2,768
Views
1
CrossRef citations to date
0
Altmetric
Reviews

A review of microbial and chemical assessment of indoor surfaces

, , , , , & show all

References

  • Dimitroulopoulou, C.; Ashmore, M. R.; Byrne, M. A.; Kinnersley, R. P. Modelling of Indoor Exposure to Nitrogen Dioxide in the UK. Atmos. Environ. 2001, 35, 269–279. doi:10.1016/S1352-2310(00)00176-X
  • Al Horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of Indoor Environmental Quality on Occupant Well-Being and Comfort: A Review of the Literature. Int. J. Sustain. Built. Environ. 2016, 5, 1–11. doi:10.1016/j.ijsbe.2016.03.006
  • Katsoyiannis, A.; Cincinelli, A. Cocktails and Dreams’: The Indoor Air Quality That People Are Exposed to While Sleeping. Curr. Opin. Environ. Sci. Heal. 2019, 8, 6–9. doi:10.1016/j.coesh.2018.12.005
  • Leung, D. Y. C. Outdoor-Indoor Air Pollution in Urban Environment: Challenges and Opportunity. Front. Environ. Sci. 2015, 2, 69. doi:10.3389/fenvs.2014.00069
  • Abbatt, J. P. D.; Wang, C. The Atmospheric Chemistry of Indoor Environments. Environ. Sci. Process. Impacts. 2020, 22, 25–48. doi:10.1039/c9em00386j
  • Carslaw, N. Chemical Reactions in the Indoor Atmosphere. In Indoor Air Pollution; Harrison, R. M., Hester, R. E., Eds.; Royal Society of Chemistry: Cambridge, 2019; pp 105–126. 10.1039/9781788016179-00105.
  • Weschler, C. J.; Nazaroff, W. W. Semivolatile Organic Compounds in Indoor Environments. Atmos. Environ. 2008, 42, 9018–9040. doi:10.1016/j.atmosenv.2008.09.052
  • Weschler, C. J.; Shields, H. C. Measurements of the Hydroxyl Radical in a Manipulated but Realistic Indoor Environment. Environ. Sci. Technol. 1997, 31, 3719–3722. doi:10.1021/es970669e
  • Manuja, A.; Ritchie, J.; Buch, K.; Wu, Y.; Eichler, C. M. A.; Little, J. C.; Marr, L. C. Total Surface Area in Indoor Environments. Environ. Sci. Process. Impacts. 2019, 21, 1384–1392. doi:10.1039/C9EM00157C
  • Hodgson, A. T.; Y, K.; C, B.; Ming, K. Y.; Singer, B. C. Quantifying Object and Material Surface Areas in Residences. Lawrence Berkeley Natl. Lab, LBNL-56786, 2004.
  • Nazaroff, W. W.; Weschler, C. J. Indoor Acids and Bases. Indoor Air. 2020, 30, 559–644. doi:10.1111/ina.12670
  • Shen, J.; Gao, Z. Ozone Removal on Building Material Surface: A Literature Review. Build. Environ. 2018, 134, 205–217. doi:10.1016/j.buildenv.2018.02.046
  • Ault, A. P.; Grassian, V. H.; Carslaw, N.; Collins, D. B.; Destaillats, H.; Donaldson, D. J.; Farmer, D. K.; Jimenez, J. L.; McNeill, V. F.; Morrison, G. C.; et al. Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. Chem. 2020, 6, 3203–3218. doi:10.1016/j.chempr.2020.08.023
  • ASM Handbook Volume 21: Composites – ASM International. https://www.asminternational.org/search/-/journal_content/56/10192/06781G/PUBLICATION (accessed September 24, 2021).
  • Kalamees, T.; Korpi, M.; Vinha, J.; Kurnitski, J. The Effects of Ventilation Systems and Building Fabric on the Stability of Indoor Temperature and Humidity in Finnish Detached Houses. Build. Environ. 2009, 44, 1643–1650. doi:10.1016/j.buildenv.2008.10.010
  • Hertl, W.; Hair, M. L. Adsorption of Water on Silica. Nat 1969, 1969, 223, 1150–1151. doi:10.1038/2231150a0
  • Razouk, R. I.; Salem, A. S. The Adsorption of Water Vapor on Glass Surfaces. J. Phys. Chem. 1948, 52, 1208–1227. doi:10.1021/j150463a013
  • Al-Abadleh, H. A.; Grassian, V. H. FT-IR Study of Water Adsorption on Aluminum Oxide Surfaces. Langmuir. 2003, 19, 341–347. doi:10.1021/la026208a
  • Razouk, R. I.; Salem, A. S.; Mikhail, R. S. The sorption of water vapor on dehydrated gypsum. J. Phys. Chem. 1960, 64, 1350–1355. doi:10.1021/j100839a003
  • Jeffries, R. The sorption of water by cellulose and eight other textile polymers. J. Text. Inst. Trans. 1960, 51 (9), T339–T340. doi:10.1080/19447026008659777
  • Shiraiwa, M.; Ammann, M.; Koop, T.; Pöschl, U. Gas Uptake and Chemical Aging of Semisolid Organic Aerosol Particles. Proc Natl Acad Sci U S A. 2011, 108, 11003–11008. doi:10.1073/pnas.1103045108
  • Duncan, S. M.; Tomaz, S.; Morrison, G.; Webb, M.; Atkin, J.; Surratt, J. D.; Turpin, B. J. Dynamics of Residential Water-Soluble Organic Gases: Insights into Sources and Sinks. Environ. Sci. Technol. 2019, 53, 1812–1821. doi:10.1021/acs.est.8b05852
  • van der Zanden, A. J. J.; Goossens, E. L. J. The Measurement of the Sorption Isotherm of Water in Paint Films. Chem. Eng. Process. Process Intensif. 2004, 43, 739–743. doi:10.1016/S0255-2701(03)00073-4
  • Weschler, C. J.; Nazaroff, W. W. Growth of Organic Films on Indoor Surfaces. Indoor Air. 2017, 27, 1101–1112. doi:10.1111/ina.12396
  • Sinclair, J. D.; Psota-Kelty, L. A.; Weschler, C. J. Indoor/Outdoor Ratios and Indoor Surface Accumulations of Ionic Substances at Newark, New Jersey. Atmos. Environ. 1988, 22, 461–469. doi:10.1016/0004-6981(88)90192-8
  • Sinclair, J. D.; Psota-Kelty, L. A.; Weschler, C. J.; Shields, H. C. Measurement and Modeling of Airbone Concentrations and Indoor Surface Accumulation Rates of Ionic Substances at Neenah, Wisconsin. Atmos. Environ. Part A, Gen. Top. 1990, 24, 627–638. doi:10.1016/0960-1686(90)90018-I
  • Sinclair, J. D.; Psota-Kelty, L. A.; Weschler, C. J. Indoor/Outdoor Concentrations and Indoor Surface Accumulations of Ionic Substances. Atmos. Environ. 1985, 19, 315–323. doi:10.1016/0004-6981(85)90099-X
  • Ligocki, M. P.; Liu, H. I. H.; Cass, G. R.; John, W. Measurements of Particle Deposition Rates Inside Southern California Museums. Aerosol Sci. Technol. 1990, 13, 85–101. doi:10.1080/02786829008959426
  • Farmer, D. K.; Vance, M. E.; Abbatt, J. P. D.; Abeleira, A.; Alves, M. R.; Arata, C.; Boedicker, E.; Bourne, S.; Cardoso-Saldaña, F.; Corsi, R.; et al. Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environ. Sci. Process. Impacts. 2019, 21, 1280–1300. doi:10.1039/c9em00228f
  • Algrim, L. B.; Pagonis, D.; de Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J. Measurements and Modeling of Absorptive Partitioning of Volatile Organic Compounds to Painted Surfaces. Indoor Air. 2020, 30, 745–756. doi:10.1111/ina.12654
  • Svennberg, K. Moisture Buffering in the Indoor Environment. Lund University: Lund, 2006. 67.
  • Wang, C.; Collins, D. B.; Arata, C.; Goldstein, A. H.; Mattila, J. M.; Farmer, D. K.; Ampollini, L.; DeCarlo, P. F.; Novoselac, A.; Vance, M. E.; et al. Surface Reservoirs Dominate Dynamic Gas-Surface Partitioning of Many Indoor Air Constituents. Sci. Adv. 2020, 6, 1–12. doi:10.1126/sciadv.aay8973
  • Won, D.; Corsi, R. L.; Rynes, M. Sorptive Interactions between VOCs and Indoor Materials. Indoor Air. 2001, 11, 246–256. doi:10.1034/j.1600-0668.2001.110406.x
  • Hess, M. R.; Petrovic, V.; Kuester, F. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3D Point Clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W5, 343–347. doi:10.5194/isprs-archives-XLII-2-W5-343-2017
  • Clausen, P. A.; Wolkoff, P.; Hoist, E.; Nielsen, P. A. Long-Term Emission of Volatile Organic Compounds from Waterborne Paints – Methods of Comparison. Indoor Air 1991, 1, 562–576. doi:10.1111/j.1600-0668.1991.00019.x
  • ASTM_D6132-13. ASTM D6132-13 Standard Test Method for Nondestructive Measurement of Dry Film Thickness of Applied Organic Coatings Using an Ultrasonic Coating Thickness Gage, 2013.
  • Paint Thickness Measurement – Drywall | Resources | DeFelsko. https://www.defelsko.com/resources/paint-thickness-measurement-drywall (accessed Sep 12, 2021).
  • Fang, Y.; Lakey, P. S. J.; Riahi, S.; McDonald, A. T.; Shrestha, M.; Tobias, D. J.; Shiraiwa, M.; Grassian, V. H. A Molecular Picture of Surface Interactions of Organic Compounds on Prevalent Indoor Surfaces: Limonene Adsorption on SiO2. Chem. Sci. 2019, 10, 2906–2914. doi:10.1039/c8sc05560b
  • Chang, J. C. S.; Tichenor, B. A.; Guo, Z.; Krebs, K. A. Substrate Effects on VOC Emissions from a Latex Paint. Indoor Air. 1997, 7, 241–247. doi:10.1111/j.1600-0668.1997.00003.x
  • Rowen, J. W.; Blaine, R. L. Sorption of Nitrogen and Water Vapor on Textile Fibers. Ind. Eng. Chem. 1947, 39, 1659–1663. doi:10.1021/ie50456a029
  • Ongwandee, M.; Bettinger, S. S.; Morrison, G. C. The Influence of Ammonia and Carbon Dioxide on the Sorption of a Basic Organic Pollutant to a Mineral Surface. Indoor Air. 2005, 15, 408–419. doi:10.1111/j.1600-0668.2005.00380.x
  • Ongwandee, M.; Morrison, G. C. Influence of Ammonia and Carbon Dioxide on the Sorption of a Basic Organic Pollutant to Carpet and Latex-Painted Gypsum Board. Environ. Sci. Technol. 2008, 42, 5415–5420. doi:10.1021/es071935j
  • Liu, Q. T.; Chen, R.; McCarry, B. E.; Diamond, M. L.; Bahavar, B. Characterization of Polar Organic Compounds in the Organic Film on Indoor and Outdoor Glass Windows. Environ. Sci. Technol. 2003, 37, 2340–2349. doi:10.1021/es020848i
  • Wallace, L. A.; Ott, W. R.; Weschler, C. J.; Lai, A. C. K. Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles. Environ. Sci. Technol. 2017, 51, 1140–1146. doi:10.1021/acs.est.6b03248
  • Li, J.; Lin, T.; Pan, S. H.; Xu, Y.; Liu, X.; Zhang, G.; Li, X. D. Carbonaceous Matter and PBDEs on Indoor/Outdoor Glass Window Surfaces in Guangzhou and Hong Kong, South China. Atmos. Environ 2010, 44, 3254–3260. doi:10.1016/j.atmosenv.2010.05.057
  • Eckhaus, S.; Woloci, I.; Harris, B. L. Porosity of Paint Films. Ind. Eng. Chem 1953, 1347–1349.
  • Henson, W. A.; Taber, D. A.; Bradford, E. B. Mechanism of Film Formation of Latex Paint. 1953, No. April, 735–739.
  • Wicks, Z. W. J.; Jones, F. N.; Pappas, S. P.; Wicks, D. A. Organic Coatings: Science and Technology, 3rd ed.; Hoboken, NJ: Wiley, 2006.
