2,748
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review

, &

References

  • Hartland, S. Surface and Interfacial Tension: Measurement, Theory, and Applications; 2004.
  • Abdeldaim, D. T.; Mansour, F. R. Micelle-Enhanced Flow Injection Analysis. Rev. Anal. Chem. 2018, 37, 20170009. doi:10.1515/revac-2017-0009.
  • Bezerra, M. A.; Ferreira da Mata Cerqueira, U. M.; Ferreira, S. L. C.; Novaes, C. G.; Novais, F. C.; Valasques, G. S.; et al. Recent Developments in the Application of Cloud Point Extraction as Procedure for Speciation of Trace Elements. Appl. Spectrosc. Rev. 2021, doi:10.1080/05704928.2021.1916516.
  • Tawfik, S. M.; Elmasry, M. R.; Lee, Y. I. Recent Advances on Amphiphilic Polymer-Based Fluorescence Spectroscopic Techniques for Sensing and Imaging. Appl. Spectrosc. Rev. 2019, 54, 204–236. doi:10.1080/05704928.2018.1548356
  • Fasciano, J. M.; Mansour, F. R.; Danielson, N. D. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column. J. Chromatogr. Sci. 2016, 54, 1–13. doi:10.1093/chromsci/bmw028.
  • Mansour, F. R.; Arrua, R. D.; Desire, C. T.; Hilder, E. F. Non-Ionic Surface Active Agents as Additives toward a Universal Porogen System for Porous Polymer Monoliths. Anal. Chem. 2021, 93, 2802–2810. doi:10.1021/acs.analchem.0c03889.
  • Mansour, F. R.; Waheed, S.; Paull, B.; Maya, F. Porogens and Porogen Selection in the Preparation of Porous Polymer Monoliths. J. Sep. Sci. 2020, 43, 56–69. doi:10.1002/jssc.201900876.
  • Deodhar, S.; Rohilla, P.; Manivannan, M.; Thampi, S. P.; Basavaraj, M. G. A Robust Method to Determine Critical Micelle Concentration via Spreading Oil Drops on Surfactant Solutions. Langmuir 2020, 36, 8100–8110. doi:10.1021/acs.langmuir.0c00908.
  • Niraula, T. P.; Bhattarai, A.; Chatterjee, S. K. Critical Micelle Concentration of Sodium Dodecyl Sulphate in Pure Water and in Methanol-Water Mixed Solvent Media in Presence and Absence of KCl by Surface Tension and Viscosity Methods. s 2014, 11, 103–112. doi:10.3126/bibechana.v11i0.10388
  • Al-Hatem, A. A. Effect of Temperature and Alcohol on the Determination of Critical Micelle Concentration of Non- Ionic Surfactants in Magnetic Water. Baghdad Sci. J. 2020, 17, 255–264.
  • Yan, S.; Wei, D.; Tang, M.; Shi, C.; Zhang, M.; Yang, Z.; Du, C.; Cui, H.-L. Determination of Critical Micelle Concentrations of Surfactants by Terahertz Time-Domain Spectroscopy. IEEE Trans. THz. Sci. Technol. 2016, 6, 532–540. doi:10.1109/TTHZ.2016.2575450
  • Cieśla, J.; Koczańska, M.; Narkiewicz-Michałek, J.; Szymula, M.; Bieganowski, A. Alpha-Tocopherol in CTAB/NaCl Systems — the Light Scattering Studies. J. Mol. Liq. 2017, 233, 15–22. doi:10.1016/j.molliq.2017.02.116
  • Ling, J.; Huang, C. Z.; Li, Y. F.; Long, Y. F.; Liao, Q. G. Recent Developments of the Resonance Light Scattering Technique: Technical Evolution, New Probes and Applications. Appl. Spectrosc. Rev. 2007, 42, 177–201. doi:10.1080/05704920601184291
  • Scholz, N.; Behnke, T.; Resch-Genger, U. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison. J. Fluoresc. 2018, 28, 465–476. doi:10.1007/s10895-018-2209-4
  • Cai, L.; Gochin, M.; Liu, K. A Facile Surfactant Critical Micelle Concentration Determination. Chem. Commun. (Camb) 2011, 47, 5527–5529. doi:10.1039/c1cc10605h.
