423
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Raman spectroscopy in the diagnosis of metabolic syndrome

, & ORCID Icon

References

  • Ferraro, J. R.; Nakamoto, K.; Brown, C. W. Introductory Raman Spectroscopy, 2nd ed.; Elsevier: USA, 2003.
  • Ramírez-Elías, M. G.; González, F. J. Raman Spectroscopy for in Vivo Medical Diagnosis. In Raman Spectroscopy, Morari, d. N. G., Ed.; IntechOpen: United Kingdom, 2018.
  • Gebrekidan, M. T.; Knipfer, C.; Stelzle, F.; Popp, J.; Will, S.; Braeuer, A. A. Shifted‐Excitation Raman Difference Spectroscopy (SERDS) Evaluation Strategy for the Efficient Isolation of Raman Spectra from Extreme Fluorescence Interference. J. Raman Spectrosc. 2016, 47, 198–209. doi:10.1002/jrs.4775
  • Schleusener, J.; Lademann, J.; Darvin, M. E. Depth-Dependent Autofluorescence Photobleaching Using 325, 473, 633, and 785 nm of Porcine Ear Skin Ex Vivo. J. Biomed. Opt. 2017, 22, 91503. doi:10.1117/1.JBO.22.9.091503
  • Knorr, F.; Smith, Z. J.; Wachsmann-Hogiu, S. Development of a Time-Gated System for Raman Spectroscopy of Biological Samples. Opt. Express. 2010, 18, 20049–20058. doi:10.1364/OE.18.020049
  • Schulze, G.; Jirasek, A.; Yu, M. M. L.; Lim, A.; Turner, R. F. B.; Blades, M. W. Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation. Appl. Spectrosc. 2005, 59, 545–574. doi:10.1366/0003702053945985
  • O'Grady, A.; Dennis, A. C.; Denvir, D.; McGarvey, J. J.; Bell, S. E. J. Quantitative Raman Spectroscopy of Highly Fluorescent Samples Using Pseudosecond Derivatives and Multivariate Analysis. Anal. Chem. 2001, 73, 2058–2065. doi:10.1021/ac0010072
  • Liland, K. H.; Kohler, A.; Afseth, N. K. Model‐Based Preprocessing in Raman Spectroscopy of Biological Samples. J. Raman Spectrosc. 2016, 47, 643–650. doi:10.1002/jrs.4886
  • Baek, S.-J.; Park, A.; Shen, A.; Hu, J. A Background Elimination Method Based on Linear Programming for Raman Spectra. J. Raman Spectrosc. 2011, 42, 1987–1993. doi:10.1002/jrs.2957
  • Kourkoumelis, N.; Polymeros, A.; Tzaphlidou, M. Background Estimation of Biomedical Raman Spectra Using a Geometric Approach. Spectrosc. Int. J. 2012, 27, 441–447. doi:10.1155/2012/530791
  • Cadusch, P. J.; Hlaing, M. M.; Wade, S. A.; McArthur, S. L.; Stoddart, P. R. Improved Methods for Fluorescence Background Subtraction from Raman Spectra. J. Raman Spectrosc. 2013, 44, 1587–1595. doi:10.1002/jrs.4371
  • Liu, X.; Zhang, Z.; Sousa, P. F. M.; Chen, C.; Ouyang, M.; Wei, Y.; Liang, Y.; Chen, Y.; Zhang, C. Selective Iteratively Reweighted Quantile Regression for Baseline Correction. Anal. Bioanal. Chem. 2014, 406, 1985–1998. doi:10.1007/s00216-013-7610-x
  • Liu, X.; Zhang, Z.; Liang, Y.; Sousa, P. F. M.; Yun, Y.; Yu, L. Baseline Correction of High Resolution Spectral Profile Data Based on Exponential Smoothing. Chemom. Intell. Lab. Syst. 2014, 139, 97–108. doi:10.1016/j.chemolab.2014.09.018
  • He, S.; Zhang, W.; Liu, L.; Huang, Y.; He, J.; Xie, W.; Wu, P.; Du, C. Baseline Correction for Raman Spectra Using an Improved Asymmetric Least Squares Method. Anal.Methods 2014, 6, 4402–4407. doi:10.1039/C4AY00068D