  • Steward, P. A.; Hearn, J.; Wilkinson, M. C. An Overview of Polymer Latex Film Formation and Properties. Adv. Colloid Interface Sci. 2000, 86, 195–267. doi:10.1016/S0001-8686(99)00037-8
  • Harogoppad, S. B.; Aminabhavi, T. M. Diffusion and Sorption of Organic Liquids through Polymer Membranes. 5. Neoprene, Styrene-Butadiene-Rubber, Ethylene-Propylene-Diene Terpolymer, and Natural Rubber versus Hydrocarbons (C8-C16). Macromolecules. 1991, 24, 2598–2605. doi:10.1021/ma00009a070
  • Berens, A. R.; Hopfenberg, H. B. Diffusion of Organic Vapors at Low Concentrations in Glassy PVC, Polystyrene, and PMMA. J. Memb. Sci. 1982, 10, 283–303. doi:10.1016/S0376-7388(00)81415-5
  • Merkel, T. C.; Bondar, V. I.; Nagai, K.; Freeman, B. D.; Pinnau, I. Pinnau, I. Gas Sorption, Diffusion, and Permeation in Poly(Dimethylsiloxane). J. Polym. Sci. B Polym. Phys. 2000, 38, 415–434. doi:10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
  • Corsi, R. L.; Lin, C. C. Emissions of 2,2,4-Trimethyl-1,3-Pentanediol Monoisobutyrate (TMPD-MIB) from Latex Paint: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 1052–1080. doi:10.1080/10643380801977925
  • Vares, O.; Ruus, A.; Raamets, J.; Tungel, E. Determination of Hygrothermal Performance of Clay-Sand Plaster: Influence of Covering on Sorption and Water Vapour Permeability. Energy Procedia. 2017, 132, 267–272. doi:10.1016/j.egypro.2017.09.719
  • Weschler, C. J. Indoor/Outdoor Connections Exemplified by Processes That Depend on an Organic Compound’s Saturation Vapor Pressure. Atmos. Environ. 2003, 37, 5455–5465. doi:10.1016/j.atmosenv.2003.09.022
  • Valeri, D.; Meirelles, A. J. A. Viscosities of Fatty Acids, Triglycerides, and Their Binary Mixtures. JAOCS. J. Amer. Oil Chem. Soc. 1997, 74, 1221–1226. doi:10.1007/s11746-997-0048-6
  • Koop, T.; Bookhold, J.; Shiraiwa, M.; Pöschl, U. Glass Transition and Phase State of Organic Compounds: Dependency on Molecular Properties and Implications for Secondary Organic Aerosols in the Atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238–19255. doi:10.1039/c1cp22617g
  • Meininghaus, R.; Gunnarsen, L.; Knudsen, H. N. Diffusion and Sorption of Volatile Organic Compounds in Building Materials – Impact on Indoor Air Quality. Environ. Sci. Technol. 2000, 34, 3101–3108. doi:10.1021/es991291i
  • Chin, K.; Laguerre, A.; Ramasubramanian, P.; Pleshakov, D.; Stephens, B.; Gall, E. T. Emerging Investigator Series: Primary Emissions, Ozone Reactivity, and Byproduct Emissions from Building Insulation Materials. Environ. Sci. Process. Impacts. 2019, 21, 1255–1267. doi:10.1039/C9EM00024K
  • Reiss, R.; Ryan, P. B.; Koutrakis, P. Modeling Ozone Deposition onto Indoor Residential Surfaces. Environ. Sci. Technol. 1994, 28, 504–513. doi:10.1021/es00052a025
  • Wu, Y.; Eichler, C. M. A.; Leng, W.; Cox, S. S.; Marr, L. C.; Little, J. C. Adsorption of Phthalates on Impervious Indoor Surfaces. Environ. Sci. Technol. 2017, 51, 2907–2913. doi:10.1021/acs.est.6b05853
  • Li, G.; Su, H.; Kuhn, U.; Meusel, H.; Ammann, M.; Shao, M.; Pöschl, U.; Cheng, Y. Technical Note: Influence of Surface Roughness and Local Turbulence on Coated-Wall Flow Tube Experiments for Gas Uptake and Kinetic Studies. Atmos. Chem. Phys. 2018, 18, 2669–2686. doi:10.5194/acp-18-2669-2018
  • Morrison, G. C.; Nazaroff, W. W. The Rate of Ozone Uptake on Carpets: Experimental Studies. Environ. Sci. Technol. 2000, 34, 4963–4968. doi:10.1021/es001361h
  • Hennig, F.; Quass, U.; Hellack, B.; Küpper, M.; Kuhlbusch, T. A. J.; Stafoggia, M.; Hoffmann, B. Ultrafine and Fine Particle Number and Surface Area Concentrations and Daily Cause-Specific Mortality in the Ruhr Area, Germany, 2009–2014. Environ. Health Perspect. 2018, 126, doi:10.1289/EHP2054.
  • Verbraecken, J.; Van de Heyning, P.; De Backer, W.; Van Gaal, L. Body Surface Area in Normal-Weight, Overweight, and Obese Adults. A Comparison Study. Metabolism 2006, 55, 515–524. doi:10.1016/j.metabol.2005.11.004
  • Fluhr, J. W.; Darlenski, R.; Lachmann, N.; Baudouin, C.; Msika, P.; Belilovsky, C. D.; Hachem, J.-P. Infant Epidermal Skin Physiology: Adaptation after Birth. Br. J. Dermatol. 2012, 166, 483–490. doi:10.1111/j.1365-2133.2011.10659.x
  • Levin, J.; Maibach, H. Human Skin Buffering Capacity: An Overview. kin Res. TechnolS. 2008, 14, 121–126. doi:10.1111/j.1600-0846.2007.00271.x
  • Nicolaides, N. Skin Lipids: Their Biochemical Uniqueness. Science. 1974, 186, 19–26. doi:10.1126/science.186.4158.19
  • World Health Organization Regional Offi Ce for Europe Selected Pollutants; 2010.
  • Hubbard, H.; Poppendieck, D.; Corsi, R. L. Chlorine Dioxide Reactions with Indoor Materials during Building Disinfection: Surface Uptake. Environ. Sci. Technol. 2009, 43, 1329–1335. doi:10.1021/es801930c
  • Duncan, S. M.; Sexton, K. G.; Turpin, B. J. Oxygenated VOCs, Aqueous Chemistry, and Potential Impacts on Residential Indoor Air Composition. Indoor Air. 2018, 28, 198–212. doi:10.1111/ina.12422
  • Edwards, C. J.; Hudson, F. L.; Hockey, J. A. Sorption of Sulphur Dioxide by Paper. J. Appl. Chem. 2007, 18, 146–148. doi:10.1002/jctb.5010180506
  • Spedding, D. J.; Rowlands, R. P.; Taylor, J. E. Sorption of Sulphur Dioxide by Indoor Surfaces III.-Leather. J. Appl. Chem. 2007, 21, 68–70. doi:10.1002/jctb.5020210303
  • Spedding, D. J. Sorption of Sulphur Dioxide by Indoor Surfaces II. Wood. J. Appl. Chem. 2007, 20, 226–228. doi:10.1002/jctb.5010200706
  • Duncan, J. R.; Spedding, D. J. Initial Reactions of SO2 after Adsorption on to Metals. Corros. Sci 1973, 13, 881–889. doi:10.1016/S0010-938X(73)80070-8
  • Wilson, M. Indoor Air Pollution. Proc. R. Soc. London. Ser. A. Math. Phys. Sci 1489, 307, 215–221. 1968., doi:10.1098/rspa.1968.0185.
  • Singer, B. C.; Hodgson, A. T.; Hotchi, T.; Ming, K. Y.; Sextro, R. G.; Wood, E. E.; Brown, N. J. Sorption of Organic Gases in Residential Rooms. Atmos. Environ 2007, 41, 3251–3265. doi:10.1016/j.atmosenv.2006.07.056
  • Spengler, J. D.; Ferris, B. G.; Jr., Dockery, D. W.; Speizer, F. E. Sulfur Dioxide and Nitrogen Dioxide Levels inside and Outside Homes and the Implications on Health Effects Research. Environ. Sci. Technol. 1979, 13, 1276–1280. doi:10.1021/es60158a013
  • Grøntoft, T.; Raychaudhuri, M. R. Compilation of Tables of Surface Deposition Velocities for O3, NO2 and SO2 to a Range of Indoor Surfaces. Atmos. Environ 2004, 38, 533–544. doi:10.1016/j.atmosenv.2003.10.010
  • Abbass, O. A.; Sailor, D. J.; Gall, E. T. Effect of Fiber Material on Ozone Removal and Carbonyl Production from Carpets. Atmos. Environ. 2017, 148, 42–48. doi:10.1016/j.atmosenv.2016.10.034
  • Coleman, B. K.; Destaillats, H.; Hodgson, A. T.; Nazaroff, W. W. Ozone Consumption and Volatile Byproduct Formation from Surface Reactions with Aircraft Cabin Materials and Clothing Fabrics. Atmos. Environ. 2008, 42, 642–654. doi:10.1016/j.atmosenv.2007.10.001
  • Rai, A. C.; Guo, B.; Lin, C.-H.; Zhang, J.; Pei, J.; Chen, Q. Ozone Reaction with Clothing and Its Initiated VOC Emissions in an Environmental Chamber. Indoor Air. 2014, 24, 49–58. doi:10.1111/ina.12058
  • Gall, E.; Darling, E.; Siegel, J. A.; Morrison, G. C.; Corsi, R. L. Evaluation of Three Common Green Building Materials for Ozone Removal, and Primary and Secondary Emissions of Aldehydes. Atmos. Environ. 2013, 77, 910–918. doi:10.1016/j.atmosenv.2013.06.014
  • Pandrangi, L. S.; Morrison, G. C. Ozone Interactions with Human Hair: Ozone Uptake Rates and Product Formation. Atmos. Environ. 2008, 42, 5079–5089. doi:10.1016/j.atmosenv.2008.02.009
  • Wisthaler, A.; Weschler, C. J. Reactions of Ozone with Human Skin Lipids: Sources of Carbonyls, Dicarbonyls, and Hydroxycarbonyls in Indoor Air. Proc Natl Acad Sci U S A. 2010, 107, 6568–6575. doi:10.1073/PNAS.0904498106.
  • Zhou, S.; Forbes, M. W.; Katrib, Y.; Abbatt, J. P. D. Rapid Oxidation of Skin Oil by Ozone. Environ. Sci. Technol. Lett. 2016, 3, 170–174. doi:10.1021/acs.estlett.6b00086
  • Zhou, Z.; Zhou, S.; Abbatt, J. P. D. Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride. Environ. Sci. Technol. 2019, 53, 12467–12475. doi:10.1021/ACS.EST.9B04460.
  • Morrison, G. C.; Nazaroff, W. W.; Cano-Ruiz, J. A.; Hodgson, A. T.; Modera, M. P. Indoor Air Quality Impacts of Ventilation Ducts: Ozone Removal and Emissions of Volatile Organic Compounds. J. Air Waste Manage. Assoc. 1998, 48, 941–952. doi:10.1080/10473289.1998.10463740
  • Zhao, P.; Siegel, J. A.; Corsi, R. L. Ozone Removal by HVAC Filters. Atmos. Environ. 2007, 41, 3151–3160. doi:10.1016/j.atmosenv.2006.06.059
  • Hyttinen, M.; Pasanen, P.; Salo, J.; Björkroth, M.; Vartiainen, M.; Kalliokoski, P. Reactions of Ozone on Ventilation Filters. Indoor Built Environ. 2003, 12, 151–158. doi:10.1177/1420326X03012003002
  • Wang, H.; Morrison, G. Ozone-Surface Reactions in Five Homes: Surface Reaction Probabilities, Aldehyde Yields, and Trends. Indoor Air. 2010, 20, 224–234. doi:10.1111/J.1600-0668.2010.00648.X.
  • Rim, D.; Gall, E. T.; Ananth, S.; Won, Y. Ozone Reaction with Human Surfaces: Influences of Surface Reaction Probability and Indoor Air Flow Condition. Build. Environ. 2018, 130, 40–48. doi:10.1016/j.buildenv.2017.12.012
  • Hanisch, F.; Crowley, J. N. Ozone Decomposition on Saharan Dust: An Experimental Investigation. Atmos. Chem. Phys. 2003, 3, 119–130. doi:10.5194/acp-3-119-2003
  • Weschler, C. J.; Brauer, M.; Koutrakis, P. Indoor Ozone and Nitrogen Dioxide: A Potential Pathway to the Generation of Nitrate Radicals, Dinitrogen Pentoxide, and Nitric Acid Indoors. Environ. Sci. Technol. 1992, 26, 179–184. doi:10.1021/es00025a022
  • Pagonis, D.; Price, D. J.; Algrim, L. B.; Day, D. A.; Handschy, A. V.; Stark, H.; Miller, S. L.; Gouw, J. d.; Jimenez, J. L.; Ziemann, P. J. Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University Art Museum. Environ. Sci. Technol. 2019, 53, 4794–4802. doi:10.1021/acs.est.9b00276
  • Asad, A.; Mmereki, B. T.; Donaldson, D. J. Enhanced Uptake of Water by Oxidatively Processed Oleic Acid. Atmos. Chem. Phys. 2004, 4, 2083–2089. doi:10.5194/acp-4-2083-2004
  • Zhou, S.; Shiraiwa, M.; McWhinney, R. D.; Pöschl, U.; Abbatt, J. P. D. Kinetic Limitations in Gas-Particle Reactions Arising from Slow Diffusion in Secondary Organic Aerosol. Faraday Discuss. 2013, 165, 391–406. doi:10.1039/C3FD00030C
  • Zhou, S.; Hwang, B.; Lakey, P.; Zuend, A.; Abbatt, J.; Shiraiwa, M. Multiphase Reactivity of Polycyclic Aromatic Hydrocarbons Is Driven by Phase Separation and Diffusion Limitations. Proc Natl Acad Sci U S A. 2019, 116, 11658–11663. doi:10.1073/PNAS.1902517116.
  • Delort, A.-M.; Amato, P. Microbiology of Aerosols; Hoboken, NJ: John Wiley & Sons, Ltd, 2017.
  • Humbal, C.; Gautam, S.; Trivedi, U. A Review on Recent Progress in Observations, and Health Effects of Bioaerosols. Environ. Int. 2018, 118, 189–193. doi:10.1016/J.ENVINT.2018.05.053.
  • Jaenicke, R.; Matthias-Maser, S.; Gruber, S.; Jaenicke, R.; Matthias-Maser, S.; Gruber, S. Omnipresence of Biological Material in the Atmosphere. Environ. Chem. 2007, 4, 217–220. doi:10.1071/EN07021
  • Matthias-Maser, S.; Obolkin, V.; Khodzer, T.; Jaenicke, R. Seasonal Variation of Primary Biological Aerosol Particles in the Remote Continental Region of Lake Baikal/Siberia. Atmos. Environ. 2000, 34, 3805–3811. doi:10.1016/S1352-2310(00)00139-4
  • Aimanianda, V.; Bayry, J.; Bozza, S.; Kniemeyer, O.; Perruccio, K.; Elluru, S. R.; Clavaud, C.; Paris, S.; Brakhage, A. A.; Kaveri, S. V. Surface Hydrophobin Prevents Immune Recognition of Airborne Fungal Spores. Nat. 2009. 2009, 460, 1117–1121. doi:10.1038/nature08264.
  • Douglas, P.; Robertson, S.; Gay, R.; Hansell, A. L.; Gant, T. W. A Systematic Review of the Public Health Risks of Bioaerosols from Intensive Farming. Int. J. Hyg. Environ. Health. 2018, 221, 134–173. doi:10.1016/J.IJHEH.2017.10.019.
  • Kim, K. H.; Kabir, E.; Jahan, S. A. Airborne Bioaerosols and Their Impact on Human Health. J. Environ. Sci. 2018, 67, 23–35. doi:10.1016/j.jes.2017.08.027
  • Xu, Z.; Wu, Y.; Shen, F.; Chen, Q.; Tan, M.; Yao, M. Bioaerosol Science, Technology, and Engineering: Past, Present, and Future. Aerosol Sci. Technol. 2011, 45, 1337–1349. doi:10.1080/02786826.2011.593591.
  • Kundsin, R. B. Airborne Contagion; New York Academy of Sciences: New York, 1980.
  • Gao, X.; Wei, J.; Cowling, B. J.; Li, Y. Potential Impact of a Ventilation Intervention for Influenza in the Context of a Dense Indoor Contact Network in Hong Kong. Sci. Total Environ. 2016, 569–570, 373–381. doi:10.1016/J.SCITOTENV.2016.06.179.