  • Patist, A. Determining Critical Micelle Concentration. In Handbook of Applied Surface and Colloidal Chemistry; K, Holmberg, Ed.; Chichester, England: John Wiley & Sons Ltd, 2002.
  • Tehrani-Bagha, A. R.; Singh, R. G.; Holmberg, K. Two Organic Dyes by Anionic, Cationic and Nonionic Surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 417, 133–139. doi:10.1016/j.colsurfa.2012.10.006
  • Tahirit, N.; Mindy, L. Determination of Critical Micelle Concentrations Using UV- Visible Spectroscopy. J. High Sch. Res. 2011, 2, 1–6.
  • Tehrani-Bagha, A. R.; Holmberg, K. Solubilization of Hydrophobic Dyes in Surfactant Solutions. Materials (Basel) 2013, 6, 580–608. doi:10.3390/ma6020580.
  • Edbey, K.; Bader, N.; Eltaboni, F.; Elabidi, A.; Albaba, S.; Ahmed, M. Conductometric and Spectrophotometric Study of the Interaction of Methyl Violet with Sodium Dodecyl Sulfate. IRJPAC 2015, 9, 1–7. doi:10.9734/IRJPAC/2015/19603
  • Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74, 1227. doi:10.1021/ed074p1227
  • Oakes, J.; Gratton, P. Solubilisation of Dyes by Surfactant Micelles. Part 1; Molecular Interactions of Azo Dyes with Nonionic and Anionic Surfactants. Coloration Technol. 2003, 119, 91–99. doi:10.1111/j.1478-4408.2003.tb00156.x
  • Mabrouk, M.; Hamed, N. A.; Mansour, F. R. Simple Spectrophotometric Method to Measure Surfactant CMC by Employing the Optical Properties of Curcumin’s Tautomers. J. Chem. Educ. 2021, 98, 10.1021/acs.jchemed.1c00242.
  • Petcu, A. R.; Rogozea, E. A.; Lazar, C. A.; Olteanu, N. L.; Meghea, A.; Mihaly, M. Specific Interactions within Micelle Microenvironment in Different Charged Dye/Surfactant Systems. Arab. J. Chem. 2016, 9, 9–17. doi:10.1016/j.arabjc.2015.09.009
  • García-Río, L.; Hervella, P.; Mejuto, J. C.; Parajó, M. Spectroscopic and Kinetic Investigation of the Interaction between Crystal Violet and Sodium Dodecylsulfate. Chem. Phys. 2007, 335, 164–176. doi:10.1016/j.chemphys.2007.04.006
  • Fendler, J. Catalysis in Micellar and Macromolecular Systems. London,UK: Academic Press, Inc., 2012, doi:10.1016/b978-0-12-252850-7.x5001-1.
  • Bielska, M.; Sobczyńska, A.; Prochaska, K. Dye-Surfactant Interaction in Aqueous Solutions. Dye. Pigment 2009, 80, 201–205. doi:10.1016/j.dyepig.2008.05.009
  • Irfan, M.; Usman, M.; Mansha, A.; Rasool, N.; Ibrahim, M.; Rana, U. A.; Siddiq, M.; Zia-Ul-Haq, M.; Jaafar, H. Z. E.; Khan, S. U.-D. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution. ScientificWorld J. 2014, 2014, 540975–540547. doi:10.1155/2014/540975.
  • Hosseinzadeh, R.; Maleki, R.; Matin, A. A.; Nikkhahi, Y. Spectrophotometric Study of Anionic Azo-Dye Light Yellow (X6G) Interaction with Surfactants and Its Micellar Solubilization in Cationic Surfactant Micelles. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2008, 69, 1183–1187. doi:10.1016/j.saa.2007.06.022.
  • Akbaş, H.; Taner, T. Spectroscopic Studies of Interactions between C.I. Reactive Orange 16 with Alkyltrimethylammonium Bromide Surfactants. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2009, 73, 150–153. doi:10.1016/j.saa.2009.02.018.