  • Zhang, Z.-M.; Chen, S.; Liang, Y.-Z.; Liu, Z.-X.; Zhang, Q.-M.; Ding, L.-X.; Ye, F.; Zhou, H. An Intelligent Background- Correction Algorithm for Highly Fluorescent Samples in Raman Spectroscopy. J. Raman Spectrosc. 2010, 41, 659–669. doi:10.1002/jrs.2500
  • León-Bejarano, F.; Ramírez-Elías, M.; Mendez, M. O.; Dorantes-Méndez, G.; Rodríguez-Aranda, M. d C.; Alba, A. Denoising of Raman Spectroscopy for Biological Samples Based on Empirical Mode Decomposition. Int. J. Mod. Phys. C. 2017, 28, 1750116–1750118. doi:10.1142/S0129183117501169
  • Zhao, J.; Lui, H.; McLean, D. I.; Zeng, H. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. doi:10.1366/000370207782597003
  • Lieber, C. A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. doi:10.1366/000370203322554518
  • Gallo, C.; Capozzi, V.; Lasalvia, M.; Perna, G. An Algorithm for Estimation of Background Signal of Raman Spectra from Biological Cell Samples Using Polynomial Functions of Different Degrees. Vib. Spectrosc. 2016, 83, 132–137. doi:10.1016/j.vibspec.2016.01.013
  • León-Bejarano, F.; Méndez, M. O.; Ramírez-Elías, M. G.; Alba, A. Improved Vancouver Raman Algorithm Based on Empirical Mode Decomposition for Denoising Biological Samples. Appl. Spectrosc. 2019, 73, 1436–1450. doi:10.1177/0003702819860121
  • Zhao, J.; Lui, H.; McLean, D.; Zeng, H. Real-Time Raman Spectroscopy for Non-Invasive in Vivo Skin Analysis and Diagnosis. In New Developments in Biomedical Engineering; Campolo, D., Ed.; IntechOpen: United Kingdom, 2010.
  • World Health Organization. https://www.who.int/detail/obesity-and-overweight (accessed february 20, 2021).
  • Engin, A. B., & Engin, A. (Eds.). Obesity and Lipotoxicity. Springer: Switzerland, 2017. DOI doi:10.1007/978-3-319-48382-5
  • Saklayen, M. G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12–18. doi:10.1007/s11906-018-0812-z
  • World Health Organization. https://www.who.int/health-topics/diabetes. (accessed february 20, 2021).
  • World Health Organization. https://www.who.int/diabetes/publications. (accessed february 20, 2021).
  • Tang, L.; Chang, S. J.; Chen, C. J.; Liu, J. T. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors 2020, 20, 6925. doi:10.3390/s20236925
  • Villa‐Manríquez, J. F.; Castro‐Ramos, J.; Gutiérrez‐Delgado, F.; Lopéz‐Pacheco, M. A.; A. E. Raman, V. ‐L. Spectroscopy and PCA‐SVM as a Non-Invasive Diagnostic Tool to Identify and Classify Qualitatively Glycated Hemoglobin Levels in Vivo. J. Biophotonics 2017, 10, 1074–1079.
  • Birech, Z.; Mwangi, P. W.; Bukachi, F.; Mandela, K. M. Application of Raman Spectroscopy in Type 2 Diabetes Screening in Blood Using Leucine and Isoleucine Amino-Acids as Biomarkers and in Comparative anti-Diabetic Drugs Efficacy Studies. PLoS One 2017, 12, e0185130. doi:10.1371/journal.pone.0185130
  • González-Solís, J. L.; Villafan-Bernal, J. R.; Martinez-Zerega, B. E.; Sánchez-Enríquez, S. Type 2 Diabetes Detection Based on Serum Sample Raman Spectroscopy. Lasers Med. Sci. 2018, 33, 1791–1797. doi:10.1007/s10103-018-2543-4
  • Singh, S. P.; Mukherjee, S.; Galindo, L. H.; So, P. T. C.; Dasari, R. R.; Khan, U. Z.; Kannan, R.; Upendran, A.; Kang, J. W. Evaluation of Accuracy Dependence of Raman Spectroscopic Models on the Ratio of Calibration and Validation Points for Non-Invasive Glucose Sensing. Anal. Bioanal. Chem. 2018, 410, 6469–6475. doi:10.1007/s00216-018-1244-y