  • Samake, A.; Uzu, G.; Martins, J. M. F.; Calas, A.; Vince, E.; Parat, S.; Jaffrezo, J. L. The Unexpected Role of Bioaerosols in the Oxidative Potential of PM. Sci. Report. 2017, 7, 1–10. doi:10.1038/s41598-017-11178-0.
  • Rintala, H.; Pitkäranta, M.; Täubel, M. Microbial Communities Associated with House Dust. Adv Appl Microbiol. 2012, 78, 75–120. doi:10.1016/B978-0-12-394805-2.00004-X.
  • Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. A Review of Indoor Microbial Growth across Building Materials and Sampling and Analysis Methods. Build. Environ. 2014, 80, 136–149. doi:10.1016/j.buildenv.2014.05.030
  • Nevalainen, A.; Täubel, M.; Hyvärinen, A. Indoor Fungi: Companions and Contaminants. Indoor Air. 2015, 25, 125–156. doi:10.1111/INA.12182.
  • Nwakanma, C.; Unachukwu, M. M. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.A., Sinigaglia, M., Ed.; Woodhead Publishing: Duxford, 2017; pp 133–148
  • Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I. D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. doi:10.1128/CMR.00021-11.
  • Horick, N.; Weller, E.; Milton, D. K.; Gold, D. R.; Li, R.; Spiegelman, D. Home Endotoxin Exposure and Wheeze in Infants: Correction for Bias Due to Exposure Measurement Error. Environ Health Perspect. 2006, 114, 135–140. doi:10.1289/EHP.7981.
  • O'Connor, G. T.; Walter, M.; Mitchell, H.; Kattan, M.; Morgan, W. J.; Gruchalla, R. S.; Pongracic, J. A.; Smartt, E.; Stout, J. W.; Evans Iii, R. Airborne Fungi in the Homes of Children with Asthma in Low-Income Urban Communities: The Inner-City Asthma Study. J. Allergy Clin. Immunol. 2004, 114, 599–606. doi:10.1016/j.jaci.2004.05.064
  • Tischer, C.; Chen, C.-M.; Heinrich, J. Association between Domestic Mould and Mould Components, and Asthma and Allergy in Children: A Systematic Review. Eur. Respir. J. 2011, 38, 812–824. doi:10.1183/09031936.00184010.
  • Savory, E.; Dooreleyers, M.; Spiler, K.; Li, E.; Sabarinathan, J.; Scott, J. A. Evaluation of an Optoelectronic Mould Sensor for Use in Building Health Monitoring and in Post-Remediation Performance Assessment. Sustain. Cities Soc. 2018, 36, 311–318. doi:10.1016/j.scs.2017.10.033
  • Curtis, L.; Lieberman, A.; Stark, M.; Rea, W.; Vetter, M. Adverse Health Effects of Indoor Molds. J. Nutr. Environ. Med. 2004, 14, 261–274. doi:10.1080/13590840400010318
  • Laborel-Préneron, A.; Magniont, C.; Aubert, J. E. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass Valoriz. 2018, 9, 1095–1112. doi:10.1007/s12649-017-9895-z
  • Lelumees, M. Moisture Dry-Out On Hygrothermal Performance Of Prefabricated Modular Insulation Elements, Tallinn University of Technology: Tallinn, 2016.
  • Hargreaves, M.; Parappukkaran, S.; Morawska, L.; Hitchins, J.; He, C.; Gilbert, D. A Pilot Investigation into Associations between Indoor Airborne Fungal and Non-Biological Particle Concentrations in Residential Houses in Brisbane, Australia. Sci Total Environ. 2003, 312, 89–101. doi:10.1016/S0048-9697(03)00169-4
  • Liao, C. M.; Luo, W. C.; Chen, S. C.; Chen, J. W.; Liang, H. M. Temporal/Seasonal Variations of Size-Dependent Airborne Fungi Indoor/Outdoor Relationships for a Wind-Induced Naturally Ventilated Airspace. Atmos. Environ. 2004, 38, 4415–4419. doi:10.1016/j.atmosenv.2004.04.029
  • Adams, R. I.; Bhangar, S.; Dannemiller, K. C.; Eisen, J. A.; Fierer, N.; Gilbert, J. A.; Green, J. L.; Marr, L. C.; Miller, S. L.; Siegel, J. A.; et al. Ten Questions Concerning the Microbiomes of Buildings. Build. Environ. 2016, 109, 224–234. doi:10.1016/j.buildenv.2016.09.001
  • Bonadonna, L.; Briancesco, R.; Brunetto, B.; Coccia, A. M.; Gironimo, D.; Vincenzo; Della Libera, S.; Fuselli, S. Gruppo di Studio Nazionale sull’Inquinamento Indoor,; Gucci, P. M. B.; et al. PublISS – Dettagli Dell’asset; 2013.
  • Knight, V. Viruses as Agents of Airborne Contagion. Ann. N Y Acad Sci. 1980, 353, 147–156. doi:10.1111/J.1749-6632.1980.TB18917.X.
  • Couch, R. B. Viruses and Indoor Air Pollution. Bull. N Y Acad. Med. 1981, 57, 907–921.
  • Verreault, D.; Moineau, S.; Duchaine, C. Methods for Sampling of Airborne Viruses. Microbiol. Mol. Biol. Rev. 2008, 72, 413–444. doi:10.1128/MMBR.00002-08.
  • Misztal, P. K.; Lymperopoulou, D. S.; Adams, R. I.; Scott, R. A.; Lindow, S. E.; Bruns, T.; Taylor, J. W.; Uehling, J.; Bonito, G.; Vilgalys, R.; Goldstein, A. H. Emission Factors of Microbial Volatile Organic Compounds from Environmental Bacteria and Fungi. Environ. Sci. Technol. 2018, 52, 8272–8282. doi:10.1021/ACS.EST.8B00806.
  • Ditengou, F. A.; Müller, A.; Rosenkranz, M.; Felten, J.; Lasok, H.; van Doorn, M. M.; Legué, V.; Palme, K.; Schnitzler, J.-P.; Polle, A. Volatile Signalling by Sesquiterpenes from Ectomycorrhizal Fungi Reprogrammes Root Architecture. Nat. Commun. 2015, 6, 1–9. doi:10.1038/ncomms7279.
  • Korpi, A.; Järnberg, J.; Pasanen, A.-L. Microbial Volatile Organic Compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. doi:10.1080/10408440802291497.
  • Bönisch, U.; Böhme, A.; Kohajda, T.; Mögel, I.; Schütze, N.; von Bergen, M.; Simon, J. C.; Lehmann, I.; Polte, T. T. Volatile Organic Compounds Enhance Allergic Airway Inflammation in an Experimental Mouse Model. PLoS One. 2012, 7, e39817. doi:10.1371/journal.pone.0039817
  • Nurmatov, U. B.; Tagiyeva, N.; Semple, S.; Devereux, G.; Sheikh, A. Volatile Organic Compounds and Risk of Asthma and Allergy: A Systematic Review. Eur. Respir. Rev. 2015, 24, 92–101. doi:10.1183/09059180.00000714.
  • Singer, B. C.; Revzan, K. L.; Hotchi, T.; Hodgson, A. T.; Brown, N. J. Sorption of Organic Gases in a Furnished Room. Atmos. Environ. 2004, 38, 2483–2494. doi:10.1016/j.atmosenv.2004.02.003
  • Tichenor, B. A.; Guo, Z.; Dunn, J. E.; Sparks, L. E.; Mason, M. A. The Interaction of Vapour Phase Organic Compounds with Indoor Sinks. Indoor Air. 1991, 1, 23–35. doi:10.1111/j.1600-0668.1991.03-11.x
  • Jørgensen, R. B.; Bjørseth, O.; Malvik, B. Chamber Testing of Adsorption of Volatile Organic Compounds (VOCs) on Material Surfaces. Indoor Air. 1999, 9, 2–9. doi:10.1111/j.1600-0668.1999.t01-3-00002.x.
  • Logue, J. M.; McKone, T. E.; Sherman, M. H.; Singer, B. C. Hazard Assessment of Chemical Air Contaminants Measured in Residences. Indoor Air. 2011, 21, 92–109. doi:10.1111/J.1600-0668.2010.00683.X.
  • Yu, C.; Crump, D. A Review of the Emission of VOCs from Polymeric Materials Used in Buildings. Build. Environ. 1998, 33, 357–374. doi:10.1016/S0360-1323(97)00055-3
  • Klein, F.; Platt, S. M.; Farren, N. J.; Detournay, A.; Bruns, E. A.; Bozzetti, C.; Daellenbach, K. R.; Kilic, D.; Kumar, N. K.; Pieber, S. M.; et al. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions. Environ. Sci. Technol. 2016, 50, 1243–1250. doi:10.1021/ACS.EST.5B04618.
  • Jorgensen, R. B.; Bjorseth, O. Sorption Behaviour of Volatile Organic Compounds on Material Surfaces — The Influence of Combinations of Compounds and Materials Compared to Sorption of Single Compounds on Single Materials. Environ. Int. 1999, 25, 17–27. doi:10.1016/S0160-4120(98)00090-7
  • Morrison, G.; Li, H.; Mishra, S.; Buechlein, M. Airborne Phthalate Partitioning to Cotton Clothing. Atmos. Environ. 2015, 115, 149–152. doi:10.1016/j.atmosenv.2015.05.051
  • Collins, D. B.; Hems, R. F.; Zhou, S.; Wang, C.; Grignon, E.; Alavy, M.; Siegel, J. A.; Abbatt, J. P. D. Evidence for Gas-Surface Equilibrium Control of Indoor Nitrous Acid. Environ. Sci. Technol. 2018, 52, 12419–12427. doi:10.1021/acs.est.8b04512.
  • Weschler, C. J.; Langer, S.; Fischer, A.; Bekö, G.; Toftum, J.; Clausen, G. Squalene and Cholesterol in Dust from Danish Homes and Daycare Centers. Environ. Sci. Technol. 2011, 45, 3872–3879. doi:10.1021/ES103894R.
  • Weschler, C. J.; Nazaroff, W. W. SVOC Exposure Indoors: Fresh Look at Dermal Pathways. Indoor Air 2012, 22, 356–377. doi:10.1111/j.1600-0668.2012.00772.x
  • Junge, C. E. In Fate of Pollutants in the Air and Water Environments; Suffet, I. H., Ed.; Wiley: New York, 1977.
  • Yamasaki, H.; Kuwata, K.; Miyamoto, H. Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol. 1982, 16, 189–194. doi:10.1021/es00098a003
  • Bidleman, T. F.; Billings, W. N.; Foreman, W. T. Vapor-Particle Partitioning of Semivolatile Organic Compounds: Estimates from Field Collections. Environ. Sci. Technol. 1986, 20, 1038–1043. doi:10.1021/es00152a013
  • Pankow, J. F. Review and Comparative Analysis of the Theories on Partitioning between the Gas and Aerosol Particulate Phases in the Atmosphere. Atmos. Environ. 1987, 21, 2275–2283. doi:10.1016/0004-6981(87)90363-5
  • Pankow, J. F.; Bidleman, T. F. Interdependence of the Slopes and Intercepts from Log-Log Correlations of Measured Gas-Particle Paritioning and Vapor Pressure—I. Theory and Analysis of Available Data. Atmos. Environ. Part A. Gen. Top. 1992, 26, 1071–1080. doi:10.1016/0960-1686(92)90039-N
  • Pankow, J. F. An Absorption Model of Gas/Particle Partitioning of Organic Compounds in the Atmosphere. Atmos. Environ. 1994, 28, 185–188. doi:10.1016/1352-2310(94)90093-0
  • Liang, C.; Pankow, J. F.; Odum, J. R.; Seinfeld, J. H. Gas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog Aerosols. Environ. Sci. Technol. 1997, 31, 3086–3092. doi:10.1021/es9702529
  • Goss, K.-U.; Schwarzenbach, R. P. Gas/Solid and Gas/Liquid Partitioning of Organic Compounds: Critical Evaluation of the Interpretation of Equilibrium Constants. Environ. Sci. Technol. 1998, 32, 2025–2032. doi:10.1021/es9710518
  • Sheffield, A. E.; Pankow, J. F. Specific Surface Area of Urban Atmospheric Particulate Matter in Portland, Oregon. Environ. Sci. Technol. 1994, 28, 1759–1766. doi:10.1021/ES00058A030.
  • Goss, K.-U. Conceptual Model for the Adsorption of Organic Compounds from the Gas Phase to Liquid and Solid Surfaces. Environ. Sci. Technol. 1997, 31, 3600–3605. doi:10.1021/es970361n
  • Xiao, H.; Wania, F. Is Vapor Pressure or the Octanol-Air Partition Coefficient a Better Descriptor of the Partitioning between Gas Phase and Organic Matter? Atmos. Environ. 2003, 37, 2867–2878. doi:10.1016/S1352-2310(03)00213-9
  • Lai, A. C. K.; Nazaroff, W. W. Modeling Indoor Particle Deposition from Turbulent Flow onto Smooth Surfaces. J. Aerosol. Sci. 2000, 31, 463–476. doi:10.1016/S0021-8502(99)00536-4
  • Zhou, S.; Forbes, M. W.; Abbatt, J. P. D. Application of Direct Analysis in Real Time-Mass Spectrometry (DART-MS) to the Study of Gas–Surface Heterogeneous Reactions: Focus on Ozone and PAHs. Anal. Chem. 2015, 87, 4733–4740. doi:10.1021/ac504722z
  • Pankow, J. F.; Asher, W. E. SIMPOL. 1: A Simple Group Contribution Method for Predicting Vapor Pressures and Enthalpies of Vaporization of Multifunctional Organic Compounds. Atmos. Chem. Phys. 2008, 8, 2773–2796. doi:10.5194/acp-8-2773-2008
  • Fieldson, G. T.; Barbari, T. A. The Use of FTi.r.-a.t.r. Spectroscopy to Characterize Penetrant Diffusion in Polymers. Polymer (Guildf). 1993, 34, 1146–1153. doi:10.1016/0032-3861(93)90765-3
  • Huang, Y.; Zhao, R.; Charan, S. M.; Kenseth, C. M.; Zhang, X.; Seinfeld, J. H. Unified Theory of Vapor-Wall Mass Transport in Teflon-Walled Environmental Chambers. Environ. Sci. Technol. 2018, 52, 2134–2142. doi:10.1021/ACS.EST.7B05575.