  • Haq, N. U.; Usman, M.; Mansha, A.; Rashid, M. A.; Munir, M.; Rana, U. A. Solubilization of Reactive Blue 19 by the Micelles of Cationic Surfactant Cetyltrimethyl Ammonium Bromide (CTAB). J. Mol. Liq. 2014, 196, 264–269. doi:10.1016/j.molliq.2014.03.038
  • Sabaté, R.; Gallardo, M.; Estelrich, J. Location of Pinacyanol in Micellar Solutions of N-Alkyl Trimethylammonium Bromide Surfactants. J. Colloid Interface Sci. 2001, 233, 205–210. doi:10.1006/jcis.2000.7247.
  • Khamis, M.; Bulos, B.; Jumean, F.; Manassra, A.; Dakiky, M. Azo Dyes Interactions with Surfactants. Determination of the Critical Micelle Concentration from Acid-Base Equilibrium. Dye. Pigment 2005, 66, 179–183. doi:10.1016/j.dyepig.2004.09.012
  • Garra, P.; Fouassier, J. P.; Lakhdar, S.; Yagci, Y.; Lalevée, J. Visible Light Photoinitiating Systems by Charge Transfer Complexes: Photochemistry without Dyes. Prog. Polym. Sci. 2020, 107, 101277. doi:10.1016/j.progpolymsci.2020.101277
  • Hait, S. K.; Moulik, S. P. Determination of Critical Micelle Concentration (CMC) of Nonionic Surfactants by Donor-Acceptor Interaction with Iodine and Correlation of CMC with Hydrophile-Lipophile Balance and Other Parameters of the Surfactants. J. Surfact. Deterg. 2001, 4, 303–309. doi:10.1007/s11743-001-0184-2
  • Rohatgi-Mukherjee, K.; Bhattacharya, S.; Bhowmik, B. Charge Transfer Interaction of Micelle & Reversed Micelle of Triton X-100 with Iodine. Indian J. Chem. Section A 1983, 22, 911–913.
  • Fu, J.; Cai, Z.; Gong, Y.; O’Reilly, S. E.; Hao, X.; Zhao, D. A New Technique for Determining Critical Micelle Concentrations of Surfactants and Oil Dispersants via UV Absorbance of Pyrene. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 484, 1–8. doi:10.1016/j.colsurfa.2015.07.039
  • Canton-Vitoria, R.; Sayed-Ahmad-Baraza, Y.; Pelaez-Fernandez, M.; Arenal, R.; Bittencourt, C.; Ewels, C. P. Functionalization of MoS2 with 1,2-Dithiolanes: Toward Donor-Acceptor Nanohybrids for Energy Conversion. npj 2D Mater. Appl. 2017, 1, 13–21. doi:10.1038/s41699-017-0012-8.
  • Basu Ray, G.; Chakraborty, I.; Moulik, S. P. Pyrene Absorption Can Be a Convenient Method for Probing Critical Micellar Concentration (Cmc) and Indexing Micellar Polarity. J. Colloid Interface Sci. 2006, 294, 248–254. doi:10.1016/j.jcis.2005.07.006.
  • Masrat, R.; Maswal, M.; Dar, A. A. Competitive Solubilization of Naphthalene and Pyrene in Various Micellar Systems. J. Hazard. Mater. 2013, 244-245, 662–670. doi:10.1016/j.jhazmat.2012.10.057.
  • Tanhaei, B.; Saghatoleslami, N.; Chenar, M. P.; Ayati, A.; Hesampour, M.; Mänttäri, M. Experimental Study of CMC Evaluation in Single and Mixed Surfactant Systems, Using the UV-Vis Spectroscopic Method. J. Surfact. Deterg. 2013, 16, 357–362. doi:10.1007/s11743-012-1403-7
  • Liu, L.; Sun, C.; Yang, J.; Shi, Y.; Long, Y.; Zheng, H. Fluorescein as a Visible-Light-Induced Oxidase Mimic for Signal-Amplified Colorimetric Assay of Carboxylesterase by an Enzymatic Cascade Reaction. Chemistry 2018, 24, 6148–6154. doi:10.1002/chem.201705980.
  • Wei, Z.; Yi, D.; Hu, X.; Sun, C.; Long, Y.; Zheng, H. Determining the Critical Micelle Concentrations of Cationic Surfactants Based on the Visible-Light-Induced Oxidase-like Activity of Fluorescein. Colloids Surfaces A Physicochem. Eng. Asp. 2020,  595, 124698. doi:10.1016/j.colsurfa.2020.124698.
