1,548
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Graphene-based SERS for sensor and catalysis

, &

References

  • Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. doi:10.1038/121501c0
  • Fleischmann, M.; Hendra, P.; McQuillan, A. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Database] doi:10.1016/0009-2614(74)85388-1
  • Dong, J.; Gao, W.; Han, Q.; Wang, Y.; Qi, J.; Yan, X.; Sun, M. Plasmon-Enhanced Upconversion Photoluminescence: Mechanism and Application. Rev. Phys. 2019, 4, 100026. doi:10.1016/j.revip.2018.100026
  • Yang, R.; Cheng, Y.; Song, Y.; Belotelov, V. I.; Sun, M. Plasmon and Plexciton Driven Interfacial Catalytic Reactions. Chem. Rec. [Online early access]. doi:10.1002/tcr.202000171. Published Online: Feb 4, 2021.
  • Cui, L.; Ren, X.; Yang, X.; Wang, P.; Qu, Y.; Liang, W.; Sun, M. Plasmon‐Driven Catalysis in Aqueous Solutions Probed by SERS Spectroscopy. J. Raman Spectrosc. 2016, 47, 877–883. doi:10.1002/jrs.4939
  • Kalachyova, Y.; Erzina, M.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Flexible SERS Substrate for Portable Raman Analysis of Biosamples. Appl. Sur. Sci. 2018, 458, 95–99. doi:10.1016/j.apsusc.2018.07.073
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. doi:10.1126/science.1102896
  • Ogawa, S.; Fukushima, S.; Shimatani, M. Graphene Plasmonics in Sensor Applications: A Review. Sensors 2020, 20, 3563. doi:10.3390/s20123563
  • Xu, S.; Zhan, J.; Man, B.; Jiang, S.; Yue, W.; Gao, S.; Guo, C.; Liu, H.; Li, Z.; Wang, J.; Zhou, Y. Real-Time Reliable Determination of Binding Kinetics of DNA Hybridization Using a Multi-Channel Graphene Biosensor. Nat. Commun. 2017, 8, 14902. doi:10.1038/ncomms14902
  • Qiu, B.; Xing, M.; Zhang, J. Recent Advances in Three-Dimensional Graphene Based Materials for Catalysis Applications. Chem. Soc. Rev. 2018, 47, 2165–2216. doi:10.1039/c7cs00904f
  • Zhang, X.; Dai, Z.; Si, S.; Zhang, X.; Wu, W.; Deng, H.; Wang, F.; Xiao, X.; Jiang, C. Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale “Hot Spots” Created by a Graphene Spacer for the Detection of Mercury Ions. Small 2017, 13, 1603347. doi:10.1002/smll.201603347
  • Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. doi:10.1038/nature26160
  • Ding, Q.; Li, R.; Chen, M.; Sun, M. Ag Nanoparticles-TiO2 Film Hybrid for Plasmon-Exciton co-Driven Surface Catalytic Reactions. Appl. Mater. Today 2017, 9, 251–258. doi:10.1016/j.apmt.2017.08.008
  • Yang, X.; Yu, H.; Guo, X.; Ding, Q.; Pullerits, T.; Wang, R.; Zhang, G.; Liang, W.; Sun, M. Plasmon-Exciton Coupling of Monolayer MoS2-Ag Nanoparticles Hybrids for Surface Catalytic Reaction. Mater. Today. Energy 2017, 5, 72–78. doi:10.1016/j.mtener.2017.05.005
  • Chen, Y.; Sun, M. Two-Dimensional WS2/MoS2 Heterostructures: Properties and Applications. Nanoscale 2021, 13, 5594–5619. doi:10.1039/D1NR00455G
  • Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA. 2005, 102, 10451–10453. doi:10.1073/pnas.0502848102
  • Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T.; Roth, S. The Structure of Suspended Graphene Sheets. Nature 2007, 446, 60–63. doi:10.1038/nature05545
  • Zhao, W.; Fang, M.; Wu, F.; Wu, H.; Wang, L.; Chen, G. Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling. J. Mater. Chem. 2010, 20, 5817–5819. doi:10.1039/c0jm01354d
  • Wasim Akhtar, M.; Park, C.; Kim, Y.; Kim, J. Facile Large Scale Production of Few-Layer Graphene Sheets by Shear Exfoliation in Volatile Solvent. J. Nanosci. Nanotechno 2015, 15, 9624–9629.
  • Shen, Z.; Li, J.; Yi, M.; Zhang, X.; Ma, S. Preparation of Graphene by Jet Cavitation. Nanotechnology 2011, 22, 365306. doi:10.1088/0957-4484/22/36/365306
  • Huang, J.; Zhao, X.; Huang, H.; Wang, Z.; Li, J.; Li, Z.; Ji, X.; Cheng, Y.; Zhang, J. Scalable Production of Few Layered Graphene by Soft Ball-Microsphere Rolling Transfer. Carbon 2019, 154, 402–409. doi:10.1016/j.carbon.2019.08.026
  • Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466–472.