  • Plaisance, H.; Mocho, P.; Desauziers, V. Comparative Analysis of Formaldehyde and Toluene Sorption on Indoor Floorings and Consequence on Indoor Air Quality. Indoor Air. 2020, 30, 1256–1267. 30 doi:10.1111/ina.12704
  • Pankow, J. F. Common Y-Intercept and Single Compound Regressions of Gas-Particle Partitioning Data vs 1/T. Atmos. Environ. Part A. Gen. Top. 1991, 25, 2229–2239. doi:10.1016/0960-1686(91)90098-R
  • Turpin, B. J.; Huntzicker, J. J. Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations. Atmos. Environ. Part A. Gen. Top. 1991, 25, 207–215. doi:10.1016/0960-1686(91)90291-E
  • Pandis, S. N.; Harley, R. A.; Cass, G. R.; Seinfeld, J. H. Secondary Organic Aerosol Formation and Transport. Atmos. Environ. Part A. Gen. Top. 1992, 26, 2269–2282. doi:10.1016/0960-1686(92)90358-R
  • Schwarzenbach, R.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry; Wiley: New York, 1993.
  • Hoff, J. T.; Mackay, D.; Gillham, R.; Shiu, W. Y. Partitioning of Organic Chemicals at the Air-Water Interface in Environmental Systems. Environ. Sci. Technol. 1993, 27, 2174–2180. doi:10.1021/es00047a026
  • Foreman, W. T.; Bidleman, T. F. Semivolatile Organic Compounds in the Ambient Air of Denver. Colorado. Atmos. Environ. Part A. Gen. Top. 1990, 24, 2405–2416. doi:10.1016/0960-1686(90)90333-I
  • Cotham, W. E.; Bidleman, T. F. Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site Near Lake Michigan. Environ. Sci. Technol. 1995, 29, 2782–2789. doi:10.1021/es00011a013
  • Falconer, R. L.; Bidleman, T. F.; Cotham, W. E. Preferential Sorption of Non- and Mono-Ortho-Polychlorinated Biphenyls to Urban Aerosols. Environ. Sci. Technol. 1995, 29, 1666–1673. doi:10.1021/ES00006A034.
  • Gustafson, K. E.; Dickhut, R. M. Particle/Gas Concentrations and Distributions of PAHs in the Atmosphere of Southern Chesapeake Bay. Environ. Sci. Technol. 1997, 31, 140–147. doi:10.1021/es9602197
  • Finizio, A.; Mackay, D.; Bidleman, T.; Harner, T. Octanol-Air Partition Coefficient as a Predictor of Partitioning of Semi-Volatile Organic Chemicals to Aerosols. Atmos. Environ. 1997, 31, 2289–2296. doi:10.1016/S1352-2310(97)00013-7
  • Israelachvili, J. Intermolecular and Surface Forces, 2nd ed.; Academic Press: London, 1992.
  • Abraham, M. H.; Andonian-Haftvan, J.; Whiting, G. S.; Leo, A.; Taft, R. S. Hydrogen Bonding. Part 34. The Factors That Influence the Solubility of Gases and Vapours in Water at 298 K, and a New Method for Its Determination. J. Chem. Soc. Perkin Trans. 2 1994, 9, 1777–1791. doi:10.1039/P29940001777.
  • Nazaroff, W. W.; Cass, G. R. Particle Deposition from a Natural Convection Flow onto a Vertical Isothermal Flat Plate. J. Aerosol Sci. 1987, 18, 445–455. doi:10.1016/0021-8502(87)90042-5
  • Butt, C. M.; Diamond, M. L.; Truong, J.; Ikonomou, M. G.; Schure, A. F. H. t. Spatial Distribution of Polybrominated Diphenyl Ethers in Southern Ontario As Measured in Indoor and Outdoor Window Organic Films. Environ. Sci. Technol. 2004, 38, 724–731. doi:10.1021/es034670r
  • Bi, C.; Liang, Y.; Xu, Y. Fate and Transport of Phthalates in Indoor Environments and the Influence of Temperature: A Case Study in a Test House. Environ. Sci. Technol. 2015, 49, 9674–9681. doi:10.1021/acs.est.5b02787
  • Cox, S. S.; Zhao, D.; Little, J. C. Measuring Partition and Diffusion Coefficients for Volatile Organic Compounds in Vinyl Flooring. Atmos. Environ. 2001, 35, 3823–3830. doi:10.1016/S1352-2310(01)00175-3
  • Pankow, J. F. Further Discussion of the Octanol/Air Partition Coefficient Koa as a Correlating Parameter for Gas/Particle Partitioning Coefficients. Atmos. Environ. 1998, 32, 1493–1497. doi:10.1016/S1352-2310(97)00383-X
  • Qiao, L.; Ma, W.; Zhang, Z.; Liu, L.; Song, W.; Jia, H.; Zhu, N.; Li, W.; Macdonald, R.; Nikolaev, A. Slopes and Intercepts from Log-Log Correlations of Gas/Particle Quotient and Octanol-Air Partition Coefficient (Vapor-Pressure) for Semi-Volatile Organic Compounds: II. Theoretical Predictions vs. Monitoring. Chemosphere. 2021, 273, 128860. doi:10.1016/J.CHEMOSPHERE.2020.128860.
  • Kruza, M.; Lewis, A. C.; Morrison, G. C.; Carslaw, N. Impact of Surface Ozone Interactions on Indoor Air Chemistry: A Modeling Study. Indoor Air. 2017, 27, 1001–1011. doi:10.1111/ina.12381.
  • LMDZ-INCA https://web.aria.fr/creator/poleasia/pages/lmdz.php. (accessed Sep 5, 2021).
  • EVS-EN_9277:2010. Determination of the Specific Surface Area of Solids by Gas Adsorption – BET Method; Estonian Centre for Standardisation and Accreditation, 2010.
  • Rajan, P. E.; Krishnamurthy, A.; Morrison, G.; Rezaei, F. Advanced Buffer Materials for Indoor Air CO2 Control in Commercial Buildings. Indoor Air. 2017, 27, 1213–1223. doi:10.1111/ina.12386.
  • Or, V. W.; Alves, M. R.; Wade, M.; Schwab, S.; Corsi, R. L.; Grassian, V. H. Crystal Clear? Microspectroscopic Imaging and Physicochemical Characterization of Indoor Depositions on Window Glass. Environ. Sci. Technol. Lett. 2018, 5, 514–519. doi:10.1021/acs.estlett.8b00355
  • Tanabe, K.; Yamaguchi, T. Basicity and Acidity of Solid Surfaces. J. Res. Inst. Catal Hokkaido Univ. 1964, 179–184.
  • Sun, C.; Berg, J. C. A Review of the Different Techniques for Solid Surface acid-base characterization. Adv. Colloid. Interface Sci. 2003, 105, 151–175. doi:10.1016/S0001-8686(03)00066-6.
  • Auroux, A.; Gervasini, A. Microcalorimetric Study of the Acidity and Basicity of Metal Oxide Surfaces. J. Phys. Chem. 1990, 94, 6371–6379. doi:10.1021/j100379a041
  • Rindelaub, J. D.; Craig, R. L.; Nandy, L.; Bondy, A. L.; Dutcher, C. S.; Shepson, P. B.; Ault, A. P. Direct Measurement of PH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity. J. Phys. Chem. A. 2016, 120, 911–917. doi:10.1021/ACS.JPCA.5B12699.
  • Wei, H.; Vejerano, E. P.; Leng, W.; Huang, Q.; Willner, M. R.; Marr, L. C.; Vikesland, P. J. Aerosol Microdroplets Exhibit a Stable PH Gradient. Proc. Natl. Acad. Sci. U S A. 2018, 115, 7272–7277. doi:10.1073/pnas.1720488115
  • Xue, J.; Li, Y.; Xie, X.; Xiong, C.; Liu, H.; Chen, S.; Nie, Z.; Chen, C.; Zhao, J. Characterization of Organic Aerosol in Beijing by Laser Desorption Ionization Coupled with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Atmos. Environ. 2017, 159, 55–65. doi:10.1016/j.atmosenv.2017.03.052
  • Li, W.; Shao, L.; Zhang, D.; Ro, C. U.; Hu, M.; Bi, X.; Geng, H.; Matsuki, A.; Niu, H.; Chen, J. A Review of Single Aerosol Particle Studies in the Atmosphere of East Asia: Morphology, Mixing State, Source, and Heterogeneous Reactions. J. Clean. Prod. 2016, 112, 1330–1349. doi:10.1016/j.jclepro.2015.04.050
  • Fu, Y.; Zhang, Y.; Zhang, F.; Chen, J.; Zhu, Z.; Yu, X. Y. Does Interfacial Photochemistry Play a Role in the Photolysis of Pyruvic Acid in Water? Atmos. Environ. 2018, 191, 36–45. doi:10.1016/j.atmosenv.2018.07.061
  • Depoorter, A.; Kalalian, C.; Emmelin, C.; Lorentz, C.; George, C. Indoor Heterogeneous Photochemistry of Furfural Drives Emissions of Nitrous Acid. Indoor Air. 2021, 31, 682–692. doi:10.1111/INA.12758.
  • Ridnour, L. A.; Sim, J. E.; Hayward, M. A.; Wink, D. A.; Martin, S. M.; Buettner, G. R.; Spitz, D. R. A Spectrophotometric Method for the Direct Detection and Quantitation of Nitric Oxide, Nitrite, and Nitrate in Cell Culture Media. Anal. Biochem. 2000, 281, 223–229. doi:10.1006/ABIO.2000.4583.
  • Schieweck, A.; Uhde, A.; Salthammer, T. Determination of Acrolein in Ambient Air and in the Atmosphere of Environmental Test Chambers. Environ. Sci. Process. Impacts. 2021, doi:10.1039/D1EM00221J.
  • Hart, K. M.; Pankow, J. F. High-Volume Air Sampler for Particle and Gas Sampling.2.Use of Backup Filters To Correct for the Adsorption of Gas-Phase Polycyclic Aromatic Hydrocarbons to the Front Filter. Environ. Sci. Technol. 1994, 28, 655–661. doi:10.1021/es00053a019
  • Esteve, W.; Budzinski, H.; Villenave, E. Heterogeneous Reactivity of OH Radicals with Phenanthrene. Polycycl. Aromat. Compd. 2003, 23, 441–456. doi:10.1080/714040938
  • Miet, K.; Budzinski, H.; Villenave, E. Heterogeneous reactions of oh radicals with particulate-pyrene and 1-nitropyrene of atmospheric interest. Polycycl. Aromat. Compd. 2009, 29 (5), 267–281. 10.1080/10406630903291196.
  • Bedjanian, Y.; Nguyen, M. L. Kinetics of the Reactions of Soot Surface-Bound Polycyclic Aromatic Hydrocarbons with O3. Chemosphere, 2010, 79, 387–393. doi:10.1016/J.CHEMOSPHERE.2010.02.009
  • Ringuet, J.; Albinet, A.; Leoz-Garziandia, E.; Budzinski, H.; Villenave, E. Reactivity of Polycyclic Aromatic Compounds (PAHs, NPAHs and OPAHs) Adsorbed on Natural Aerosol Particles Exposed to Atmospheric Oxidants. Atmos. Environ. 2012, 61, 15–22. doi:10.1016/j.atmosenv.2012.07.025
  • Zimmermann, K.; Jariyasopit, N.; Simonich, S. L. M.; Tao, S.; Atkinson, R.; Arey, J. Formation of Nitro-PAHs from the Heterogeneous Reaction of Ambient Particle-Bound PAHs with N2O5/NO3/NO2. Environ. Sci. Technol. 2013, 47, 8434–8442. doi:10.1021/es401789x
  • Jariyasopit, N.; McIntosh, M.; Zimmermann, K.; Arey, J.; Atkinson, R.; Cheong, P. H.-Y.; Carter, R. G.; Yu, T.-W.; Dashwood, R. H.; Simonich, S. L. M. Novel Nitro-PAH Formation from Heterogeneous Reactions of PAHs with NO2, NO3/N2O5, and OH Radicals: Prediction, Laboratory Studies, and Mutagenicity. Environ. Sci. Technol. 2014, 48, 412–419. doi:10.1021/es4043808
  • Ray, D.; Lišková, H.; Klán, P. Kinetics of Heterogeneous Reactions of Ozone with Representative PAHs and an Alkene at the air-ice interface at 258 and 188 K. Environ. Sci. Process. Impacts. 2014, 16, 770–776. doi:10.1039/c3em00665d
  • Ma, J.; Liu, Y.; He, H. Degradation Kinetics of Anthracene by Ozone on Mineral Oxides. Atmos. Environ. 2010, 44, 4446–4453. doi:10.1016/j.atmosenv.2010.07.042
  • Sauret-Szczepanski, N.; Lane, D. A. Smog Chamber Study of Acenaphthene: Gas/Particle Partition Measurements Of The Products Formed By Reaction With The Oh Radical. Polycycl. Aromat. Compd. 2004, 24, 161–172. doi:10.1080/10406630490460610
  • Perraudin, E.; Budzinski, H.; Villenave, E. Identification and Quantification of Ozonation Products of Anthracene and Phenanthrene Adsorbed on Silica Particles. Atmos. Environ. 2007, 41, 6005–6017. doi:10.1016/j.atmosenv.2007.03.010
  • Miet, K.; Le Menach, K.; Flaud, P. M.; Budzinski, H.; Villenave, E. Heterogeneous Reactions of Ozone with Pyrene, 1-Hydroxypyrene and 1-Nitropyrene Adsorbed on Particles. Atmos. Environ 2009, 43, 3699–3707. doi:10.1016/j.atmosenv.2009.04.032
  • Farmer, D. K. Analytical Challenges and Opportunities for Indoor Air Chemistry Field Studies. Anal. Chem. 2019, 91, 3761–3767. doi:10.1021/acs.analchem.9b00277
  • Liu, Y.; Misztal, P. K.; Xiong, J.; Tian, Y.; Arata, C.; Weber, R. J.; Nazaroff, W. W.; Goldstein, A. H. Characterizing Sources and Emissions of Volatile Organic Compounds in a Northern California Residence Using Space- and Time-Resolved Measurements. Indoor Air. 2019, 29, 630–644. doi:10.1111/ina.12562
  • Adams, R. I.; Lymperopoulou, D. S.; Misztal, P. K.; De Cassia Pessotti, R.; Behie, S. W.; Tian, Y.; Goldstein, A. H.; Lindow, S. E.; Nazaroff, W. W.; Taylor, J. W.; et al. Microbes and Associated Soluble and Volatile Chemicals on Periodically Wet Household Surfaces. Microbiome 2017, 5, 128. doi:10.1186/s40168-017-0347-6
  • Wild, R. J.; Edwards, P. M.; Dubé, W. P.; Baumann, K.; Edgerton, E. S.; Quinn, P. K.; Roberts, J. M.; Rollins, A. W.; Veres, P. R.; Warneke, C.; et al. A Measurement of Total Reactive Nitrogen, NOy, Together with NO2, NO, and O3 via Cavity Ring-down Spectroscopy. Environ. Sci. Technol. 2014, 48, 9609–9615. doi:10.1021/es501896w
  • Liu, S.; Li, R.; Wild, R. J.; Warneke, C.; Gouw, J. A. d.; Brown, S. S.; Miller, S. L.; Luongo, J. C.; Jimenez, J. L.; Ziemann, P. J. Contribution of Human-Related Sources to Indoor Volatile Organic Compounds in a University Classroom. Indoor Air. 2016, 26, 925–938. doi:10.1111/ina.12272
  • Yao, M.; Zhao, B. Surface Removal Rate of Ozone in Residences in China. Build. Environ 2018, 142, 101–106. doi:10.1016/j.buildenv.2018.06.010
  • Ampollini, L.; Katz, E. F.; Bourne, S.; Tian, Y.; Novoselac, A.; Goldstein, A. H.; Lucic, G.; Waring, M. S.; Decarlo, P. F. Observations and Contributions of Real-Time Indoor Ammonia Concentrations during HOMEChem. Environ. Sci. Technol. 2019, 53, 8591–8598. doi:10.1021/acs.est.9b02157
  • FT-IR Spectroscopy Attenuated Total Reflectance (ATR) https://web.archive.org/web/20070216065646/http:/las.perkinelmer.com/content/TechnicalInfo/TCH_FTIRATR.pdf. (accessed Sep 11, 2021).