  • Ravindran, A.; Mani, V.; Chandrasekaran, N.; Mukherjee, A. Selective Colorimetric Sensing of Cysteine in Aqueous Solutions Using Silver Nanoparticles in the Presence of Cr³+. Talanta 2011, 85, 533–540. doi:10.1016/j.talanta.2011.04.031.
  • Yu, H. W.; Halonen, M. J.; Pepper, I. L. Immunological Methods. In Environmental Microbiology. 3rd ed. San Diego, CA, USA: Elsevier, 2015; pp 245–269. doi:10.1016/B978-0-12-394626-3.00012-0.
  • Zhu, X.; Gao, T. Spectrometry. In Nano-Inspired Biosensors for Protein Assay with Clinical Applications. Amsterdam, Netherlands: Elsevier, 2018; pp 237–264. doi:10.1016/B978-0-12-815053-5.00010-6
  • Walt, D. R.; Biran, I.; Mandal, T. K. Fiber-Optic Chemical Sensors. In Encyclopedia of Physical Science and Technology. Academic Press, Inc.: London, UK, 2003; pp 803–829. doi:10.1016/B0-12-227410-5/00954-6.
  • Ravindran, A.; Singh, A.; Raichur, A. M.; Chandrasekaran, N.; Mukherjee, A. Studies on Interaction of Colloidal Ag Nanoparticles with Bovine Serum Albumin (BSA). Colloids Surf. B Biointerfaces 2010, 76, 32–37. doi:10.1016/j.colsurfb.2009.10.005.
  • Karimi, M. A.; Mozaheb, M. A.; Hatefi-Mehrjardi, A.; Tavallali, H.; Attaran, A. M.; Shamsi, R. A New Simple Method for Determining the Critical Micelle Concentration of Surfactants Using Surface Plasmon Resonance of Silver Nanoparticles. J. Anal. Sci. Technol. 2015, 6, 4–11. doi:10.1186/s40543-015-0077-y.
  • Salem, J. K.; El-Nahhal, I. M.; Najri, B. A.; Hammad, T. M. Utilization of Surface Plasmon Resonance Band of Silver Nanoparticles for Determination of Critical Micelle Concentration of Cationic Surfactants. Chem. Phys. Lett. 2016, 664, 154–158. doi:10.1016/j.cplett.2016.10.025
  • Salem, J. K.; El-Nahhal, I. M.; Najri, B. A.; Hammad, T. M.; Kodeh, F. Effect of Anionic Surfactants on the Surface Plasmon Resonance Band of Silver Nanoparticles: Determination of Critical Micelle Concentration. J. Mol. Liq. 2016, 223, 771–774. doi:10.1016/j.molliq.2016.09.014
  • Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Surface-Enhanced Raman Scattering and Biophysics. J. Phys. Condens. Matter 2002, 14, R597–R624. doi:10.1088/0953-8984/14/18/202
  • Mathioudakis, G. N.; Soto Beobide, A.; Bokias, G.; Koutsoukos, P. G.; Voyiatzis, G. A. Surface‐Enhanced Raman Scattering as a Tool to Study Cationic Surfactants Exhibiting Low Critical Micelle Concentration. J. Raman Spectrosc. 2020, 51, 452–460. doi:10.1002/jrs.5798
  • Shrestha, Y. K.; Yan, F. Determination of Critical Micelle Concentration of Cationic Surfactants by Surface-Enhanced Raman Scattering. RSC Adv. 2014, 4, 37274–37277. doi:10.1039/C4RA05516K
  • Tamamushi, B. I.; Shinoda, K.; Nakagawa, T.; Isemura, T. Colloidal surfactants : some physicochemical properties.; 1963.
