollastonite. Natural Resources Canada: Ottawa, Canada, 2005.
  • Maxim, L.; McConnell, E. A Review of the Toxicology and Epidemiology of Wollastonite a Review of the Toxicology and Epidemiology of Wollastonite. Inhal. Toxicol. 2005, 17, 451–466. doi:10.1080/08958370591002030
  • Kalla, P.; Rana, A.; Bahadur, Y.; Misra, A.; Csetenyi, L. Durability Studies on Concrete Containing Wollastonite. J. Clean. Prod. 2015, 87, 726–734. doi:10.1016/j.jclepro.2014.10.038
  • Pekkala, Y. Suomen Karbonaattikivet. In Suomen Teollisuusmineraalit ja Teollisuuskivet, Haapala, I., Ed., Yliopistopaino: Helsinki, 1988; pp 168.
  • Richet, P.; Mysen, B.; Ingrin, J. High-Temperature X-Ray Diffraction and Raman Spectroscopy of Diopside and Pseudowollastonite. Phys. Chem. Miner. 1998, 25, 401–414. doi:10.1007/s002690050130
  • Prencipe, M.; Mantovani, L.; Tribaudino, M.; Bersani, D.; Lottici, P. P. The Raman Spectrum of Diopside : A Comparison between ab Initio Calculated and Experimentally Measured Frequencies. EJM. 2012, 24, 457–464. doi:10.1127/0935-1221/2012/0024-2178
  • Lau, K.-M.; Weng, H. Climate Signal Detection Using Wavelet Transform : How to Make a Time Series Sing. Bull. Amer. Meteor. Soc. 1995, 76, 2391–2402. doi:10.1175/1520-0477(1995)076<2391:CSDUWT>2.0.CO;2
  • Rivard, B.; Feng, J.; Gallie, A.; Sanchez-Azofeifa, A. Continuous Wavelets for the Improved Use of Spectral Libraries and Hyperspectral Data. Remote Sens. Environ. 2008, 112, 2850–2862. doi:10.1016/j.rse.2008.01.016
  • Liu, P.; Deng, X.; Tang, X.; Shen, S. A Wavelet-Based Gaussian Method for Energy Dispersive X-Ray Fluorescence Spectrum. Heliyon 2017, 3, e00311. doi:10.1016/j.heliyon.2017.e00311
  • Shapiro, S.; Wilk, M. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. doi:10.1093/biomet/52.3-4.591
  • Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87–93. doi:10.2478/v10117-011-0021-1
  • Levene, H. Robust Tests for Equality of Variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling., Stanford University Press: Palo Alto, CA, 1960; pp 278–292
  • Brown, M.; Forsythe, A. The Anova and Multiple Comparisons for Data with Heterogeneous Variances. Biometrics 1974, 30, 719–724. doi:10.2307/2529238
  • Williams, M.; Gomez-Grajales, C.; Kurkiewicz, D. Assumptions of Multiple Regression: Correcting Two Misconceptions. Pract. Assessment Res. Eval. 2013, 18, 11
  • Wan, B.; Small, G. W. Wavelet Analysis Used for Spectral Background Removal in the Determination of Glucose from near-Infrared Single-Beam Spectra. Anal. Chim. Acta 2010, 681, 63–70. doi:10.1016/j.aca.2010.09.022
  • Andò, S.; Garzanti, E. Raman Spectroscopy in Heavy-Mineral Studies. In Sediment Provenance Studies in Hydrocarbon Exploration and Production, Geological Society of London: London, United Kingdom, 2014; pp 395–412doi:10.1144/SP386.2
  • Wang, A.; Haskin, L. A.; Cortez, E. Prototype Raman Spectroscopic Sensor for in Situ Mineral Characterization on Planetary Surfaces. Appl. Spectrosc. 1998, 52, 477–487. doi:10.1366/0003702981943842
  • Gaft, M.; Panczer, G.; Reisfeld, R.; Uspensky, E. Laser-Induced Time-Resolved Luminescence as a Tool for Rare-Earth Element Identi ® Cation in Minerals. Phys. Chem. Miner 2001, 28, 347–363. doi:10.1007/s002690100163
  • Sharma, S. K.; Misra, A. K.; Acosta, T. E.; Lucey, P. G. 2012 Planetary Exploration. Proceedings SPIE 8379 Laser Radar Technology and Applications XVII, 83790J.
  • USGS. Wollastonite – A versatile industrial mineral. In USGS Fact Sheet FS-002-01, USGS, 2001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.