  • Ma, J.; Liu, Y.; Ma, Q.; Liu, C.; He, H. Heterogeneous Photochemical Reaction of Ozone with Anthracene Adsorbed on Mineral Dust. Atmos. Environ. 2013, 72, 165–170. doi:10.1016/j.atmosenv.2013.02.039
  • Han, C.; Liu, Y.; Ma, J.; He, H. Key Role of Organic Carbon in the Sunlight-Enhanced Atmospheric Aging of Soot by O2. Proc. Natl. Acad. Sci. U S A. 2012, 109, 21250–21255. doi:10.1073/pnas.1212690110
  • Destaillats, H.; Singer, B. C.; Gundel, L. A. Evidence of Acid–Base Interactions between Amines and Model Indoor Surfaces by ATR-FTIR Spectroscopy. Atmos. Environ 2007, 41, 3177–3181. doi:10.1016/j.atmosenv.2006.05.083
  • Destaillats, H.; B. C.; Singer, S. K.; Lee, L. A.; Gundel Effect of Ozone on Nicotine Desorption from Model Surfaces: Evidence for Heterogeneous Chemistry. Environ. Sci. Technol. 2006, 40, 1799–1805. doi:10.1021/es050914r
  • Fieldson, G. T.; Barbari, T. A. Analysis of Diffusion in Polymers Using Evanescent Field Spectroscopy. AIChE J. 1995, 41, 795–804. doi:10.1002/aic.690410406
  • Elabd, Y. A.; Baschetti, M. G.; Barbari, T. A. Time-Resolved Fourier Transform Infrared/Attenuated Total Reflection Spectroscopy for the Measurement of Molecular Diffusion in Polymers. J. Polym. Sci. B Polym. Phys. 2003, 41, 2794–2807. doi:10.1002/polb.10661
  • Pitts, J. N. J.; Biermann, H. W.; Tuazon, E. C.; Green, M.; Long, W. D.; Winer, A. M. Time-Resolved Identification and Measurement of Indoor Air Pollutants by Spectroscopic Techniques: Gaseous Nitrous Acid, Methanol, Formaldehyde and Formic Acid. JAPCA. 1989, 39, 1344–1347. doi:10.1080/08940630.1989.10466629
  • Peterson, R. E.; Tyler, B. J. Analysis of Organic and Inorganic Species on the Surface of Atmospheric Aerosol Using Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Atmos. Environ 2002, 36, 6041–6049. doi:10.1016/S1352-2310(02)00686-6
  • Rogowski, J.; Bem, H. Surface Analysis of the Size-Fractioned Urban Aerosols by Secondary Ion Mass Spectrometry (ToF-SIMS). Open Chem 2007, 5, 132–143. doi:10.2478/s11532-006-0066-5
  • Roach, P. J.; Laskin, J.; Laskin, A. Molecular Characterization of Organic Aerosols Using Nanospray-Desorption/Electrospray Ionization-Mass Spectrometry†. Anal. Chem. 2010, 82, 7979–7986. doi:10.1021/ac101449p
  • Li, M.; Chen, H.; Wang, B. F.; Yang, X.; Lian, J. J.; Chen, J. M. Direct Quantification of PAHs in Biomass Burning Aerosols by Desorption Electrospray Ionization Mass Spectrometry. Int. J. Mass Spectrom 2009, 281, 31–36. doi:10.1016/j.ijms.2008.11.013
  • Laskin, J.; Laskin, A.; Roach, P. J.; Slysz, G. W.; Anderson, G. A.; Nizkorodov, S. A.; Bones, D. L.; Nguyen, L. Q. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols. Anal. Chem. 2010, 82, 2048–2058. doi:10.1021/ac902801f
  • Dong, J. Merged Electrospray Ionization Mass Spectrometry. LSU Dr. Diss., 2009,
  • Dong, J.; Rezenom, Y. H.; Murray, K. K. Desorption Electrospray Ionization of Aerosol Particles. Rapid Commun. Mass Spectrom. 2007, 21, 3995–4000. doi:10.1002/rcm.3294
  • Finlayson-Pitts, B. J.; Pitts, J. N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. 2000, 969.
  • Nah, T.; Chan, M.; Leone, S. R.; Wilson, K. R. Real Time in Situ Chemical Characterization of Submicrometer Organic Particles Using Direct Analysis in Real Time-Mass Spectrometry. Anal. Chem. 2013, 85, 2087–2095. doi:10.1021/ac302560c
  • Zhao, Y.; Huang, H.; Zhang, Y.; Wu, K.; Zeng, F.; Wang, J.; Yu, X.; Zhu, Z.; Yu, X. Y.; Wang, F. Atmospheric Particulate Characterization by ToF-SIMS in an Urban Site in Beijing. Atmos. Environ 2020, 220, 117090. doi:10.1016/j.atmosenv.2019.117090
  • Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R. Application of High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometry Measurements to Estimate Volatility Distributions of α-Pinene and Naphthalene Oxidation Products. Atmos. Meas. Tech. 2015, 8, 1–18. doi:10.5194/amt-8-1-2015
  • Yatavelli, R. L. N.; Mohr, C.; Stark, H.; Day, D. A.; Thompson, S. L.; Lopez-Hilfiker, F. D.; Campuzano-Jost, P.; Palm, B. B.; Vogel, A. L.; Hoffmann, T.; et al. Estimating the Contribution of Organic Acids to Northern Hemispheric Continental Organic Aerosol. Geophys. Res. Lett. 2015, 42, 6084–6090. doi:10.1002/2015GL064650
  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al. Phase Partitioning and Volatility of Secondary Organic Aerosol Components Formed from α-Pinene Ozonolysis and OH Oxidation: The Importance of Accretion Products and Other Low Volatility Compounds. Atmos. Chem. Phys. 2015, 15, 7765–7776. doi:10.5194/acp-15-7765-2015
  • Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A Large Source of Low-Volatility Secondary Organic Aerosol. Nat. 2014 5067489 2014, 506, 476–479. doi:10.1038/nature13032
  • Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurtén, T.; Worsnop, D. R.; Thornton, J. A. An Iodide-Adduct High-Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic Compounds. Environ. Sci. Technol. 2014, 48, 6309–6317. doi:10.1021/es500362a
  • Kürten, A.; Rondo, L.; Ehrhart, S.; Curtius, J. Performance of a Corona Ion Source for Measurement of Sulfuric Acid by Chemical Ionization Mass Spectrometry. Atmos. Meas. Tech. 2011, 4, 437–443. doi:10.5194/amt-4-437-2011
  • Jokinen, T.; Sipilä, M.; Junninen, H.; Ehn, M.; Lönn, G.; Hakala, J.; Petäjä, T.; Mauldin, R. L.; Kulmala, M.; Worsnop, D. R. Atmospheric Sulphuric Acid and Neutral Cluster Measurements Using CI-APi-TOF. Atmos. Chem. Phys. 2012, 12, 4117–4125. doi:10.5194/acp-12-4117-2012
  • Riva, M.; Rantala, P.; Krechmer, E. J.; Peräkylä, O.; Zhang, Y.; Heikkinen, L.; Garmash, O.; Yan, C.; Kulmala, M.; Worsnop, D.; et al. Evaluating the Performance of Five Different Chemical Ionization Techniques for Detecting Gaseous Oxygenated Organic Species. Atmos. Meas. Tech. 2019, 12, 2403–2421. doi:10.5194/amt-12-2403-2019
  • Cody, R. B.; Laramée, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302. doi:10.1021/ac050162j
  • Lindinger, W.; Hansel, A.; Jordan, A. On-Line Monitoring of Volatile Organic Compounds at Pptv Levels by Means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) Medical Applications, Food Control and Environmental Research. Int. J. Mass Spectrom. Ion Process 1998, 173, 191–241. doi:10.1016/S0168-1176(97)00281-4
  • de Gouw, J.; Warneke, C. Measurements of Volatile Organic Compounds in the Earth’s Atmosphere Using Proton-Transfer-Reaction Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 223–257. doi:10.1002/mas.20119
  • Arnold, S. T.; Viggiano, A.; Morris, R. A. Rate Constants and Product Branching Fractions for the Reactions of H3O + and NO + with C2 − C12 Alkanes. J. Phys. Chem. A. 1998, 102, 8881–8887. doi:10.1021/jp9815457
  • Schripp, T.; Fauck, C.; Salthammer, T. Interferences in the Determination of Formaldehyde via PTR-MS: What Do We Learn from m/z 31? Int. J. Mass Spectrom 2010, 289, 170–172. doi:10.1016/j.ijms.2009.11.001
  • Vlasenko, A.; Macdonald, A. M.; Sjostedt, S. J.; Abbatt, J. P. D. Formaldehyde Measurements by Proton Transfer Reaction Formaldehyde Measurements by Proton Transfer Reaction-Mass Spectrometry (PTR-MS): Correction for Humidity Effects Formaldehyde Measurements by Proton Transfer Reaction. AMTD 2010, 3, 965–988.
  • Warneke, C.; Holzinger, R.; Hansel, A.; Jordan, A.; Lindinger, W.; Pöschl, U.; Williams, J.; Hoor, P.; Fischer, H.; Crutzen, P. J.; et al. Isoprene and Its Oxidation Products Methyl Vinyl Ketone, Methacrolein, and Isoprene Related Peroxides Measured Online over the Tropical Rain Forest of Surinam in March 1998. J. Atmos. Chem 2001, 38, 167–185. doi:10.1023/A:1006326802432
  • Wisthaler, A.; Apel, E. C.; Bossmeyer, J.; Hansel, A.; Junkermann, W.; Koppmann, R.; Meier, R.; Muller, K.; Solomon, S. J.; Steinbrecher, R.; et al. Technical Note: Intercomparison of Formaldehyde Measurements at the Atmosphere Simulation Chamber SAPHIR. Atmos. Chem. Phys. 2008, 8, 2189–2200. doi:10.5194/acp-8-2189-2008
  • Rivera-Rios, J. C.; Nguyen, T. B.; Crounse, J. D.; Jud, W.; Clair, J. M. S.; Mikoviny, T.; Gilman, J. B.; Lerner, B. M.; Kaiser, J. B.; Gouw, J. d.; et al. Conversion of Hydroperoxides to Carbonyls in Field and Laboratory Instrumentation: Observational Bias in Diagnosing Pristine versus Anthropogenically Controlled Atmospheric Chemistry. Geophys. Res. Lett. 2014, 41, 8645–8651. doi:10.1002/2014GL061919
  • Warneke, C.; Veres, P.; Murphy, S. M.; Soltis, J.; Field, R. A.; Graus, M. G.; Koss, A.; Li, S. M.; Li, R.; Yuan, B.; et al. PTR-QMS versus PTR-TOF Comparison in a Region with Oil and Natural Gas Extraction Industry in the Uintah Basin in 2013. Atmos. Meas. Tech. 2015, 8, 411–420. doi:10.5194/amt-8-411-2015
  • de Gouw, J. A.; de; Goldan, P. D.; Warneke, C.; Kuster, W. C.; Roberts, J. M.; Marchewka, M.; Bertman, S. B.; Pszenny, A. A. P.; Keene, W. C. Validation of Proton Transfer Reaction-Mass Spectrometry (PTR-MS) Measurements of Gas-Phase Organic Compounds in the Atmosphere during the New England Air Quality Study (NEAQS) in 2002. J. Geophys. Res. 2003, 108, 4682. doi:10.1029/2003JD003863
  • Holzinger, R.; Joe Acton, W. F.; Bloss, W. W.; Breitenlechner, M.; Crilley, L. L.; Dusanter, S.; Gonin, M.; Gros, V.; Keutsch, F. F.; Kiendler-Scharr, A.; et al. Validity and Limitations of Simple Reaction Kinetics to Calculate Concentrations of Organic Compounds from Ion Counts in PTR-MS. Atmos. Meas. Tech. 2019, 12, 6193–6208. doi:10.5194/amt-12-6193-2019
  • Warneke, C.; de Gouw, J. A.; Kuster, W. C.; Goldan, P. D.; and; R. Fall, Validation of Atmospheric VOC Measurements by Proton-Transfer-Reaction Mass Spectrometry using a Gas-Chromatographic Preseparation Method. Environ. Sci. Technol. 2003, 37, 2494–2501. doi:10.1021/ES026266I.