  • Yu, D.; Huang, F.; Xu, H. Determination of Critical Concentrations by Synchronous Fluorescence Spectrometry. Anal. Methods 2012, 4, 47–49. doi:10.1039/C1AY05495C
  • Jaiswal, S.; Mondal, R.; Paul, D.; Mukherjee, S. Investigating the Micellization of the triton-X Surfactants: A Non-Invasive Fluorometric and Calorimetric Approach. Chem. Phys. Lett. 2016, 646, 18–24. doi:10.1016/j.cplett.2015.12.051
  • Anand, U.; Jash, C.; Mukherjee, S. Spectroscopic Determination of Critical Micelle Concentration in Aqueous and Non-Aqueous Media Using a Non-Invasive Method. J. Colloid Interface Sci. 2011, 364, 400–406. doi:10.1016/j.jcis.2011.08.047.
  • Karumbamkandathil, A.; Ghosh, S.; Anand, U.; Saha, P.; Mukherjee, M.; Mukherjee, S. Micelles of Benzethonium Chloride Undergoes Spherical to Cylindrical Shape Transformation: An Intrinsic Fluorescence and Calorimetric Approach. Chem. Phys. Lett. 2014, 593, 115–121. doi:10.1016/j.cplett.2014.01.005
  • Sarkar, I.; Mishra, A. K. Tagged Bio-Molecules and Their Applications: A Brief Review. Appl. Spectrosc. Rev. 2018, 53, 552–601. doi:10.1080/05704928.2017.1376680
  • Cai, X.; Yang, W.; Huang, L.; Zhu, Q.; Liu, S. A Series of Sensitive and Visible Fluorescence-Turn-on Probes for CMC of Ionic Surfactants: Design, Synthesis, Structure Influence on CMC and Sensitivity, and Fast Detection via a Plate Reader and a UV Light. Sens. Actuators B Chem. 2015, 219, 251–260. doi:10.1016/j.snb.2015.04.126
  • Zhu, Q.; Huang, L.; Su, J.; Liu, S. A Sensitive and Visible Fluorescence-Turn-on Probe for the CMC Determination of Ionic Surfactants. Chem. Commun. (Camb) 2014, 50, 1107–1109. doi:10.1039/C3CC45244A.
  • Wu, S.; Liang, F.; Hu, D.; Li, H.; Yang, W.; Zhu, Q. Determining the Critical Micelle Concentration of Surfactants by a Simple and Fast Titration Method. Anal. Chem. 2020, 92, 4259–4265. doi:10.1021/acs.analchem.9b04638.
  • Li, H.; Hu, D.; Liang, F.; Huang, X.; Zhu, Q. Influence Factors on the Critical Micelle Concentration Determination Using Pyrene as a Probe and a Simple Method of Preparing Samples. R Soc. Open Sci. 2020, 7, 192092. doi:10.1098/rsos.192092.
  • Halder, M.; Datta, S.; Bolel, P.; Mahapatra, N.; Panja, S.; Vardhan, H.; Kayal, S.; Khatua, D. K.; Das, I. Reorganization Energy and Stokes Shift Calculations from Spectral Data as New Efficient Approaches in Distinguishing the End Point of Micellization/Aggregation. Anal. Methods 2016, 8, 2805–2811. doi:10.1039/C5AY02982A
  • Chakraborty, T.; Chakraborty, I.; Ghosh, S. The Methods of Determination of Critical Micellar Concentrations of the Amphiphilic Systems in Aqueous Medium. Arab. J. Chem 2011, 4, 265–270. doi:10.1016/j.arabjc.2010.06.045
  • Martins, R. M.; Silva, C. A.; Becker, C.; Samios, D.; Bica, C. I. D.; Christoff, M. Studies on Anionic Surfactant Structure in the Aggregation with (Hydroxypropyl)Cellulose. Polímeros 2002, 12, 109–114. doi:10.1590/S0104-14282002000200010
  • Piñeiro, L.; Novo, M.; Al-Soufi, W. Fluorescence Emission of Pyrene in Surfactant solutions. Adv. Colloid Interface Sci. 2015, 215, 1–12. doi:10.1016/j.cis.2014.10.010.
