411
Views
5
CrossRef citations to date
0
Altmetric
Reviews

ICPMS based multiplexed bioassay: Principles, approaches and progresses

, &

References

  • Liu, R.; Wu, P.; Yang, L.; Hou, X.; Lv, Y. Inductively Coupled Plasma Mass Spectrometry-Based Immunoassay: A Review. Mass Spec. Rev. 2014, 33, 373–393. doi:10.1002/mas.21391
  • Zhang, S.; Han, G.; Xing, Z.; Zhang, S.; Zhang, X. Multiplex DNA Assay Based on Nanoparticle Probes by Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2014, 86, 3541–3547. doi:10.1021/ac404245z
  • Bendall, S. C.; Simonds, E. F.; Qiu, P.; Amir el, A. D.; Krutzik, P. O.; Finck, R.; Bruggner, R. V.; Melamed, R.; Trejo, A.; Ornatsky, O. I.; et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses across a Human Hematopoietic Continuum. Science 2011, 332, 687–696. doi:10.1126/science.1198704
  • Houk, R. S.; Fassel, V. A.; Flesch, G. D.; Svec, H. J.; Gray, A. L.; Taylor, C. E. Inductively Coupled Argon Plasma as an Ion-Source for Mass-Spectrometric Determination of Trace-Elements. Anal. Chem. 1980, 52, 2283–2289. doi:10.1021/ac50064a012
  • Bin, H.; Li, S.; Xiang, G. Q.; He, M.; Jiang, Z. C. Recent Progress in Electrothermal Vaporization - Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Appl. Spectrosc. Rev. 2007, 42, 203–234. doi:10.1080/05704920601184317
  • Shelton, C. T. The 30-Minute Guide to ICP-MS. PerkinElmer, 1983, 1–8. www.perkinelmer.com%5Cn.
  • Xiao, R.; Lu, L.; Rong, Z.; Wang, C.; Peng, Y.; Wang, F.; Wang, J.; Sun, M.; Dong, J.; Wang, D.; et al. Portable and Multiplexed Lateral Flow Immunoassay Reader Based on SERS for Highly Sensitive Point-of-Care Testing. Biosens. Bioelectron. 2020, 168, 112524. doi:10.1016/j.bios.2020.112524
  • Wei, S. C.; Hsu, M. N.; Chen, C. H. Plasmonic Droplet Screen for Single-Cell Secretion Analysis. Biosens. Bioelectron. 2019, 144, 111639. doi:10.1016/j.bios.2019.111639
  • Ramanan, P.; Bryson, A. L.; Binnicker, M. J.; Pritt, B. S.; Patel, R. Syndromic Panel-Based Testing in Clinical Microbiology. Clin. Microbiol. Rev. 2018, 31, 1–28. doi:10.1128/cmr.00024-17
  • Xu, S.; Ma, W.; Bai, Y.; Liu, H. Ultrasensitive Ambient Mass Spectrometry Immunoassays: Multiplexed Detection of Proteins in Serum and on Cell Surfaces. J. Am. Chem. Soc. 2019, 141, 72–75. doi:10.1021/jacs.8b10853
  • Eissa, S.; Abdulkarim, H.; Dasouki, M.; Al Mousa, H.; Arnout, R.; Al Saud, B.; Rahman, A. A.; Zourob, M. Multiplexed Detection of DOCK8, PGM3 and STAT3 Proteins for the Diagnosis of Hyper-Immunoglobulin E Syndrome Using Gold Nanoparticles-Based Immunosensor Array Platform. Biosens. Bioelectron. 2018, 117, 613–619. doi:10.1016/j.bios.2018.06.058
  • Fuzery, A. K.; Levin, J.; Chan, M. M.; Chan, D. W. Translation of Proteomic Biomarkers into FDA Approved Cancer Diagnostics: Issues and Challenges. Clin. Proteomics 2013, 10, 13.