  • Sekimoto, K.; Li, S. M.; Yuan, B.; Koss, A.; Coggon, M.; Warneke, C.; de Gouw, J. Calculation of the Sensitivity of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for Organic Trace Gases Using Molecular Properties. Int. J. Mass Spectrom 2017, 421, 71–94. doi:10.1016/j.ijms.2017.04.006
  • Warneke, C.; Gouw, J. A. d.; Lovejoy, E. R.; Murphy, P. C.; Kuster, W. C.; Fall, R. Development of Proton-Transfer Ion Trap-Mass Spectrometry: On-Line Detection and Identification of Volatile Organic Compounds in Air. J. Am. Soc. Mass Spectrom. 2005, 16, 1316–1324. doi:10.1016/j.jasms.2005.03.025
  • Warneke, C.; Rosén, S.; Lovejoy, E. R.; Gouw, J. A. d.; Fall, R. Two Additional Advantages of Proton-Transfer Ion Trap Mass Spectrometry. Rapid Commun Mass Spectrom. 2004, 18, 133–134. doi:10.1002/rcm.1281
  • Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; Märk, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; Märk, T. D. An Online Ultra-High Sensitivity Proton-Transfer-Reaction Mass-Spectrometer Combined with Switchable Reagent Ion Capability (PTR + SRI − MS). Int. J. Mass Spectrom. 2009, 286, 32–38. doi:10.1016/j.ijms.2009.06.006
  • Koss, A. R.; Warneke, C.; Yuan, B.; Coggon, M. M.; Veres, P. R.; De Gouw, J. A. Evaluation of NO + Reagent Ion Chemistry for Online Measurements of Atmospheric Volatile Organic Compounds. Atmos. Meas. Tech. 2016, 9, 2909–2925. doi:10.5194/amt-9-2909-2016
  • Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Märk, L.; Seehauser, H.; Schottkowsky, R.; Sulzer, P.; Märk, T. D. A High Resolution and High Sensitivity Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS). Int. J. Mass Spectrom. 2009, 286, 122–128. doi:10.1016/j.ijms.2009.07.005
  • Amador-Muñoz, O.; Misztal, P. K.; Weber, R.; Worton, D. R.; Zhang, H.; Drozd, G.; Goldstein, A. H. Sensitive Detection of N-Alkanes Using a Mixed Ionization Mode Proton-Transfer-Reaction Mass Spectrometer. Atmos. Meas. Tech. 2016, 9, 5315–5329. doi:10.5194/amt-9-5315-2016
  • Sulzer, P.; Edtbauer, A.; Hartungen, E.; Jürschik, S.; Jordan, A.; Hanel, G.; Feil, S.; Jaksch, S.; Märk, L.; Märk, T. D. From Conventional Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) to Universal Trace Gas Analysis. Int. J. Mass Spectrom. 2012, 321–322, 66–70. doi:10.1016/J.IJMS.2012.05.003.
  • Cappellin, L.; Makhoul, S.; Schuhfried, E.; Romano, A.; Sanchez Del Pulgar, J.; Aprea, E.; Farneti, B.; Costa, F.; Gasperi, F.; Biasioli, F. Ethylene: Absolute Real-Time High-Sensitivity Detection with PTR/SRI-MS. The Example of Fruits, Leaves and Bacteria. Int. J. Mass Spectrom. 2014, 365–366, 33–41. doi:10.1016/J.IJMS.2013.12.004.
  • Edtbauer, A.; Hartungen, E.; Jordan, A.; Hanel, G.; Herbig, J.; Jürschik, S.; Lanza, M.; Breiev, K.; Märk, L.; Sulzer, P. Theory and Practical Examples of the Quantification of CH4, CO, O2, and CO2 with an Advanced Proton-Transfer-Reaction/Selective-Reagent-Ionization Instrument (PTR/SRI-MS). Int. J. Mass Spectrom. 2014, 365–366, 10–14. doi:10.1016/J.IJMS.2013.11.014.
  • Müller, M.; Piel, F.; Gutmann, R.; Sulzer, P.; Hartungen, E.; Wisthaler, A. A Novel Method for Producing NH4+ Reagent Ions in the Hollow Cathode Glow Discharge Ion Source of PTR-MS Instruments. Int. J. Mass Spectrom. 2020, 447, 116254. 116254. doi:10.1016/j.ijms.2019.116254
  • Drewnick, F.; Hings, S. S.; DeCarlo, P.; Jayne, J. T.; Gonin, M.; Fuhrer, K.; Weimer, S.; Jimenez, J. L.; Demerjian, K. L.; Borrmann, S.; et al. A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)—Instrument Description and First Field Deployment. Aeros Sci Technol. 2007, 39, 637–658. doi:10.1080/02786820500182040.
  • Park, J. H.; Goldstein, A. H.; Timkovsky, J.; Fares, S.; Weber, R.; Karlik, J.; Holzinger, R. Active Atmosphere-Ecosystem Exchange of the Vast Majority of Detected Volatile Organic Compounds. Science (80-.) 2013, 341, 643–647. doi:10.1126/science.1235053
  • De Gouw, J.; Warneke, C.; Karl, T.; Eerdekens, G.; Van der Veen, C.; Fall, R. Sensitivity and Specificity of Atmospheric Trace Gas Detection by Proton-Transfer-Reaction Mass Spectrometry. Int. J. Mass Spectrom. 2003, 223–224, 365–382. doi:10.1016/S1387-3806(02)00926-0.
  • Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A. A Novel Inlet System for Online Chemical Analysis of Semi-Volatile Submicron Particulate Matter. Atmos. Meas. Tech. 2015, 8, 1353–1360. doi:10.5194/amt-8-1353-2015
  • Piel, F.; Müller, M.; Mikoviny, T.; Pusede, S. E.; Wisthaler, A. Airborne Measurements of Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS): A Pilot Study. Atmos. Meas. Tech. 2019, 12, 5947–5958. doi:10.5194/amt-12-5947-2019
  • Müller, M.; Eichler, P.; D'Anna, B.; Tan, W.; Wisthaler, A. Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry. Anal. Chem. 2017, 89, 10889–10897. doi:10.1021/acs.analchem.7b02582.
  • Yatavelli, R. L. N.; Stark, H.; Thompson, S. L.; Kimmel, J. R.; Cubison, M. J.; Day, D. A.; Campuzano-Jost, P.; Palm, B. B.; Hodzic, A.; Thornton, J. A.; et al. Semicontinuous Measurements of Gas-Particle Partitioning of Organic Acids in a Ponderosa Pine Forest Using a MOVI-HRToF-CIMS. Atmos. Chem. Phys. 2014, 14, 1527–1546. doi:10.5194/acp-14-1527-2014
  • Bertram, T. H.; Kimmel, J. R.; Crisp, T. A.; Ryder, O. S.; Yatavelli, R. L. N.; Thornton, J. A.; Cubison, M. J.; Gonin, M.; Worsnop, D. R. A Field-Deployable, Chemical Ionization Time-of-Flight Mass Spectrometer. Atmos. Meas. Tech. 2011, 4, 1471–1479. doi:10.5194/amt-4-1471-2011
  • Brophy, P.; Farmer, D. K. Clustering, Methodology, and Mechanistic Insights into Acetate Chemical Ionization Using High-Resolution Time-of-Flight Mass Spectrometry. Atmos. Meas. Tech. 2016, 9, 3969–3986. doi:10.5194/amt-9-3969-2016
  • Liu, S.; Thompson, S. L.; Stark, H.; Ziemann, P. J.; Jimenez, J. L. Gas-Phase Carboxylic Acids in a University Classroom: Abundance, Variability, and Sources. Environ. Sci. Technol. 2017, 51, 5454–5463. doi:10.1021/acs.est.7b01358
  • Rissanen, M. P.; Mikkilä, J.; Iyer, S.; Hakala, J. Multi-Scheme Chemical Ionization Inlet (MION) for Fast Switching of Reagent Ion Chemistry in Atmospheric Pressure Chemical Ionization Mass Spectrometry (CIMS) Applications. Atmos. Meas. Tech. 2019, 12, 6635–6646. doi:10.5194/amt-12-6635-2019
  • Yao, L.; Wang, M.-Y.; Wang, X.-K.; Liu, Y.-J.; Chen, H.-F.; Zheng, J.; Nie, W.; Ding, A.-J.; Geng, F.-H.; Wang, D.-F.; et al. Detection of Atmospheric Gaseous Amines and Amides by a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer with Protonated Ethanol Reagent Ions. Atmos. Chem. Phys. 2016, 16, 14527–14543. doi:10.5194/acp-16-14527-2016
  • You, Y.; Kanawade, V. P.; De Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; et al. Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS). Atmos. Chem. Phys. 2014, 14, 12181–12194. doi:10.5194/acp-14-12181-2014
  • Zhang, W.; Zhang, H. Secondary Ion Chemistry Mediated by Ozone and Acidic Organic Molecules in Iodide-Adduct Chemical Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 8595–8602. doi:10.1021/acs.analchem.1c01486.
  • Iyer, S.; He, X.; Hyttinen, N.; Kurtén, T.; Rissanen, M. P. Computational and Experimental Investigation of the Detection of HO2 Radical and the Products of Its Reaction with Cyclohexene Ozonolysis Derived RO2 Radicals by an Iodide-Based Chemical Ionization Mass Spectrometer. J. Phys. Chem. A. 2017, 121, 6778–6789. doi:10.1021/acs.jpca.7b01588.
  • Yuan, B.; Liggio, J.; Wentzell, J.; Li, S. M.; Stark, H.; Roberts, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li, R.; et al. Secondary Formation of Nitrated Phenols: Insights from Observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014. Atmos. Chem. Phys. 2016, 16, 2139–2153. doi:10.5194/acp-16-2139-2016
  • Veres, P.; Roberts, J. M.; Warneke, C.; Welsh-Bon, D.; Zahniser, M.; Herndon, S.; Fall, R.; de Gouw, J. Development of Negative-Ion Proton-Transfer Chemical-Ionization Mass Spectrometry (NI-PT-CIMS) for the Measurement of Gas-Phase Organic Acids in the Atmosphere. Int. J. Mass Spectrom 2008, 274, 48–55. doi:10.1016/j.ijms.2008.04.032
  • Stark, H.; Yatavelli, R. L. N.; Thompson, S. L.; Kimmel, J. R.; Cubison, M. J.; Chhabra, P. S.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L. Methods to Extract Molecular and Bulk Chemical Information from Series of Complex Mass Spectra with Limited Mass Resolution. Int. J. Mass Spectrom 2015, 389, 26–38. doi:10.1016/j.ijms.2015.08.011
  • Aljawhary, D.; Lee, A. K. Y.; Abbatt, J. P. D. High-Resolution Chemical Ionization Mass Spectrometry (ToF-CIMS): Application to Study SOA Composition and Processing. Atmos. Meas. Tech. 2013, 6, 3211–3224. doi:10.5194/amt-6-3211-2013
  • Friedman, B.; Brophy, P.; Brune, W. H.; Farmer, D. K. Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO2 Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene. Environ. Sci. Technol. 2016, 50, 1269–1279. doi:10.1021/ACS.EST.5B05010.
  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Lutz, A.; Hallquist, M.; Worsnop, D.; et al. A Novel Method for Online Analysis of Gas and Particle Composition: Description and Evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 2014, 7, 983–1001. doi:10.5194/amt-7-983-2014
  • Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D. Aqueous-Phase Photooxidation of Levoglucosan – A Mechanistic Study Using Aerosol Time-of-Flight Chemical Ionization Mass Spectrometry (Aerosol ToF-CIMS. ). Atmos. Chem. Phys. 2014, 14, 9695–9705. doi:10.5194/acp-14-9695-2014
  • Iyer, S.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J. A.; Kurtén, T. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. J. Phys. Chem. A. 2016, 120, 576–587. doi:10.1021/ACS.JPCA.5B09837.
  • Mohr, C.; Lopez-Hilfiker, F. D.; Zotter, P.; Prévôt, A. S. H.; Xu, L.; Ng, N. L.; Herndon, S. C.; Williams, L. R.; Franklin, J. P.; Zahniser, M. S.; et al. Contribution of Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United Kingdom during Winter Time. Environ. Sci. Technol. 2013, 47, 6316–6324. doi:10.1021/es400683v
  • Budisulistiorini, S. H.; Li, X.; Bairai, S. T.; Renfro, J.; Liu, Y.; Liu, Y. J.; McKinney, K. A.; Martin, S. T.; McNeill, V. F.; Pye, H. O. T.; et al. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee Ground Site. Atmos. Chem. Phys. 2015, 15, 8871–8888. doi:10.5194/acp-15-8871-2015
  • Krechmer, J. E.; Coggon, M. M.; Massoli, P.; Nguyen, T. B.; Crounse, J. D.; Hu, W.; Day, D. A.; Tyndall, G. S.; Henze, D. K.; Rivera-Rios, J. C.; et al. Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environ. Sci. Technol. 2015, 49, 10330–10339. doi:10.1021/acs.est.5b02031.
  • Isaacman-VanWertz, G.; Massoli, P.; O’Brien, R. E.; Nowak, J. B.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R.; Su, L.; Knopf, D. A.; Misztal, P. K.; et al. Using Advanced Mass Spectrometry Techniques to Fully Characterize Atmospheric Organic Carbon: Current Capabilities and Remaining Gaps. Faraday Discuss. 2017, 200, 579–598. doi:10.1039/C7FD00021A
  • Wang, M.; He, X. C.; Finkenzeller, H.; Iyer, S.; Chen, D.; Shen, J.; Simon, M.; Hofbauer, V.; Kirkby, J.; Curtius, J.; et al. Measurement of Iodine Species and Sulfuric Acid Using Bromide Chemical Ionization Mass Spectrometers. Atmos. Meas. Tech. 2021, 14, 4187–4202. doi:10.5194/amt-14-4187-2021
  • Lopez-Hilfiker, F. D.; Pospisilova, V.; Huang, W.; Kalberer, M.; Mohr, C.; Stefenelli, G.; Thornton, J. A.; Baltensperger, U.; Prevot, A. S. H.; Slowik, J. G. An Extractive Electrospray Ionization Time-of-Flight Mass Spectrometer (EESI-TOF) for Online Measurement of Atmospheric Aerosol Particles. Atmos. Meas. Tech. 2019, 12, 4867–4886. doi:10.5194/amt-12-4867-2019
  • Surdu, M.; Pospisilova, V.; Xiao, M.; Wang, M.; Mentler, B.; Simon, M.; Stolzenburg, D.; Hoyle, C. R.; Bell, D. M.; Lee, C. P.; et al. Molecular Characterization of Ultrafine Particles Using Extractive Electrospray Time-of-Flight Mass Spectrometry. Environ. Sci: Atmos. 2021, 1, 434–448. doi:10.1039/D1EA00050K
  • Pospisilova, V.; Lopez-Hilfiker, F. D.; Bell, D. M.; El Haddad, I.; Mohr, C.; Huang, W.; Heikkinen, L.; Xiao, M.; Dommen, J.; Prevot, A. S. H.; et al. On the Fate of Oxygenated Organic Molecules in Atmospheric Aerosol Particles. Sci. Adv. 2020, 6, doi:10.1126/sciadv.aax8922
  • Brophy, P.; Farmer, D. K. A Switchable Reagent Ion High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer for Real-Time Measurement of Gas Phase Oxidized Species: Characterization from the 2013 Southern Oxidant and Aerosol Study. Atmos. Meas. Tech. Discuss 2015, 8, 3199–3244. doi:10.5194/amtd-8-3199-2015.