  • Aguiar, J.; Carpena, P.; Molina-Bolı́var, J. A.;.; Carnero Ruiz, C. On the Determination of the Critical Micelle Concentration by the Pyrene 1:3 Ratio Method. J. Colloid Interface Sci. 2003, 258, 116–122. doi:10.1016/S0021-9797(02)00082-6
  • Mohr, A.; Talbiersky, P.; Korth, H.-G.; Sustmann, R.; Boese, R.; Bläser, D.; Rehage, H. A New Pyrene-Based Fluorescent Probe for the Determination of Critical Micelle Concentrations. J. Phys. Chem. B. 2007, 111, 12985–12992. doi:10.1021/jp0731497.
  • Salem, J. K.; El-Nahhal, I. M.; Salama, S. F. Determination of the Critical Micelle Concentration by Absorbance and Fluorescence Techniques Using Fluorescein Probe. Chem. Phys. Lett. 2019, 730, 445–450. doi:10.1016/j.cplett.2019.06.038.
  • Prazeres, T. J. V.; Beija, M.; Fernandes, F. V.; Marcelino, P. G. A.; Farinha, J. P. S.; Martinho, J. M. G. Determination of the Critical Micelle Concentration of Surfactants and Amphiphilic Block Copolymers Using Coumarin 153. Inorganica Chim. Acta 2012, 381, 181–187. doi:10.1016/j.ica.2011.09.013
  • Jumpertz, T.; Tschapek, B.; Infed, N.; Smits, S. H. J.; Ernst, R.; Schmitt, L. High-Throughput Evaluation of the Critical Micelle Concentration of Detergents. Anal. Biochem. 2011, 408, 64–70. doi:10.1016/j.ab.2010.09.011.
  • Mondal, S.; Ghosh, S. Role of Curcumin on the Determination of the Critical Micellar Concentration by Absorbance, Fluorescence and Fluorescence Anisotropy Techniques. J. Photochem. Photobiol. B. 2012, 115, 9–15. doi:10.1016/j.jphotobiol.2012.06.004.
  • Romani, A. P.; Machado, A. E. d H.; Hioka, N.; Severino, D.; Baptista, M. S.; Codognoto, L.; Rodrigues, M. R.; de Oliveira, H. P. M. Spectrofluorimetric Determination of Second Critical Micellar Concentration of SDS and SDS/Brij 30 Systems. J. Fluoresc. 2009, 19, 327–332. doi:10.1007/s10895-008-0420-4.
  • Nakahara, Y.; Kida, T.; Nakatsuji, Y.; Akashi, M. New Fluorescence Method for the Determination of the Critical Micelle Concentration by Photosensitive Monoazacryptand Derivatives. Langmuir 2005, 21, 6688–6695. doi:10.1021/la050206j
  • Sun, L.; Hao, D.; Zhang, P.; Qian, Z.; Shen, W.; Shao, T.; Zhu, C. Indication of Critical Micelle Concentration of Nonionic Surfactants with Large Emission Change Using Water-Soluble Conjugated Polymer as Molecular Light Switch. J. Lumin. 2013, 134, 260–265. doi:10.1016/j.jlumin.2012.08.035
  • Da Hora Machado, A. E.; Moisés de Oliveira, H. P.; Dos Santos, L. M.; Oliveira Alves, H.; Alves Machado, W.; Pontes Caixeta, B. Determination of the Critical Micelle Concentration of Triton X-100 Using the Compound 3-(Benzoxazol-2-yl)-7-(N,N-Diethylamino)Chromen-2-One as Fluorescent Probe. Orbital Electron. J. Chem. 2016, 8, 329–333. doi:10.17807/orbital.v0i0.923.
  • Sarkar, P.; Chattopadhyay, A. Dipolar Rearrangement during Micellization Explored Using a Potential-Sensitive Fluorescent Probe. Chem. Phys. Lipids. 2015, 191, 91–95. doi:10.1016/j.chemphyslip.2015.08.016.
  • Thorsteinsson, M. V.; Richter, J.; Lee, A. L.; DePhillips, P. 5-Dodecanoylaminofluorescein as a Probe for the Determination of Critical Micelle Concentration of Detergents Using Fluorescence Anisotropy. Anal. Biochem. 2005, 340, 220–225. doi:10.1016/j.ab.2005.01.006.