  • Hummers, W. S., Jr.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. [Database] doi:10.1021/ja01539a017
  • Staudenmaier, L. Verfahren zur darstellung der graphitsäure Berichte der deutschen chemischen. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487. doi:10.1002/cber.18980310237
  • Bai, H.; Li, C.; Shi, G. Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater. 2011, 23, 1089–1115.
  • Fu, L.; Liu, H.; Zou, Y.; Li, B. Technology Research on Oxidative Degree of Graphite Oxide Prepared by Hummers Method. Carbon 2005, 4, 10–14.
  • Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An Iron-Based Green Approach to 1-h Production of Single-Layer Graphene Oxide. Nat. Commun. 2015, 6, 1–9.
  • Ding, H.; Zhang, S.; Chen, J.; Hu, X.; Du, Z.; Qiu, Y.; Zhao, D. Reduction of Graphene Oxide at Room Temperature with Vitamin C for RGO-TiO2 Photoanodes in Dye-Sensitized Solar Cell. Thin Solid Films 2015, 584, 29–36. doi:10.1016/j.tsf.2015.02.038
  • Chen, W.; Yan, L.; Bangal, P. R. Preparation of Graphene by the Rapid and Mild Thermal Reduction of Graphene Oxide Induced by Microwaves. Carbon 2010, 48, 1146–1152. doi:10.1016/j.carbon.2009.11.037
  • Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C. 2010, 114, 6426–6432. doi:10.1021/jp100603h
  • Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S.; Kim, J.; Kim, K.; Ahn, J.; Kim, P.; Choi, J.; Hong, B. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. doi:10.1038/nature07719
  • Dai, B.; Fu, L.; Zou, Z.; Wang, M.; Xu, H.; Wang, S.; Liu, Z. Rational Design of a Binary Metal Alloy for Chemical Vapour Deposition Growth of Uniform Single-Layer Graphene. Nat. Commun. 2011, 2, 1–6.
  • Bai, K.-K.; Zhou, Y.; Zheng, H.; Meng, L.; Peng, H.; Liu, Z.; Nie, J.-C.; He, L. Creating One-Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer. Phys. Rev. Lett 2014, 113, 086102. [Database] doi:10.1103/PhysRevLett.113.086102
  • Naresh, U.; Kumar, N. S.; Basha, D. B.; Benerjee, P.; Chandra, B. N. K.; Kumar, J.; Pothu, R.; Boddula, R. Synthesis and Properties of Graphene‐Based Materials. Monoelem. Properties Appl. 2020, 57–72.
  • Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Database] doi:10.1016/j.physrep.2009.02.003
  • Mu, X.; Hu, L.; Cheng, Y.; Fang, Y.; Sun, M. Chiral Surface Plasmon-Enhanced Chiral Spectroscopy: Principles and Applications. Nanoscale 2021, 13, 581–601. doi:10.1039/D0NR06272C
  • Kim, J.; Jang, Y.; Kim, N. J.; Kim, H.; Yi, G.; Shin, Y.; Kim, M.; Yoon, S. Study of Chemical Enhancement Mechanism in Nonplasmonic Surface Enhanced Raman Spectroscopy (SERS). Front. Chem. 2019, 7, 582. doi:10.3389/fchem.2019.00582
  • An, P.; Anumula, R.; Wu, H.; Han, J.; Luo, Z. Charge Transfer Interactions of Pyrazine with Ag12 Clusters towards Precise SERS Chemical Mechanism. Nanoscale 2018, 10, 16787–16794. doi:10.1039/c8nr05253k
  • Ye, L.; Zeng, F.; Zhang, Y.; Liu, Q. Composite Graphene-Metal Microstructures for Enhanced Multiband Absorption Covering the Entire Terahertz Range. Carbon 2019, 148, 317–325. doi:10.1016/j.carbon.2019.03.086
  • Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.; Zhang, J.; Liu, Z. Can Graphene Be Used as a Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561. doi:10.1021/nl903414x
  • Ling, X.; Zhang, J. First-Layer Effect in Graphene-Enhanced Raman Scattering. Small 2010, 6, 2020–2025. doi:10.1002/smll.201000918
  • Xu, H.; Xie, L.; Zhang, H.; Zhang, J. Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano. 2011, 5, 5338–5344. doi:10.1021/nn103237x
  • Dong, J.; Zhao, X.; Gao, W.; Han, Q.; Qi, J.; Wang, Y.; Guo, S.; Sun, M. Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application. Nanoscale Res. Lett. 2019, 14, 118. doi:10.1186/s11671-019-2946-6