  • Yu, Y. Molecular Classification and Precision Therapy of Cancer: Immune Checkpoint Inhibitors. Front. Med. 2018, 12, 229–235. doi:10.1007/s11684-017-0581-0
  • Truini, A.; Alama, A.; Dal Bello, M. G.; Coco, S.; Vanni, I.; Rijavec, E.; Genova, C.; Barletta, G.; Biello, F.; Grossi, F. Clinical Applications of Circulating Tumor Cells in Lung Cancer Patients by CellSearch System. Front. Oncol. 2014, 4, 242. doi:10.3389/fonc.2014.00242
  • Stephan, C.; Ralla, B.; Jung, K. Prostate-Specific Antigen and Other Serum and Urine Markers in Prostate Cancer. Biochim. Biophys. Acta 2014, 1846, 99–112. doi:10.1016/j.bbcan.2014.04.001
  • Stephan, C.; Jung, K.; Ralla, B. Current Biomarkers for Diagnosing of Prostate Cancer. Future Oncol. 2015, 11, 2743–2755. doi:10.2217/fon.15.203
  • Lionello, M.; Staffieri, A.; Marioni, G. Potential Prognostic and Therapeutic Role for Angiogenesis Markers in Laryngeal Carcinoma. Acta Otolaryngol. 2012, 132, 574–582. doi:10.3109/00016489.2011.652308
  • Lee, H. H.; Kim, S. H. Review of Non-Invasive Urinary Biomarkers in Bladder Cancer. Transl. Cancer Res. TCR 2020, 9, 6554–6564. doi:10.21037/tcr-20-1990
  • Kormi, S. M. A.; Ardehkhani, S.; Kerachian, M. A. New Insights into Colorectal Cancer Screening and Early Detection Tests. Colorectal Canc. 2017, 6, 63–68. doi:10.2217/crc-2017-0007
  • Eng, C. The Evolving Role of Monoclonal Antibodies in Colorectal Cancer: Early Presumptions and Impact on Clinical Trial Development. Oncologist 2010, 15, 73–84. doi:10.1634/theoncologist.2009-0167
  • Carvalho, V. P.; Grassi, M. L.; Palma, C. S.; Carrara, H. H. A.; Faca, V. M.; Candido Dos Reis, F. J.; Poersch, A. The Contribution and Perspectives of Proteomics to Uncover Ovarian Cancer Tumor Markers. Transl. Res. 2019, 206, 71–90. doi:10.1016/j.trsl.2018.11.001
  • Chistiakov, D. A.; Myasoedova, V. A.; Grechko, A. V.; Melnichenko, A. A.; Orekhov, A. N. New Biomarkers for Diagnosis and Prognosis of Localized Prostate Cancer. Semin. Cancer Biol. 2018, 52, 9–16. doi:10.1016/j.semcancer.2018.01.012
  • Hu, Z.; Sun, G.; Jiang, W.; Xu, F.; Zhang, Y.; Xia, M.; Pan, X.; Xing, Z.; Zhang, S.; Zhang, X. Chemical-Modified Nucleotide-Based Elemental Tags for High-Sensitive Immunoassay. Anal. Chem. 2019, 91, 5980–5986. doi:10.1016/j.semcancer.2018.01.012
  • Zen, K.; Zhang, C. Y. Circulating MicroRNAs: A Novel Class of Biomarkers to Diagnose and Monitor Human Cancers. Med. Res. Rev. 2012, 32, 326–348. doi:10.1002/med.20215
  • Chand, R.; Ramalingam, S.; Neethirajan, S. A 2D Transition-Metal Dichalcogenide MoS2 Based Novel Nanocomposite and Nanocarrier for Multiplex miRNA Detection. Nanoscale 2018, 10, 8217–8225. doi:10.1039/C8NR00697K
  • Zheng, W.; Yao, L.; Teng, J.; Yan, C.; Qin, P.; Liu, G.; Chen, W. Lateral Flow Test for Visual Detection of Multiple MicroRNAs. Sens. Actuators B Chem. 2018, 264, 320–326. doi:10.1016/j.snb.2018.02.159
  • Lodes, M. J.; Caraballo, M.; Suciu, D.; Munro, S.; Kumar, A.; Anderson, B. Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray. PLoS One 2009, 4, e6229. doi:10.1371/journal.pone.0006229
  • Chen, Z. H.; Zhang, G. L.; Li, H. R.; Luo, J. D.; Li, Z. X.; Chen, G. M.; Yang, J. A Panel of Five Circulating MicroRNAs as Potential Biomarkers for Prostate Cancer. Prostate 2012, 72, 1443–1452. doi:10.1002/pros.22495
  • Koberle, V.; Kronenberger, B.; Pleli, T.; Trojan, J.; Imelmann, E.; Peveling-Oberhag, J.; Welker, M. W.; Elhendawy, M.; Zeuzem, S.; Piiper, A.; Waidmann, O. Serum microRNA-1 and MicroRNA-122 Are Prognostic Markers in Patients with Hepatocellular Carcinoma. Eur. J. Cancer 2013, 49, 3442–3449. doi:10.1016/j.ejca.2013.06.002
  • Roth, C.; Kasimir-Bauer, S.; Pantel, K.; Schwarzenbach, H. Screening for Circulating Nucleic Acids and Caspase Activity in the Peripheral Blood as Potential Diagnostic Tools in Lung Cancer. Mol. Oncol. 2011, 5, 281–291. doi:10.1016/j.molonc.2011.02.002
  • Fernandez-Mercado, M.; Manterola, L.; Larrea, E.; Goicoechea, I.; Arestin, M.; Armesto, M.; Otaegui, D.; Lawrie, C. H. The Circulating Transcriptome as a Source of Non-Invasive Cancer Biomarkers: Concepts and Controversies of Non-Coding and Coding RNA in Body Fluids. J. Cell. Mol. Med. 2015, 19, 2307–2323. doi:10.1111/jcmm.12625
  • Resnick, K. E.; Alder, H.; Hagan, J. P.; Richardson, D. L.; Croce, C. M.; Cohn, D. E. The Detection of Differentially Expressed MicroRNAs from the Serum of Ovarian Cancer Patients Using a Novel Real-Time PCR Platform. Gynecol. Oncol. 2009, 112, 55–59. doi:10.1016/j.ygyno.2008.08.036
  • Sulaiman, S. A.; Muhsin, N. I. A.; Arshad, A. R.; Nazarie, W. F. W. M.; Jamal, R.; Ibrahim, N. M.; Murad, N. A. A. Differential Expression of Circulating miRNAs in Parkinson’s Disease Patients: Potential Early Biomarker? Neurol. Asia 2020, 25, 319–329.