  • Zhang, X.; Jackson, J. K.; Burt, H. M. Determination of Surfactant Critical Micelle Concentration by a Novel Fluorescence Depolarization Technique. J. Biochem. Biophys. Methods. 1996, 31, 145–150. doi:10.1016/0165-022X(95)00032-M
  • Held, P. Rapid Critical Micelle Concentration (CMC) Determination Using Fluorescence Polarization.   Available online: http://www.biotek.com/resources/articles/cmc_determination_using_fluorescence_polarization.html (accessed on 20 July 2021)
  • Ghosh, S.; Mondal, S.; Das, S.; Biswas, R. Spectroscopic Investigation of Interaction between Crystal Violet and Various Surfactants (Cationic, Anionic, Nonionic and Gemini) in Aqueous Solution. Fluid Phase Equilib. 2012, 332, 1–6. doi:10.1016/j.fluid.2012.06.019
  • Kumbhakar, M.; Nath, S.; Mukherjee, T.; Pal, H. Solvation Dynamics in triton-X-100 and triton-X-165 Micelles: Effect of Micellar Size and Hydration. J. Chem. Phys. 2004, 121, 6026–6033. doi:10.1063/1.1784774.
  • Lavkush Bhaisare, M.; Pandey, S.; Shahnawaz Khan, M.; Talib, A.; Wu, H. F. Fluorophotometric Determination of Critical Micelle Concentration (CMC) of Ionic and Non-Ionic Surfactants with Carbon Dots via Stokes Shift. Talanta 2015, 132, 572–578. doi:10.1016/j.talanta.2014.09.011.
  • Nakahara, Y.; Kida, T.; Nakatsuji, Y.; Akashi, M. Fluorometric Sensing of Alkali Metal and Alkaline Earth Metal Cations by Novel Photosensitive Monoazacryptand Derivatives in Aqueous Micellar Solutions. Org. Biomol. Chem. 2005, 3, 1787–1794. doi:10.1039/b501233c.
  • Topel, Ö.; Çakir, B. A.; Budama, L.; Hoda, N. Determination of Critical Micelle Concentration of Polybutadiene-Block- Poly(Ethyleneoxide) Diblock Copolymer by Fluorescence Spectroscopy and Dynamic Light Scattering. J. Mol. Liq. 2013, 177, 40–43. doi:10.1016/j.molliq.2012.10.013
  • Mitsionis, A. I.; Vaimakis, T. C. Estimation of AOT and SDS CMC in a Methanol Using Conductometry, Viscometry and Pyrene Fluorescence Spectroscopy Methods. Chem. Phys. Lett. 2012, 547, 110–113. doi:10.1016/j.cplett.2012.07.059
  • Dubey, N. CTAB Aggregation in Solutions of Higher Alcohols: Thermodynamic and Spectroscopic Studies. J. Mol. Liq. 2013, 184, 60–67. doi:10.1016/j.molliq.2013.04.022
  • Hsu, C.-H.; Shau, S.-M.; Jeng, R.-J.; Chiu, H.-C.; Dai, S. A.; Conte, E. D.; Suen, S.-Y. Determination of Critical Micelle Concentration of Dendritic Surfactant Synthesized via a Selective Ring-Opening Addition Reaction. Microchem. J. 2013, 110, 48–53. doi:10.1016/j.microc.2013.02.002
  • Acharya, K. R.; Bhattacharya, S. C.; Moulik, S. P. Effects of Urea and Thiourea on the Absorption and Fluorescence Behaviours of the Dye Safranine T in Micellar Medium. J. Mol. Liq. 2000, 87, 85–96. doi:10.1016/S0167-7322(00)00130-6
  • Singh, M. Simultaneous Study of Interfacial Tension, Surface Tension, and Viscosity of Few Surfactant Solutions with Survismeter. Surf. Interface Anal. 2008, 40, 1344–1349. doi:10.1002/sia.2900
  • Liu, X.; Yu, Q.; Song, A.; Dong, S.; Hao, J. Progress in Nuclear Magnetic Resonance Studies of Surfactant Systems. Curr. Opin. Colloid Interface Sci. 2020, 45, 14–27. doi:10.1016/j.cocis.2019.10.006
  • Aswal, V. K.; Goyal, P. S. Small-Angle Neutron Scattering from Micellar Solutions. Indian Acad. Sci. 2004, 63, 65–72.