  • Lundsgaard-Nielsen, S. M.; Pors, A.; Banke, S. O.; Henriksen, J. E.; Hepp, D. K.; Weber, A. Critical-Depth Raman Spectroscopy Enables Home-Use Non-Invasive Glucose Monitoring. PloS One. 2018, 13, e0197134. doi:10.1371/journal.pone.0197134
  • Kang, J. W.; Park, Y. S.; Chang, H.; Lee, W.; Singh, S. P.; Choi, W.; Galindo, L. H.; Dasari, R. R.; Nam, S. H.; Park, J.; So, P. T. C. Direct Observation of Glucose Fingerprint Using in Vivo Raman Spectroscopy. Sci. Adv. 2020, 6, eaay5206. doi:10.1126/sciadv.aay5206
  • Pleus, S.; Schauer, S.; Jendrike, N.; Zschornack, E.; Link, M.; Hepp, K. D.; Haug, C.; Freckmann, G. Proof of Concept for a New Raman-Based Prototype for Noninvasive Glucose Monitoring. J. Diabetes Sci. Technol. 2021, 15, 11–18. doi:10.1177/1932296820947112
  • González-Viveros, N.; Castro-Ramos, J.; Gómez-Gil, P.; Cerecedo-Núñez, H. H. Characterization of Glycated Hemoglobin Based on Raman Spectroscopy and Artificial Neural Networks. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 247, 119077. doi:10.1016/j.saa.2020.119077
  • Guevara, E.; Torres-Galván, J. C.; Ramírez-Elías, M. G.; Luevano-Contreras, C.; González, F. J. Use of Raman Spectroscopy to Screen Diabetes Mellitus with Machine Learning Tools. Biomed. Opt. Express 2018, 9, 4998–5010. doi:10.1364/BOE.9.004998
  • Paolillo, F. R.; Mattos, V. S.; de Oliveira, A. O.; Guimarães, F. E.; Bagnato, V. S.; de Castro Neto, J. C. Noninvasive Assessments of Skin Glycated Proteins by Fluorescence and Raman Techniques in Diabetics and Nondiabetics. J. Biophotonics. 2019, 12, e201800162. doi:10.1002/jbio.201800162
  • de Souza Vieira, E. E.; Bispo, J. A. M.; Silveira, L.; Fernandes, A. B. Discrimination Model Applied to Urinalysis of Patients with Diabetes and Hypertension Aiming at Diagnosis of Chronic Kidney Disease by Raman Spectroscopy. Lasers Med. Sci. 2017, 32, 1605–1613. doi:10.1007/s10103-017-2288-5
  • Flores-Guerrero, J. L.; Muñoz-Morales, A.; Narea-Jimenez, F.; Perez-Fuentes, R.; Torres-Rasgado, E.; Ruiz-Vivanco, G.; Gonzalez-Viveros, N.; Castro-Ramos, J. Novel Assessment of Urinary Albumin Excretion in Type 2 Diabetes Patients by Raman Spectroscopy. Diagnostics 2020, 10, 141. doi:10.3390/diagnostics10030141
  • Roman, M.; Kamińska, A.; Drożdż, A.; Platt, M.; Kuźniewski, M.; Małecki, M. T.; Kwiatek, W. M.; Paluszkiewicz, C.; Stępień, E. Ł. Raman Spectral Signatures of Urinary Extracellular Vesicles from Diabetic Patients and Hyperglycemic Endothelial Cells as Potential Biomarkers in Diabetes. Nanomedicine 2019, 17, 137–149. doi:10.1016/j.nano.2019.01.011
  • Pacia, M. Z.; Mateuszuk, L.; Buczek, E.; Chlopicki, S.; Blazejczyk, A.; Wietrzyk, J.; Baranska, M.; Kaczor, A. Rapid Biochemical Profiling of Endothelial Dysfunction in Diabetes, Hypertension and Cancer Metastasis by Hierarchical Cluster Analysis of Raman Spectra. J. Raman Spectrosc. 2016, 47, 1310–1317. doi:10.1002/jrs.4965