  • Gross, J. H. Direct Analysis in Real Time—a Critical Review on DART-MS. Anal. Bioanal. Chem. 2014, 406, 63–80. doi:10.1007/s00216-013-7316-0
  • Chan, M. N.; Nah, T.; Wilson, K. R. Real Time in Situ Chemical Characterization of Sub-Micron Organic Aerosols Using Direct Analysis in Real Time Mass Spectrometry (DART-MS): The Effect of Aerosol Size and Volatility. Analyst 2013, 138, 3749–3757. doi:10.1039/c3an00168g
  • Kalalian, C.; Abis, L.; Depoorter, A.; Lunardelli, B.; Perrier, S.; George, C. Influence of Indoor Chemistry on the Emission of MVOCs from Aspergillus Niger Molds. Sci. Total Environ. 2020, 741, 140148. 140148. doi:10.1016/j.scitotenv.2020.140148
  • Pagonis, D.; Krechmer, J. E.; De Gouw, J.; Jimenez, J. L.; Ziemann, P. J. Effects of Gas-Wall Partitioning in Teflon Tubing and Instrumentation on Time-Resolved Measurements of Gas-Phase Organic Compounds. Atmos. Meas. Tech. 2017, 10, 4687–4696. doi:10.5194/amt-10-4687-2017
  • Timko, M. T.; Yu, Z.; Kroll, J.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Onasch, T. B.; Liscinsky, D.; Kirchstetter, T. W.; Destaillats, H.; et al. Sampling Artifacts from Conductive Silicone Tubing. Aerosol Sci. Technol 2009, 43, 855–865. doi:10.1080/02786820902984811
  • Li-Cor, Biosciences. LI-840A CO2/HsO Gas Analyzer Brochure www.licor.com. (accessed Sep 6, 2021).
  • Schwartz-Narbonne, H.; Donaldson, D. J. Water Uptake by Indoor Surface Films. Sci. Rep. 2019, 9, 11089 doi:10.1038/s41598-019-47590-x.
  • ISO-ISO 12571:2013. Hygrothermal performance of building materials and products—Determination of hygroscopic sorption properties. https://www.iso.org/standard/61388.html. (accessed Oct 9, 2021).
  • Rode, C.; Peuhkuri, R.; Time, B.; Svennberg, K.; Ojanen, T.; Mukhopadhyaya, P.; Kumaran, M.; Dean, S. W. Moisture Buffer Value of Building Materials. J. ASTM Int. 2007, 4, 100369. doi:10.1520/JAI100369
  • Vares, M. L.; Ruus, A.; Nutt, N.; Kubjas, A.; Raamets, J. Determination of Paper Plaster Hygrothermal Performance: Influence of Different Types of Paper on Sorption and Moisture Buffering. J. Build. Eng. 2021, 33, 3–8. doi:10.1016/j.jobe.2020.101830.
  • Zhang, M.; Qin, M.; Rode, C.; Chen, Z. Moisture Buffering Phenomenon and Its Impact on Building Energy Consumption. Appl. Therm. Eng. 2017, 124, 337–345. doi:10.1016/j.applthermaleng.2017.05.173
  • Altmäe, E.; Ruus, A.; Raamets, J.; Tungel, E. Determination of Clay-Sand Plaster Hygrothermal Performance: Influence of Different Types of Clays on Sorption and Water Vapour Permeability. Cold Clim. HVAC2018 9th Int. Cold Clim. Conf. Sustain. new Renov March 2018, 2019, 12–15. Build. cold Clim. Kiruna – Sweden 10.1007/978-3-030-00662-4_80.
  • Japanese Industrial Standards Committee. Method for Measuring Amount of Room Ventilation (Carbon Dioxide Method)—JIS A 1406; JISC: Tokyo: Tokyo, 1974.
  • The Society of Heating Air-Conditioning and Sanitary Engineering of Japan. The Standard for Measuring Ventilation Effectiveness by Using Tracer Gas; SHASE-S 116-2003; Tokyo, 2004.
  • Agency, U. E. P. Determination of Air Exchange Rate in Indoor Air Using Tracer Gas; EPA Method IP-4B; EPA: Washington, DC, 1990.
  • Dietz, R. N.; Cote, E. A. Air Infiltration Measurements in a Home Using a Convenient Perfluorocarbon Tracer Technique. Environ. Int 1982, 8, 419–433. doi:10.1016/0160-4120(82)90060-5
  • Agency, U. E. P. Determination of Air Exchange Rate in Indoor Air Using Perfluorocarbon Tracer (PTF); EPA Method IP-4A; EPA: Washington, DC, 1989.
  • Stymne, H.; Axel Boman, C.; Kronvall, J. Measuring Ventilation Rates in the Swedish Housing Stock. Build. Environ 1994, 29, 373–379. doi:10.1016/0360-1323(94)90037-X
  • Wainman, T.; Zhang, J.; Weschler, C. J.; Lioy, P. J. Ozone and Limonene in Indoor Air: A Source of Submicron Particle Exposure. Environ. Health Perspect. 2000, 108, 1139–1145. doi:10.1289/EHP.001081139.
  • Shinohara, N.; Kataoka, T.; Takamine, K.; Butsugan, M.; Nishijima, H.; Gamo, M. Modified Perfluorocarbon Tracer Method for Measuring Effective Multizone Air Exchange Rates. Int. J. Environ. Res. Public Health. 2010, 7, 3348–3358. doi:10.3390/ijerph7093348
  • EVS-EN_16211:2015. Ventilation for Buildings – Measurement of Air Flows on Site – Methods; Estonian Centre for Standardisation and Accreditation, 2015.
  • EVS-EN_12599:2012. EVS-EN 12599:2012 – Eesti Standardimis- Ja Akrediteerimiskeskus; Estonian Centre for Standardisation and Accreditation, 2012.
  • SwemaFlow 4001 product https://www.swema.com/product/SwemaFlow. 4001 (accessed Sep 17, 2021).
  • ISO-ISO 12569:2017. Thermal performance of buildings and materials — Determination of specific airflow rate in buildings — Tracer gas dilution method https://www.iso.org/standard/69817.html. (accessed Oct 9, 2021).
  • Välitalo, P.; Massei, R.; Heiskanen, I.; Behnisch, P.; Brack, W.; Tindall, A.; Du Pasquier, D.; Küster, E.; Mikola, A.; Schulze, T.; et al. Effect-Based Assessment of Toxicity Removal during Wastewater Treatment. Water Res. 2017, 126, 153–163. doi:10.1016/J.WATRES.2017.09.014.
  • Lewtas, J.; Claxton, L.; Mumford, J.; Lofroth, G. Bioassay of Complex Mixtures of Indoor Air Pollutants. IARC Sci. Publ. 1993, 85–95.
  • Vandermarken, T.; De Galan, S.; Croes, K.; Van Langenhove, K.; Vercammen, J.; Sanctorum, H.; Denison, M. S.; Goeyens, L.; Elskens, M.; Baeyens, W. Characterisation and Implementation of the ERE-CALUX Bioassay on Indoor Dust Samples of Kindergartens to Assess Estrogenic Potencies. J. Steroid Biochem. Mol. Biol. 2016, 155, 182–189. doi:10.1016/j.jsbmb.2015.01.005.
  • Tirkkonen, J. ERepo –Toxicological Characterisation of Particulate Matter from Moisture-Damaged Schools, University of Eastern Finland: Kuopio, 2018.
  • Eltzov, E.; Cohen, A.; Marks, R. S. Bioluminescent Liquid Light Guide Pad Biosensor for Indoor Air Toxicity Monitoring. Anal. Chem. 2015, 87, 3655–3661. doi:10.1021/AC5038208.
  • WHO. WHO Guidelines for Air Quality Dempess and Mould; 2009.
  • Maes, W. Baubiologische Richtwerte. 2003.
  • Tischer, C. G.; Heinrich, J. Exposure Assessment of Residential Mould, Fungi and Microbial Components in Relation to Children’s Health: Achievements and Challenges. Int. J. Hyg. Environ. Health 2013, 216, 109–114. doi:10.1016/j.ijheh.2012.05.002
  • Le Cann, P.; Bonvallot, N.; Glorennec, P.; Deguen, S.; Goeury, C.; Le Bot, B. Indoor Environment and Children’s Health: Recent Developments in Chemical, Biological, Physical and Social Aspects. Int. J. Hyg. Environ. Health 2011, 215, 1–18. doi:10.1016/j.ijheh.2011.07.008
  • Crook, B.; Burton, N. C. Indoor Moulds, Sick Building Syndrome and Building Related Illness. Fungal Biol. Rev 2010, 24, 106–113. doi:10.1016/j.fbr.2010.05.001
  • Franchitti, E.; Pascale, E.; Fea, E.; Anedda, E.; Traversi, D. Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. Atmos 2020, 11, 452. doi:10.3390/atmos11050452
  • Haig, C. W.; Mackay, W. G.; Walker, J. T.; Williams, C. Bioaerosol Sampling: Sampling Mechanisms, Bioefficiency and Field Studies. J. Hosp. Infect. 2016, 93, 242–255. doi:10.1016/J.JHIN.2016.03.017.
  • Stamatelopoulou, A.; Pyrri, I.; Asimakopoulos, D. N.; Maggos, T. Indoor Air Quality and Dustborne Biocontaminants in Bedrooms of Toddlers in Athens, Greece. Build. Environ 2020, 173, 106756. 106756. doi:10.1016/j.buildenv.2020.106756
  • AEMTEK. Accurate, Fast, and Reliable Laboratory Services AEMTEK Mold Sampling Guide Recommendations for Sampling Fungi in the Indoor Environments.
  • Dipslide Testing Info – BTS – Biotechnology Solutions https://biotechnologysolutions.com/dipslidetestinfo/. (accessed Sep 16, 2021.
  • Ibfelt, T.; Foged, C.; Andersen, L. P. Validation of Dipslides as a Tool for Environmental Sampling in a Real-Life Hospital Setting. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 809–813. doi:10.1007/s10096-013-2018-2
  • Thom, K. A.; Howard, T.; Sembajwe, S.; Harris, A. D.; Strassle, P.; Caffo, B. S.; Carroll, K. C.; Johnson, J. K. Comparison of Swab and Sponge Methodologies for Identification of Acinetobacter Baumannii from the Hospital Environment. J. Clin. Microbiol. 2012, 50, 2140–2141. doi:10.1128/JCM.00448-12.
  • Ghosh, B.; Lal, H.; Srivastava, A. Review of Bioaerosols in Indoor Environment with Special Reference to sampling, analysis and control mechanisms. Environ. Int. 2015, 85, 254–272. doi:10.1016/j.envint.2015.09.018
  • Lindsley, W. G.; Green, B. J.; Blachere, F. M.; Martin, S. B.; Law, B. F.; Jensen, P. A.; Schafer, M. P, NIOSH. NIOSH Manual of Analytical Methods 5th Edition Chapter BA. Sampling and Characterization of Bioaerosols; 2017.
  • Poletti, L.; Pasquarella, C.; Pitzurra, M.; Savino, A. Comparative Efficiency of Nitrocellulose Membranes versus RODAC Plates in Microbial Sampling on Surfaces. J. Hosp. Infect. 1999, 41, 195–201. doi:10.1016/S0195-6701(99)90016-6.
  • Samplers for Bioaerosol Hazards https://www.skcinc.com/categories/bioaerosol-samplers (accessed Oct 9, 2021).
  • ASTM D7789-12. Standard Practice for Collection of Fungal Material from Surfaces by Swab https://www.astm.org/DATABASE.CART/HISTORICAL/D7789-12.htm. (accessed Sep 7, 2021).
  • ISO_14698-1:2003. Cleanrooms and Associated Controlled Environments – Biocontamination Control – Part 1: General Principles and Methods. ISO, Geneva, 2003.
  • ISO_14698-2:2003. Cleanrooms and Associated Controlled Environments – Biocontamination Control – Part 2: Evaluation and Interpretation of Biocontamination Data. ISO: Geneva, 2003.
  • Microbiological Evaluation of Clean Rooms and Other Controlled Environments. http://ftp.uspbpep.com/v29240/usp29nf24s0_c1116.html. (accessed Sep 7, 2021).
  • Hodges, L. R.; Rose, L. J.; O'Connell, H.; Arduino, M. J. National Validation Study of a Swab Protocol for the Recovery of Bacillus Anthracis Spores from Surfaces. J. Microbiol. Methods. 2010, 81, 141–146. doi:10.1016/j.mimet.2010.02.010
  • Hodges, L. R.; Rose, L. J.; Peterson, A.; Noble-Wang, J.; Arduino, M. J. Evaluation of a Macrofoam Swab Protocol for the Recovery of Bacillus Anthracis Spores from a Steel Surface. Appl. Environ. Microbiol. 2006, 72, 4429–4430. doi:10.1128/AEM.02923-05
  • Surface sampling procedures for Bacillus anthracis spores | NIOSH | CDC https://www.cdc.gov/niosh/topics/emres/surface-sampling-bacillus-anthracis.html. (accessed Sep 7, 2021).
  • Moore, G.; Griffith, C. Problems Associated with Traditional Hygiene Swabbing: The Need for in-House Standardization. J. Appl. Microbiol. 2007, 103, 1090–1103. doi:10.1111/J.1365-2672.2007.03330.X.
  • Bolaños-Rosero, B.; Betancourt, D.; Dean, T.; Vesper, S. Pilot Study of Mold Populations inside and Outside of Puerto Rican Residences. Aerobiologia (Bologna) 2013, 29, 537–543. doi:10.1007/s10453-013-9301-7
  • Thorne, P. S.; Metwali, N.; Avol, E.; McConnell, R. S. Surface Sampling for Endotoxin Assessment Using Electrostatic Wiping Cloths. Ann. Occup. Hyg 2005, 49, 401–406. doi:10.1093/ANNHYG/MEI002.