  • Yang, Y.; Meng, W. J.; Wang, Z. Q. MicroRNAs in Colon and Rectal Cancer - Novel Biomarkers from Diagnosis to Therapy. Emiddt. 2020, 20, 1211–1226. doi:10.2174/1871530320666200506075219
  • Cui, Z. J.; Xie, X. L.; Qi, W.; Yang, Y. C.; Bai, Y.; Han, J.; Ding, Q.; Jiang, H. Q. Cell-Free miR-17-5p as a Diagnostic Biomarker for Gastric Cancer Inhibits Dendritic Cell Maturation. Ott. 2019, 12, 2661–2675. doi:10.2147/OTT.S197682
  • Heneghan, H. M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M. J. Systemic miRNA-195 Differentiates Breast Cancer from Other Malignancies and Is a Potential Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist 2010, 15, 673–682. doi:10.1634/theoncologist.2010-0103
  • Wang, F.; Zheng, Z.; Guo, J.; Ding, X. Correlation and Quantitation of microRNA Aberrant Expression in Tissues and Sera from Patients with Breast Tumor. Gynecol. Oncol. 2010, 119, 586–593. doi:10.1016/j.ygyno.2010.07.021
  • Park, N. J.; Zhou, H.; Elashoff, D.; Henson, B. S.; Kastratovic, D. A.; Abemayor, E.; Wong, D. T. Salivary microRNA: Discovery, Characterization, and Clinical Utility for Oral Cancer Detection. Clin. Cancer Res. 2009, 15, 5473–5477. doi:10.1158/1078-0432.CCR-09-0736
  • Hanke, M.; Hoefig, K.; Merz, H.; Feller, A. C.; Kausch, I.; Jocham, D.; Warnecke, J. M.; Sczakiel, G. A Robust Methodology to Study Urine MicroRNA as Tumor Marker: MicroRNA-126 and MicroRNA-182 Are Related to Urinary Bladder Cancer. Urol. Oncol. 2010, 28, 655–661. doi:10.1016/j.urolonc.2009.01.027
  • Slater, E. P.; Strauch, K.; Rospleszcz, S.; Ramaswamy, A.; Esposito, I.; Kloppel, G.; Matthai, E.; Heeger, K.; Fendrich, V.; Langer, P.; Bartsch, D. K. MicroRNA-196a and -196b as Potential Biomarkers for the Early Detection of Familial Pancreatic Cancer. Transl. Oncol. 2014, 7, 464–471. doi:10.1016/j.tranon.2014.05.007
  • Lao, T. D.; Le, T. A. H. MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes 2020, 8, 966. doi:10.3390/pr8080966
  • Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in Multiplexed Techniques for the Detection and Quantification of microRNAs. Chem. Soc. Rev. 2021, 50, 4141–4161. doi:10.1039/D0CS00609B
  • Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. doi:10.1038/s41467-020-15562-9
  • Ding, S.; Chen, G.; Wei, Y.; Dong, J.; Du, F.; Cui, X.; Huang, X.; Tang, Z. Sequence-Specific and Multiplex Detection of COVID-19 Virus (SARS-CoV-2) Using Proofreading Enzyme-Mediated Probe Cleavage Coupled with Isothermal Amplification. Biosens. Bioelectron. 2021, 178, 113041. doi:10.1016/j.bios.2021.113041
  • Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-Activated Platforms for Immunoassay: Probes. Chem. Rev. 2017, 117, 7910–7963. doi:10.1021/acs.chemrev.7b00027
  • Hu, J.; Yang, P.; Hou, X. D. Atomic Spectrometry and Atomic Mass Spectrometry in Bioanalytical Chemistry. Appl. Spectrosc. Rev. 2019, 54, 180–203. doi:10.1080/05704928.2018.1553047
  • Hu, Z.; Xu, F.; Sun, G.; Zhang, S.; Zhang, X. Homogeneous Multiplexed Digital Detection of MicroRNA with Ligation-Rolling Circle Amplification. Chem. Commun. 2020, 56, 5409–5412. doi:10.1021/acs.analchem.0c03780
  • Sun, T.; Morgan, H. Single-Cell Microfluidic Impedance Cytometry: A Review. Microfluid. Nanofluid. 2010, 8, 423–443. doi:10.1007/s10404-010-0580-9