  • Smith, G. N.; Brown, P.; Rogers, S. E.; Eastoe, J. Evidence for a Critical Micelle Concentration of Surfactants in Hydrocarbon Solvents. Langmuir 2013, 29, 3252–3258. doi:10.1021/la400117s.
  • Magnus Bergström, L.; Garamus, V. M. Structural Behaviour of Mixed Cationic Surfactant Micelles: A Small-Angle Neutron Scattering Study. J. Colloid Interface Sci. 2012, 381, 89–99. doi:10.1016/j.jcis.2012.05.015.
  • Rahal, S.; Hadidi, N.; Hamadache, M. In Silico Prediction of Critical Micelle Concentration (CMC) of Classic and Extended Anionic Surfactants from Their Molecular Structural Descriptors. Arab. J. Sci. Eng. 2020, 45, 7445–7454. doi:10.1007/s13369-020-04598-0
  • Baghban, A.; Sasanipour, J.; Sarafbidabad, M.; Piri, A.; Razavi, R. On the Prediction of Critical Micelle Concentration for Sugar-Based Non-Ionic Surfactants. Chem. Phys. Lipids. 2018, 214, 46–57. doi:10.1016/j.chemphyslip.2018.05.008.
  • Gaudin, T.; Rotureau, P.; Pezron, I.; Fayet, G. Investigating the Impact of Sugar-Based Surfactants Structure on Surface Tension at Critical Micelle Concentration with Structure-Property Relationships. J. Colloid Interface Sci. 2018, 516, 162–171. doi:10.1016/j.jcis.2018.01.051.
  • Jiao, L.; Wang, Y.; Qu, L.; Xue, Z.; Ge, Y.; Liu, H.; Lei, B.; Gao, Q.; Li, M. Hologram QSAR Study on the Critical Micelle Concentration of Gemini Surfactants. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 586, 124226. doi:10.1016/j.colsurfa.2019.124226
  • Mozrzymas, A. On the Hydrophobic Chains Effect on Critical Micelle Concentration of Cationic Gemini Surfactants Using Molecular Connectivity Indices. Monatsh. Chem. 2020, 151, 525–531. doi:10.1007/s00706-020-02581-x
  • Setiawan, E.; Mudasir, M.; Wijaya, K. QSPR Models for Predicting Critical Micelle Concentration of Gemini Cationic Surfactants Combining Machine-Learning Methods and Molecular Descriptors. ChemRxiv 2020, doi:10.26434/chemrxiv.11626068.
  • Setiawan, E.; Mudasir; Wijaya, K. Application of Quantitative Structure-Property Relationship (QSPR) Models for the Predictions of Critical Micelle Concentration of Gemini Imidazolium Surfactants. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742, 12022. doi:10.1088/1757-899X/742/1/012022.
  • Wang, Y.; Yan, F.; Jia, Q.; Wang, Q. Quantitative Structure-Property Relationship for Critical Micelles Concentration of Sugar-Based Surfactants Using Norm Indexes. J. Mol. Liq. 2018, 253, 205–210. doi:10.1016/j.molliq.2018.01.037
  • Santos, A. P.; Panagiotopoulos, A. Z. Determination of the Critical Micelle Concentration in Simulations of Surfactant Systems. J. Chem. Phys. 2016, 144, 044709. doi:10.1063/1.4940687
  • Huibers, P. D. T.; Lobanov, V. S.; Katritzky, A. R.; Shah, D. O.; Karelson, M. Prediction of Critical Micelle Concentration Using a Quantitative Structure-Property Relationship Approach. 1. Nonionic Surfactants. Langmuir 1996, 12, 1462–1470. doi:10.1021/la950581j
  • Mozrzymas, A.; Różycka-Roszak, B. Prediction of Critical Micelle Concentration of Cationic Surfactants Using Connectivity Indices. J. Math. Chem. 2011, 49, 276–289. doi:10.1007/s10910-010-9738-7
  • Karakashev, S. I.; Smoukov, S. K. CMC Prediction for Ionic Surfactants in Pure Water and Aqueous Salt Solutions Based Solely on Tabulated Molecular Parameters. J. Colloid Interface Sci. 2017, 501, 142–149. doi:10.1016/j.jcis.2017.04.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.