  • Itoh, T.; Ig, M.; Tamaru, H.; Yoshida, K.; Biju, V.; Ishikawa, M. Quantitative Evaluation of Blinking in Surface Enhanced Resonance Raman Scattering and Fluorescence by Electromagnetic mechanism. J. Chem. Phys. 2012, 136, 024703. doi:10.1063/1.3675567
  • Zhao, X.; Dong, J.; Cao, E.; Han, Q.; Gao, W.; Wang, Y.; Qi, J.; Sun, M. Plasmon-Exciton Coupling by Hybrids between Graphene and Gold Nanorods Vertical Array for Sensor. Appl. Mater. Today 2019, 14, 166–174. doi:10.1016/j.apmt.2018.12.013
  • Dong, J.; Zhao, X.; Cao, E.; Han, Q.; Liu, L.; Zhang, W.; Gao, W.; Shi, J.; Zheng, Z.; Han, D.; Sun, M. Flexible and Transparent Au Nanoparticle/Graphene/Au Nanoparticle ‘Sandwich’ Substrate for Surface-Enhanced Raman Scattering. Mater. Today. Nano 2020, 9, 100067. doi:10.1016/j.mtnano.2019.100067
  • Dong, J.; Cao, Y.; Han, Q.; Wang, Y.; Qi, M.; Zhang, W.; Qiao, L.; Qi, J.; Gao, W. Plasmon-Exciton Coupling for Nanophotonic Sensing on Chip. Opt. Express. 2020, 28, 20817–20829. doi:10.1364/OE.387867
  • Dong, J.; Cao, Y.; Han, Q.; Gao, W.; Li, T.; Qi, J. Nanoscale Flexible Ag Grating/AuNPs Self-Assembly Hybrid for Ultra-Sensitive Sensors. Nanotechnology 2021, 32, 155603. doi:10.1088/1361-6528/abd7b2
  • Cui, L.; Wang, J.; Sun, M. Graphene Plasmon for Optoelectronics. Rev. Phys. 2021, 6, 100054. doi:10.1016/j.revip.2021.100054
  • Xie, Y.; Chen, T.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Rapid SERS Detection of Acid Orange II and Brilliant Blue in Food by Using Fe3O4@Au core-shell substrate. Food Chem. 2019, 270, 173–180. doi:10.1016/j.foodchem.2018.07.065
  • Wen, S.; Miao, X.; Fan, G.; Xu, T.; Jiang, L.; Wu, P.; Cai, C.; Zhu, J. Aptamer-Conjugated Au Nanocage/SiO2 Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and near-Infrared Photothermal Therapy. ACS Sens. 2019, 4, 301–308. doi:10.1021/acssensors.8b00682
  • Zadi, T.; Azizi, M.; Nasrallah, N.; Bouzaza, A.; Maachi, R.; Wolbert, D.; Rtimi, S.; Assadi, A. Indoor Air Treatment of Refrigerated Food Chambers with Synergetic Association between Cold Plasma and Photocatalysis: Process Performance and Photocatalytic Poisoning. Chem. Eng. J. 2020, 382, 122951. doi:10.1016/j.cej.2019.122951
  • Tomás‐Gamasa, M.; Mascareñas, J. L. TiO2‐Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem 2020, 21, 294–309.
  • Zrimsek, A. B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M. O.; Chapman, C. T.; Henry, A.-I.; Schatz, G. C.; Van Duyne, R. P. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 7583–7613. doi:10.1021/acs.chemrev.6b00552
  • Dong, B.; Fang, Y.; Chen, X.; Xu, H.; Sun, M. Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to p, p′-Dimercaptoazobenzene on Au, Ag, and Cu Films. Langmuir 2011, 27, 10677–10682. doi:10.1021/la2018538
  • Ding, Q.; Shi, Y.; Chen, M.; Li, H.; Yang, X.; Qu, Y.; Liang, W.; Sun, M. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions. Sci. Rep. 2016, 6, 32724. doi:10.1038/srep32724
  • Lin, W.; Cao, Y.; Wang, P.; Sun, M. Unified Treatment for Plasmon-Exciton Co-Driven Reduction and Oxidation Reactions. Langmuir 2017, 33, 12102–12107. doi:10.1021/acs.langmuir.7b03144
  • Cao, E.; Guo, X.; Zhang, L.; Shi, Y.; Lin, W.; Liu, X.; Fang, Y.; Zhou, L.; Sun, Y.; Song, Y.; et al. Electrooptical Synergy on Plasmon-Exciton‐Codriven Surface Reduction Reactions. Adv. Mater. Interfaces 2017, 4, 1700869. doi:10.1002/admi.201700869
  • Wang, X.; Cao, E.; Zong, H.; Sun, M. Plasmonic Electrons Enhanced Resonance Raman Scattering (EERRS) and Electrons Enhanced Fluorescence (EEF) Spectra. Appl. Mater. Today 2018, 13, 298–302. doi:10.1016/j.apmt.2018.09.015
  • Lin, W.; Cao, E.; Zhang, L.; Xu, X.; Song, Y.; Liang, W.; Sun, M. Electrically Enhanced Hot Hole Driven Oxidation Catalysis at the Interface of a Plasmon-Exciton Hybrid. Nanoscale 2018, 10, 5482–5488. doi:10.1039/c7nr08878g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.