  • Luo, X.; Davis, J. J. Electrical Biosensors and the Label Free Detection of Protein Disease Biomarkers. Chem. Soc. Rev. 2013, 42, 5944–5962. doi:10.1039/c3cs60077g
  • Lopez, G. A.; Estevez, M. C.; Soler, M.; Lechuga, L. M. Recent Advances in Nanoplasmonic Biosensors: Applications and Lab-on-a-Chip Integration. Nanophotonics 2017, 6, 123–136. doi:10.1515/nanoph-2016-0101
  • Liu, R.; Zhang, S.; Wei, C.; Xing, Z.; Zhang, S.; Zhang, X. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules. Acc. Chem. Res. 2016, 49, 775–783. doi:10.1021/acs.accounts.5b00509
  • Zhang, C.; Wu, F. B.; Zhang, Y. Y.; Wang, X.; Zhang, X. R. A Novel Combination of Immunoreaction and ICP-MS as a Hyphenated Technique for the Determination of Thyroid-Stimulating Hormone (TSH) in Human Serum. J. Anal. At. Spectrom. 2001, 16, 1393–1396. doi:10.1039/b106387c
  • Hu, J. Y.; Deng, D. Y.; Liu, R.; Lv, Y. Single Nanoparticle Analysis by ICPMS: A Potential Tool for Bioassay. J. Anal. Atom. Spectrom. 2018, 33, 57–67. doi:10.1039/C7JA00235A
  • Squires, T. M.; Messinger, R. J.; Manalis, S. R. Making It Stick: Convection, Reaction and Diffusion in Surface-Based Biosensors. Nat. Biotechnol. 2008, 26, 417–426. doi:10.1038/nbt1388
  • Cohen, L.; Walt, D. R. Highly Sensitive and Multiplexed Protein Measurements. Chem. Rev. 2019, 119, 293–321. doi:10.1021/acs.chemrev.8b00257
  • Mairinger, T.; Wozniak-Knopp, G.; Ruker, F.; Koellensperger, G.; Hann, S. Element Labeling of Antibody Fragments for ICP-MS Based Immunoassays. J. Anal. Atom. Spectrom. 2016, 31, 2330–2337. doi:10.1039/C6JA00252H
  • Quinn, Z. A.; Baranov, V. I.; Tanner, S. D.; Wrana, J. L. Simultaneous Determination of Proteins Using an Element-Tagged Immunoassay Coupled with ICP-MS Detection. J. Anal. Atom. Spectrom. 2002, 17, 892–896. doi:10.1039/b202306g
  • Baranov, V. I.; Quinn, Z.; Bandura, D. R.; Tanner, S. D. A Sensitive and Quantitative Element-Tagged Immunoassay with ICPMS Detection. Anal. Chem. 2002, 74, 1629–1636. doi:10.1021/ac0110350
  • Yates, J. R.; Ruse, C. I.; Nakorchevsky, A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annu. Rev. Biomed. Eng. 2009, 11, 49–79. doi:10.1146/annurev-bioeng-061008-124934
  • Rey, M.; Dhenin, J.; Kong, Y.; Nouchikian, L.; Filella, I.; Duchateau, M.; Dupre, M.; Pellarin, R.; Dumenil, G.; Chamot-Rooke, J. Advanced in Vivo Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Anal. Chem. 2021, 93, 4166–4174. doi:10.1021/acs.analchem.0c04430
  • Liang, Y.; Yan, X.; Li, Z.; Yang, L.; Zhang, B.; Wang, Q. Click Chemistry Mediated Eu-Tagging: Activity-Based Specific Quantification and Simultaneous Activity Evaluation of CYP3A4 Using 153Eu Species-Unspecific Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2014, 86, 3688–3692. doi:10.1021/ac500123z
  • Han, G.; Spitzer, M. H.; Bendall, S. C.; Fantl, W. J.; Nolan, G. P. Metal-Isotope-Tagged Monoclonal Antibodies for High-Dimensional Mass Cytometry. Nat. Protoc. 2018, 13, 2121–2148. doi:10.1038/s41596-018-0016-7
  • Yan, X.; Yang, L.; Wang, Q. Lanthanide-Coded Protease-Specific Peptide-Nanoparticle Probes for a Label-Free Multiplex Protease Assay Using Element Mass Spectrometry: A Proof-of-Concept Study. Angew. Chem. Int. Ed. 2011, 50, 5130–5133. doi:10.1002/anie.201101087