  • García‐Rubio, D. L.; Mora, M. B.; Badillo‐Ramírez, I.; Cerecedo, D.; Saniger, J. M.; Benítez‐Benítez, J. L.; Villagrán‐Muniz, M. Analysis of Platelets in Hypertensive and Normotensive Individuals Using Raman and Fourier Transform Infrared‐Attenuated Total Reflectance Spectroscopies. J. Raman Spectrosc. 2019, 50, 509–521. doi:10.1002/jrs.5540
  • Zheng, X.; Lv, G.; Zhang, Y.; Lv, X.; Gao, Z.; Tang, J.; Mo, J. Rapid and Non-Invasive Screening of High Renin Hypertension Using Raman Spectroscopy and Different Classification Algorithms. Spectrochim. Acta, Part A. 2019, 215, 244–248. doi:10.1016/j.saa.2019.02.063
  • Kruchinina, M. V.; Gromov, A. A.; Kruchinin, V. N.; Volodin, V. A.; Generalov, V. M. Raman Spectroscopy of Hemoglobin and Dielectrophoresis of Erythrocytes in the Diagnosis of the Resistant Arterial Hypertension. J-BPE. 2020, 6, 020302. doi:10.18287/JBPE20.06.020302
  • Pissuwan, D.; Hattori, Y. Detection of Adhesion Molecules on Inflamed Macrophages at Early-Stage Using SERS Probe Gold Nanorods. Nanomicro. Lett. 2017, 9, 8–9. doi:10.1007/s40820-016-0111-7
  • Silveira, L.; Borges, R. D. C. F.; Navarro, R. S.; Giana, H. E.; Zângaro, R. A.; Pacheco, M. T. T.; Fernandes, A. B. Quantifying Glucose and Lipid Components in Human Serum by Raman Spectroscopy and Multivariate Statistics. Lasers Med. Sci. 2017, 32, 787–795. doi:10.1007/s10103-017-2173-2
  • Czamara, K.; Majka, Z.; Sternak, M.; Koziol, M.; Kostogrys, R. B.; Chlopicki, S.; Kaczor, A. Distinct Chemical Changes in Abdominal but Not in Thoracic Aorta upon Atherosclerosis Studied Using Fiber Optic Raman Spectroscopy. IJMS. 2020, 21, 4838. doi:10.3390/ijms21144838
  • Ricciardi, A.; Piuri, G.; Porta, M. D.; Mazzucchelli, S.; Bonizzi, A.; Truffi, M.; Sevieri, M.; Allevi, R.; Corsi, F.; Cazzola, R.; Morasso, C. Raman Spectroscopy Characterization of the Major Classes of Plasma Lipoproteins. Vib. Spectrosc. 2020, 109, 103073. doi:10.1016/j.vibspec.2020.103073
  • Haka, A. S.; Sue, E.; Zhang, C.; Bhardwaj, P.; Sterling, J.; Carpenter, C.; Leonard, M.; Manzoor, M.; Walker, J.; Aleman, J. O.; et al. Noninvasive Detection of Inflammatory Changes in White Adipose Tissue by Label-Free Raman Spectroscopy. Anal. Chem. 2016, 88, 2140–2148. doi:10.1021/acs.analchem.5b03696
  • Majka, Z.; Czamara, K.; Wegrzyn, P.; Litwinowicz, R.; Janus, J.; Chlopicki, S.; Kaczor, A. A New Approach to Study Human Perivascular Adipose Tissue of the Internal Mammary Artery by Fiber-Optic Raman Spectroscopy Supported by Spectral Modelling. Analyst 2021, 146, 270–276. doi:10.1039/d0an01868f
  • Pacia, M. Z.; Czamara, K.; Zebala, M.; Kus, E.; Chlopicki, S.; Kaczor, A. Rapid Diagnostics of Liver Steatosis by Raman Spectroscopy via Fiber Optic Probe: A Pilot Study. Analyst 2018, 143, 4723–4731. doi:10.1039/c8an00289d
  • Baker, M. J.; Byrne, H. J.; Chalmers, J.; Gardner, P.; Goodacre, R.; Henderson, A.; Kazarian, S. G.; Martin, F. L.; Moger, J.; Stone, N.; Sulé-Suso, J. Clinical Applications of Infrared and Raman Spectroscopy: state of Play and Future Challenges. Analyst 2018, 143, 1735–1757. doi:10.1039/C7AN01871A
  • Wilson, B. C.; Jermyn, M.; Leblond, F. Challenges and Opportunities in Clinical Translation of Biomedical Optical Spectroscopy and Imaging. J. Biomed. Opt. 2018, 23, 1–13. doi:10.1117/1.JBO.23.3.030901

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.