  • Peng, H. Y.; Jiao, Y.; Xiao, X.; Chen, B. B.; He, M.; Liu, Z. R.; Zhang, X.; Hu, B. Magnetic Quantitative Analysis for Multiplex Glycoprotein with Polymer-Based Elemental Tags. J. Anal. Atom. Spectrom. 2014, 29, 1112–1119. doi:10.1039/c4ja00003j
  • Liu, R.; Zhang, Y.; Zhang, S. Y.; Qiu, W.; Gao, Y. Silver Enhancement of Gold Nanoparticles for Biosensing: From Qualitative to Quantitative. Appl. Spectrosc. Rev. 2014, 49, 121–138. doi:10.1080/05704928.2013.807817
  • Huang, W.; Ji, M.; Dong, C. D.; Gu, X.; Wang, L. M.; Gong, X. G.; Wang, L. S. Relativistic Effects and the Unique Low-Symmetry Structures of Gold Nanoclusters. ACS Nano 2008, 2, 897–904. doi:10.1021/nn800074b
  • Tang, Y. R.; Jiao, X.; Liu, R.; Wu, L.; Wu, L.; Hou, X. D.; Lv, Y. Inductively Coupled Plasma Mass Spectrometry for Determination of Total Urinary Protein with CdTe Quantum Dots Label. J. Anal. Atom. Spectrom. 2011, 26, 2493–2499. doi:10.1039/c1ja10213c
  • Lou, X.; Zhang, G.; Herrera, I.; Kinach, R.; Ornatsky, O.; Baranov, V.; Nitz, M.; Winnik, M. A. Polymer-Based Elemental Tags for Sensitive Bioassays. Angew. Chem. Int. Ed. 2007, 46, 6111–6114. doi:10.1002/anie.200700796
  • Liu, Z.; Yang, B.; Chen, B.; He, M.; Hu, B. Upconversion Nanoparticle as Elemental Tag for the Determination of Alpha-Fetoprotein in Human Serum by Inductively Coupled Plasma Mass Spectrometry. Analyst 2017, 142, 197–205. doi:10.1039/C6AN01919F
  • Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries That Facilitate Nanotechnology. Chem. Rev. 2013, 113, 1904–2074. doi:10.1021/cr300143v
  • Zhang, F.; Yong, L.; Hua, X.; You, F.; Wang, B.; Feng, Y. L.; Mao, L. Noble-Metal Nanoparticle Labelling Multiplex miRNAs by ICP-MS Readout with Internal Standard Isotopes of (115)in and (209)Bi. Analyst 2021, 146, 2074–2082. doi:10.1039/D0AN01975E
  • Zhang, C.; Zhang, Z.; Yu, B.; Shi, J.; Zhang, X. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2002, 74, 96–99. doi:10.1021/ac0103468
  • Liu, X.; Zhang, S. Q.; Cheng, Z. H.; Wei, X.; Yang, T.; Yu, Y. L.; Chen, M. L.; Wang, J. H. Highly Sensitive Detection of MicroRNA-21 with ICPMS via Hybridization Accumulation of Upconversion Nanoparticles. Anal. Chem. 2018, 90, 12116–12122. doi:10.1021/acs.analchem.8b03038
  • Huang, Z.; Li, Z.; Jiang, M.; Liu, R.; Lv, Y. Homogeneous Multiplex Immunoassay for One-Step Pancreatic Cancer Biomarker Evaluation. Anal. Chem. 2020, 92, 16105–16112. doi:10.1021/acs.analchem.0c03780
  • Cao, Y. P.; Feng, J. S.; Tang, L. F.; Mo, G. C.; Mo, W. M.; Deng, B. Y. Detection of Three Tumor Biomarkers in Human Lung Cancer Serum Using Single Particle Inductively Coupled Plasma Mass Spectrometry Combined with Magnetic Immunoassay. Spectrochim. Acta B 2020, 166, 1–8. doi:10.1016/j.sab.2020.105797
  • Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem. Rev. 2015, 115, 10530–10574. doi:10.1021/acs.chemrev.5b00321
  • Nareoja, T.; Vehniainen, M.; Lamminmaki, U.; Hanninen, P. E.; Harma, H. Study on Nonspecificity of an Immuoassay Using Eu-Doped Polystyrene Nanoparticle Labels. J. Immunol. Methods 2009, 345, 80–89. doi:10.1016/j.jim.2009.04.008
  • Hu, J.; Li, Z.; Zhang, H.; Liu, R.; Lv, Y. Tag-Free Methodology for Ultrasensitive Biosensing of miRNA Based on Intrinsic Isotope Detection. Anal. Chem. 2020, 92, 8523–8529. doi:10.1021/acs.analchem.0c01295
  • Bandura, D. R.; Baranov, V. I.; Tanner, S. D. Detection of Ultratrace Phosphorus and Sulfur by Quadrupole ICPMS with Dynamic Reaction Cell. Anal. Chem. 2002, 74, 1497–1502. doi:10.1021/ac011031v
  • Wu, M. C.; Jiang, S. J.; Hsi, T. S. Determination of the Ratio of Calcium to Phosphorus in Foodstuffs by Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry. Anal. Bioanal. Chem. 2003, 377, 154–158. doi:10.1007/s00216-003-2067-y
  • Hu, J.; Jiang, M.; Liu, R.; Lv, Y. Label-Free CRISPR/Cas9 Assay for Site-Specific Nucleic Acid Detection. Anal. Chem. 2019, 91, 10870–10878. doi:10.1021/acs.analchem.9b02641
  • Liu, R.; Wang, C. Q.; Hu, J. Y.; Su, Y. Y.; Lv, Y. DNA-Templated Copper Nanoparticles: Versatile Platform for Label-Free Bioassays. TrAC Trends Anal. Chem. 2018, 105, 436–452. doi:10.1016/j.trac.2018.06.003
  • Zhang, S.; Zhang, C.; Xing, Z.; Zhang, X. Simultaneous Determination of Alpha-Fetoprotein and Free Beta-Human Chorionic Gonadotropin by Element-Tagged Immunoassay with Detection by Inductively Coupled Plasma Mass Spectrometry. Clin. Chem. 2004, 50, 1214–1221. doi:10.1373/clinchem.2003.029850
  • Hu, S.; Zhang, S.; Hu, Z.; Xing, Z.; Zhang, X. Detection of Multiple Proteins on One Spot by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Application to Immuno-Microarray with Element-Tagged Antibodies. Anal. Chem. 2007, 79, 923–929. doi:10.1021/ac061269p
  • Seuma, J.; Bunch, J.; Cox, A.; McLeod, C.; Bell, J.; Murray, C. Combination of Immunohistochemistry and Laser Ablation ICP Mass Spectrometry for Imaging of Cancer Biomarkers. Proteomics. 2008, 8, 3775–3784. doi:10.1002/pmic.200800167
  • Terenghi, M.; Elviri, L.; Careri, M.; Mangia, A.; Lobinski, R. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography–Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2009, 81, 9440–9448. doi:10.1021/ac901853g
  • Lathia, U. S.; Ornatsky, O.; Baranov, V.; Nitz, M. Multiplexed Protease Assays Using Element-Tagged Substrates. Anal. Biochem. 2011, 408, 157–159. doi:10.1016/j.ab.2010.09.008
  • Liu, J. M.; Yan, X. P. Ultrasensitive, Selective and Simultaneous Detection of Cytochrome c and Insulin Based on Immunoassay and Aptamer-Based Bioassay in Combination with Au/Ag Nanoparticle Tagging and ICP-MS Detection. J. Anal. Atom. Spectrom. 2011, 26, 1191–1197. doi:10.1039/c0ja00232a
  • Han, G.; Zhang, S.; Xing, Z.; Zhang, X. Absolute and Relative Quantification of Multiplex DNA Assays Based on an Elemental Labeling Strategy. Angew. Chem. Int. Ed. 2013, 52, 1466–1471. doi:10.1002/anie.201206903
  • Luo, Y.; Yan, X.; Huang, Y.; Wen, R.; Li, Z.; Yang, L.; Yang, C. J.; Wang, Q. ICP-MS-Based Multiplex and Ultrasensitive Assay of Viruses with Lanthanide-Coded Biospecific Tagging and Amplification Strategies. Anal. Chem. 2013, 85, 9428–9432. doi:10.1021/ac402446a
  • Elias, A.; Crayton, S. H.; Warden-Rothman, R.; Tsourkas, A. Quantitative Comparison of Tumor Delivery for Multiple Targeted Nanoparticles Simultaneously by Multiplex ICP-MS. Sci. Rep. 2014, 4, 5840. doi:10.1038/srep05840
  • Zhang, S.; Liu, R.; Xing, Z.; Zhang, S.; Zhang, X. Multiplex miRNA Assay Using Lanthanide-Tagged Probes and the Duplex-Specific Nuclease Amplification Strategy. Chem. Commun. 2016, 52, 14310–14313. doi:10.1039/C6CC08334J
  • Sun, G.; Huang, B.; Zhang, Y.; Zhang, Y.; Xing, Z.; Zhang, S.; Zhang, X. A Combinatorial Immunoassay for Multiple Biomarkers via a Stable Isotope Tagging Strategy. Chem. Commun. 2017, 53, 13075–13078. doi:10.1039/C7CC08052B
  • Kang, Q.; He, M.; Chen, B.; Xiao, G.; Hu, B. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma-Mass Spectrometry. Anal. Chem. 2021, 93, 737–744. doi:10.1021/acs.analchem.0c02455
  • Li, Z.; Li, H.; Deng, D.; Liu, R.; Lv, Y. Mass Spectrometric Assay of Alpha-Fetoprotein Isoforms for Accurate Serological Evaluation. Anal. Chem. 2020, 92, 4807–4813. doi:10.1021/acs.analchem.9b03995
  • Shuck, S. C.; Nguyen, C.; Chan, Y.; O’Connor, T.; Ciminera, A. K.; Kahn, M.; Termini, J. Metal-Assisted Protein Quantitation (MAPq): Multiplex Analysis of Protein Expression Using Lanthanide-Modified Antibodies with Detection by Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2020, 92, 7556–7564. doi:10.1021/acs.analchem.0c00058
  • Zhang, Y.; Sun, G.; Hu, Z.; Xing, Z.; Zhang, S.; Zhang, X. A Multiplex Bacterial Assay Using an Element-Labeled Strategy for 16S rRNA Detection. Analyst 2020, 145, 6821–6825. doi:10.1039/D0AN01272F
  • Bettmer, J.; Montes Bayon, M.; Ruiz Encinar, J.; Fernandez Sanchez, M. L.; del Rosario Fernandez de la Campa, M.; Sanz Medel, A. The emerging role of ICP-MS in proteomic analysis. J. Proteomics 2009, 72, 989–1005. doi:10.1016/j.jprot.2009.05.003
  • Zhang, C.; Wu, F. B.; Zhang, X. R. ICP-MS-Based Competitive Immunoassay for the Determination of Total Thyroxin in Human Serum. J. Anal. Atom. Spectrom. 2002, 17, 1304–1307. doi:10.1039/b205623b
  • Haun, J. B.; Yoon, T. J.; Lee, H.; Weissleder, R. Magnetic Nanoparticle Biosensors. Wires Nanomed. Nanobiotechnol. 2010, 2, 291–304. doi:10.1002/wnan.84
  • Zhang, X.; Chen, B. B.; He, M.; Zhang, Y. W.; Xiao, G. Y.; Hu, B. Magnetic Immunoassay Coupled with Inductively Coupled Plasma Mass Spectrometry for Simultaneous Quantification of Alpha-Fetoprotein and Carcinoembryonic Antigen in Human Serum. Spectrochim. Acta B 2015, 106, 20–27. doi:10.1016/j.sab.2015.01.011
  • Liu, R.; Wang, C.; Xu, Y.; Hu, J.; Deng, D.; Lv, Y. Label-Free DNA Assay by Metal Stable Isotope Detection. Anal. Chem. 2017, 89, 13269–13274. doi:10.1021/acs.analchem.7b03327
  • Wang, C.; Liu, R.; Hu, J.; Lv, Y. Ratiometric DNA Walking Machine for Accurate and Amplified Bioassay. Chem. Eur. J. 2019, 25, 12270–12274. doi:10.1002/chem.201903034
  • Liu, R.; Hu, J.; Chen, Y.; Jiang, M.; Lv, Y. Label-Free Nuclease Assay with Long-Term Stability. Anal. Chem. 2019, 91, 8691–8696. doi:10.1021/acs.analchem.9b02467
  • Huergo, L. F.; Selim, K. A.; Conzentino, M. S.; Gerhardt, E. C. M.; Santos, A. R. S.; Wagner, B.; Alford, J. T.; Deobald, N.; Pedrosa, F. O.; de Souza, E. M.; et al. Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies. ACS Sens. 2021, 6, 703–708. doi:10.1021/acssensors.0c02544
  • Turk, B. E.; Huang, L. L.; Piro, E. T.; Cantley, L. C. Determination of Protease Cleavage Site Motifs Using Mixture-Based Oriented Peptide Libraries. Nat. Biotechnol. 2001, 19, 661–667. doi:10.1038/90273
  • Giesen, C.; Mairinger, T.; Khoury, L.; Waentig, L.; Jakubowski, N.; Panne, U. Multiplexed Immunohistochemical Detection of Tumor Markers in Breast Cancer Tissue Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 8177–8183. doi:10.1021/ac2016823
  • Huys, I.; Matthijs, G.; Van Overwalle, G. The Fate and Future of Patents on Human Genes and Genetic Diagnostic Methods. Nat. Rev. Genet. 2012, 13, 441–448. doi:10.1038/nrg3255
  • Abdelrahman, A. I.; Dai, S.; Thickett, S. C.; Ornatsky, O.; Bandura, D.; Baranov, V.; Winnik, M. A. Lanthanide-Containing Polymer Microspheres by Multiple-Stage Dispersion Polymerization for Highly Multiplexed Bioassays. J. Am. Chem. Soc. 2009, 131, 15276–15283. doi:10.1021/ja9052009
  • Bandura, D. R.; Baranov, V. I.; Ornatsky, O. I.; Antonov, A.; Kinach, R.; Lou, X.; Pavlov, S.; Vorobiev, S.; Dick, J. E.; Tanner, S. D. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81, 6813–6822. doi:10.1021/ac901049w
  • Spitzer, M. H.; Nolan, G. P. Mass Cytometry: Single Cells, Many Features. Cell 2016, 165, 780–791. doi:10.1016/j.cell.2016.04.019
  • Bodenmiller, B.; Zunder, E. R.; Finck, R.; Chen, T. J.; Savig, E. S.; Bruggner, R. V.; Simonds, E. F.; Bendall, S. C.; Sachs, K.; Krutzik, P. O.; Nolan, G. P. Multiplexed Mass Cytometry Profiling of Cellular States Perturbed by Small-Molecule Regulators. Nat. Biotechnol. 2012, 30, 858–867. doi:10.1038/nbt.2317
  • Bendall, S. C.; Nolan, G. P.; Roederer, M.; Chattopadhyay, P. K. A Deep Profiler's Guide to Cytometry. Trends Immunol. 2012, 33, 323–332. doi:10.1016/j.it.2012.02.010
  • Huang, Z.; Wang, C.; Liu, R.; Su, Y.; Lv, Y. Self-Validated Homogeneous Immunoassay by Single Nanoparticle in-Depth Scrutinization. Anal. Chem. 2020, 92, 2876–2881. doi:10.1021/acs.analchem.9b05596
  • Fuchs, J.; Aghaei, M.; Schachel, T. D.; Sperling, M.; Bogaerts, A.; Karst, U. Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS. Anal. Chem. 2018, 90, 10271–10278. doi:10.1021/acs.analchem.8b02007
  • Cao, Y.; Mo, G.; Feng, J.; He, X.; Tang, L.; Yu, C.; Deng, B. Based on ZnSe Quantum Dots Labeling and Single Particle Mode ICP-MS Coupled with Sandwich Magnetic Immunoassay for the Detection of Carcinoembryonic Antigen in Human Serum. Anal. Chim. Acta 2018, 1028, 22–31. doi:10.1016/j.aca.2018.04.039
  • Hu, S.; Liu, R.; Zhang, S.; Huang, Z.; Xing, Z.; Zhang, X. A New Strategy for Highly Sensitive Immunoassay Based on Single-Particle Mode Detection by Inductively Coupled Plasma Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2009, 20, 1096–1103. doi:10.1016/j.jasms.2009.02.005
  • Liu, R.; Xing, Z.; Lv, Y.; Zhang, S.; Zhang, X. Sensitive Sandwich Immunoassay Based on Single Particle Mode Inductively Coupled Plasma Mass Spectrometry Detection. Talanta 2010, 83, 48–54. doi:10.1016/j.talanta.2010.08.037
  • Li, B. R.; Tang, H.; Yu, R. Q.; Jiang, J. H. Single-Nanoparticle ICPMS DNA Assay Based on Hybridization-Chain-Reaction-Mediated Spherical Nucleic Acid Assembly. Anal. Chem. 2020, 92, 2379–2382. doi:10.1021/acs.analchem.9b05741
  • Han, G.; Xing, Z.; Dong, Y.; Zhang, S.; Zhang, X. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection. Angew. Chem. Int. Ed. 2011, 50, 3462–3465. doi:10.1002/anie.201006838
  • Tan, J.; Liu, J.; Li, M.; El Hadri, H.; Hackley, V. A.; Zachariah, M. R. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Anal. Chem. 2016, 88, 8548–8555. doi:10.1021/acs.analchem.6b01544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.