  • ASTM D7910-14. Standard Practice for Collection of Fungal Material From Surfaces by Tape Lift https://www.astm.org/Standards/D7910.htm. (accessed Sep 7, 2021).
  • Martyny, J. W.; Martinez, K. F.; Morey, P. R. Source Sampling. In Bioaerosols: assessment and control. American Conference of Governmental Industrial Hygienists; Macher, J., Ed.; ACGIH®: Cincinnati, 1999; pp 12–1–12–18.
  • Morey, P. R. Microbiological Sampling Strategies in Indoor Environments. In Sampling and Analysis of Indoor Microorganisms; Hoboken, NJ: John Wiley & Sons, Ltd, 2007.
  • Frankel, M.; Timm, M.; Hansen, E.; Madsen, A. Comparison of Sampling Methods for the Assessment of Indoor Microbial Exposure. Indoor Air. 2012, 22, 405–414. doi:10.1111/J.1600-0668.2012.00770.X.
  • Hung, L.; Miller, J.; Dillon, H. Field Guide for the Determination of Biological Contaminants in Environmental Samples, 2nd ed.; American Industrial Hygiene Association: Fairfax VA, 2005.
  • Hunter, C. A.; Grant, C.; Flannigan, B.; Bravery, A. F. Mould in Buildings: The Air Spora of Domestic Dwellings. Int. Biodeterior 1988, 24, 81–101. doi:10.1016/0265-3036(88)90052-8
  • Lioy, P.; Freeman, N.; Millette, J. Dust: A Metric for Use in Residential and Building Exposure Assessment and Source Characterization. Environ Health Perspect. 2002, 110, 969–983. doi:10.1289/EHP.02110969.
  • Ashley, P.; Dewalt, G.; Hamilton, R.; Jones, J.; Pinzer, E. Vacuum Dust Sample Collection Protocol for Allergens.; 2008.
  • Kettleson, E. M.; Adhikari, A.; Vesper, S.; Coombs, K.; Indugula, R.; Reponen, T. Key Determinants of the Fungal and Bacterial Microbiomes in Homes. Environ. Res. 2015, 138, 130–135. doi:10.1016/J.ENVRES.2015.02.003.
  • Reponen, T.; Vesper, S.; Levin, L.; Johansson, E.; Ryan, P.; Burkle, J.; Grinshpun, S. A.; Zheng, S.; Bernstein, D. I.; Lockey, J.; et al. High Environmental Relative Moldiness Index during Infancy as a Predictor of Asthma at 7 Years of Age. Ann. Allergy. Asthma Immunol 2011, 107, 120–126. doi:10.1016/j.anai.2011.04.018
  • Reponen, T.; Lockey, J.; Bernstein, D.; Vesper, S.; Levin, L.; Gk, K. H.; Zheng, S.; Ryan, P.; Grinshpun, S.; Villareal, M. Infant Origins of Childhood Asthma Associated with Specific Molds. J. Allergy Clin. Immunol 2012, 130, doi:10.1016/J.JACI.2012.05.030.
  • Täubel, M.; Karvonen, A. M.; Reponen, T.; Hyvärinen, A.; Vesper, S.; Pekkanen, J. Application of the Environmental Relative Moldiness Index in Finland. Appl. Environ. Microbiol. 2016, 82, 578–584. doi:10.1128/AEM.02785-15.
  • Madsen, A. M.; Matthiesen, C. B.; Frederiksen, M. W.; Frederiksen, M.; Frankel, M.; Spilak, M.; Gunnarsen, L.; Timm, M. Sampling, Extraction and Measurement of Bacteria, Endotoxin, Fungi and Inflammatory Potential of Settling Indoor Dust. J. Environ. Monit. 2012, 14, 3230–3239. doi:10.1039/C2EM30699A.
  • Vesper, S.; McKinstry, C.; Haugland, R.; Wymer, L.; Bradham, K.; Ashley, P.; Cox, D.; Dewalt, G.; Friedman, W. Development of an Environmental Relative Moldiness Index for US Homes. J. Occup. Environ. Med. 2007, 49, 829–833. doi:10.1097/JOM.0B013E3181255E98.
  • Krop, E. J. M.; Jacobs, J. H.; Sander, I.; Raulf-Heimsoth, M.; Heederik, D. J. J. Allergens and β-Glucans in Dutch Homes and Schools: Characterizing Airborne Levels. PLoS One. 2014, 9, e88871. doi:10.1371/journal.pone.0088871
  • Spilak, M. P.; Madsen, A. M.; Knudsen, S. M.; Kolarik, B.; Hansen, E. W.; Frederiksen, M.; Gunnarsen, L. Impact of Dwelling Characteristics on Concentrations of Bacteria, Fungi, Endotoxin and Total Inflammatory Potential in Settled Dust. Build. Environ 2015, 93, 64–71. doi:10.1016/j.buildenv.2015.03.031
  • Rocchi, S.; Reboux, G.; Frossard, V.; Scherer, E.; Valot, B.; Laboissière, A.; Zaros, C.; Vacheyrou, M.; Gillet, F.; Roussel, S.; Elfe team.; et al. Microbiological Characterization of 3193 French Dwellings of Elfe Cohort Children. Sci. Total Environ. 2015, 505, 1026–1035. doi:10.1016/J.SCITOTENV.2014.10.086.
  • Walker, V. K.; Palmer, G. R.; Voordouw, G. Freeze-Thaw Tolerance and Clues to the Winter Survival of a Soil Community. Appl. Environ. Microbiol. 2006, 72, 1784–1792. doi:10.1128/AEM.72.3.1784-1792.2006.
  • Prussin, A.; Marr, L.; Bibby, K. Challenges of Studying Viral Aerosol Metagenomics and Communities in Comparison with Bacterial and Fungal Aerosols. FEMS Microbiol Lett 2014, 357, 1–9. doi:10.1111/1574-6968.12487.
  • Tortora, G. J.; Funke, B. R.; Case, C. Microbiology – An Introduction; Pearson Education: Boston, 2013.
  • Yang, W.; Elankumaran, S.; Marr, L. Concentrations and Size Distributions of Airborne Influenza A Viruses Measured Indoors at a Health Centre, a Day-Care Centre and on Aeroplanes. J. R Soc. Interface 2011, 8, 1176–1184. doi:10.1098/rsif.2010.0686
  • Bonifait, L.; Charlebois, R.; Vimont, A.; Turgeon, N.; Veillette, M.; Longtin, Y.; Jean, J.; Duchaine, C. Detection and Quantification of Airborne Norovirus during Outbreaks in Healthcare Facilities. Clin. Infect. Dis. 2015, 61, 299–304. doi:10.1093/CID/CIV321.
  • Appert, J.; Raynor, P. C.; Abin, M.; Chander, Y.; Guarino, H.; Goyal, S. M.; Zuo, Z.; Ge, S.; Kuehn, T. H. Influence of Suspending Liquid, Impactor Type, and Substrate on Size-Selective Sampling of MS2 and Adenovirus Aerosols. Aerosol Sci. Technol. 2012, 46, 249–257. doi:10.1080/02786826.2011.619224
  • Zuo, Z.; Kuehn, T. H.; Verma, H.; Kumar, S.; Goyal, S. M.; Appert, J.; Raynor, P. C.; Ge, S.; Pui, D. Y. H. Association of Airborne Virus Infectivity and Survivability with Its Carrier Particle Size. Aerosol Sci. Technol. 2013, 47, 373–382. doi:10.1080/02786826.2012.754841
  • Turgeon, N.; Toulouse, M.; Martel, B.; Moineau, S.; Duchaine, C. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies. Appl. Environ. Microbiol. 2014, 80, 4242–4250. doi:10.1128/AEM.00767-14.
  • Julian, T.; Tamayo, F.; Leckie, J.; Boehm, A. Comparison of Surface Sampling Methods for Virus Recovery from Fomites. Appl. Environ. Microbiol. 2011, 77, 6918–6925. doi:10.1128/AEM.05709-11.
  • Park, G.; Lee, D.; Treffiletti, A.; Hrsak, M.; Shugart, J.; Vinjé, J. Evaluation of a New Environmental Sampling Protocol for Detection of Human Norovirus on Inanimate Surfaces. Appl. Environ. Microbiol. 2015, 81, 5987–5992. doi:10.1128/AEM.01657-15.
  • Eduard, W.; Heederik, D.; Duchaine, C.; Green, B. J. Bioaerosol Exposure Assessment in the Workplace: The Past, Present and Recent Advances. J. Environ. Monit. 2012, 14, 334–339. doi:10.1039/C2EM10717A.
  • Macher, J. Bioaerosols : Assessment and Control; ACGIH: Cincinnati, OH, 2000.
  • Green, B.; Schmechel, D.; Summerbell, R.; Aerosolized Fungal Fragments. In Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; A. O, Samson.; R, Ed.; Wageningen Academic Publishers: Wageningen, 2011.
  • Rittenour, W.; Hamilton, R.; Beezhold, D.; Green, B. Immunologic, Spectrophotometric and Nucleic Acid Based Methods for the Detection and Quantification of Airborne Pollen. J. Immunol. Methods. 2012, 383, 47–53. doi:10.1016/j.jim.2012.01.012
  • Chen, F.; Godwin, S. Comparison of a Rapid ATP Bioluminescence Assay and Standard Plate Count Methods for Assessing Microbial Contamination of Consumers’ Refrigerators. J Food Prot, 2006, 69 (10), 2534–2538. .12.01.012. doi:10.4315/0362-028x-69.10.2534
  • Yoon, K. Y.; Park, C. W.; Byeon, J. H.; Hwang, J. Design and Application of an Inertial Impactor in Combination with an ATP Bioluminescence Detector for In Situ Rapid Estimation of the Efficacies of Air Controlling Devices on Removal of Bioaerosols. Environ. Sci. Technol. 2010, 44, 1742–1746. doi:10.1021/ES903437Z.
  • Byeon, J.; Park, C.; Yoon, K.; Park, J.; Hwang, J. Size Distributions of Total Airborne Particles and Bioaerosols in a Municipal Composting Facility. Bioresour. Technol. 2008, 99, 5150–5154. doi:10.1016/j.biortech.2007.09.014
  • Lee, S. J.; Park, J. S.; Im, H. T.; Jung, H. Il. A Microfluidic ATP-Bioluminescence Sensor for the Detection of Airborne Microbes. Sensors Actuators B Chem. 2008, 132, 443–448. doi:10.1016/j.snb.2007.10.035
  • Kim, H.; An, S.; Hwang, J.; Park, J.; Byeon, J. In Situ Lysis Droplet Supply to Efficiently Extract ATP from Dust Particles for Near-Real-Time Bioaerosol Monitoring. J. Hazard. Mater. 2019, 369, 684–690. doi:10.1016/j.jhazmat.2019.02.088
  • Stewart, I. W.; Leaver, G.; Futter, S. J. The Enumeration of Aerosolised Saccharomyces Cerevisiae Using Bioluminescent Assay of Total Adenylates. J. Aerosol Sci. 1997, 28, 511–523. doi:10.1016/S0021-8502(96)00452-1
  • Nante, N.; Ceriale, E.; Messina, G.; Lenzi, D.; Manzi, P. Effectiveness of ATP Bioluminescence to Assess Hospital: A Review. J. Prev. Med. Hyg. 2017, 58, E177–E183.
  • Lappalainen, J.; Loikkanen, S.; Havana, M.; Karp, M.; Sjöberg, A.; Wirtanen, G. Microbial Testing Methods for Detection of Residual Cleaning Agents and Disinfectants-Prevention of ATP Bioluminescence Measurement Errors in the Food Industry. J Food Prot. 2000, 63, 210–215. doi:10.4315/0362-028X-63.2.210.
  • Vilar, M. J.; Rodríguez-Otero, J. L.; Diéguez, F. J.; Sanjuán, M. L.; Yus, E. Application of ATP Bioluminescence for Evaluation of Surface Cleanliness of Milking Equipment. Int. J. Food Microbiol. 2008, 125, 357–361. doi:10.1016/J.IJFOODMICRO.2008.04.024.
  • Huang, L.; Hopke, P. K.; Zhao, W.; Li, M. Determinants on Ambient PM2.5 Infiltration in Non-Heating Season for Urban Residences in Beijing: Building Characteristics, Interior Surface Coverings and Human Behavior. Atmos. Pollut. Res. 2015, 6, 1046–1054. doi:10.1016/j.apr.2015.05.009
  • Aktas, Y. D.; Ioannou, I.; Altamirano, H.; Reeslev, M.; D'Ayala, D.; May, N.; Canales, M. Surface and Passive/Active Air Mould Sampling: A Testing Exercise in a North London Housing Estate. Sci. Total Environ. 2018, 643, 1631–1643. doi:10.1016/j.scitotenv.2018.06.311
  • Vornanen-Winqvist, C.; Järvi, K.; Andersson, M. A.; Duchaine, C.; Létourneau, V.; Kedves, O.; Kredics, L.; Mikkola, R.; Kurnitski, J.; Salonen, H. Exposure to Indoor Air Contaminants in School Buildings with and without Reported Indoor Air Quality Problems. Environ. Int. 2020, 141, 105781. doi:10.1016/j.envint.2020.105781
  • Jacobs, R. R. Airborne Endotoxins: An Association with Occupational Lung Disease. Appl. Ind. Hyg. 1989, 4, 50–56. doi:10.1080/08828032.1989.10389901
  • McDevitt, J.; Koutrakis, P.; Ferguson, S.; Wolfson, J.; Fabian, M.; Martins, M.; Pantelic, J.; Milton, D. Development and Performance Evaluation of an Exhaled-Breath Bioaerosol Collector for Influenza Virus. Aerosol Sci Technol. 2013, 47, 444–451. doi:10.1080/02786826.2012.762973.
  • Olenchock, S.; Mull, J.; Jones, W. Endotoxins in Cotton: Washing Effects and Size Distribution. Am. J. Ind. Med. 1983, 4, 515–521. doi:10.1002/AJIM.4700040405.
  • Rylander, R.; Vesterlund, J. Airborne Endotoxins in Various Occupational Environments. Prog. Clin. Biol. Res. 1982, 93, 399–409.
  • Mille-Lindblom, C.; Von Wachenfeldt, E.; Tranvik, L. J. Ergosterol as a Measure of Living Fungal Biomass: Persistence in Environmental Samples after Fungal Death. J. Microbiol. Methods. 2004, 59, 253–262. doi:10.1016/J.MIMET.2004.07.010.
  • Flannigan, B.; Samson, R. A.; David Miller, J. Microorganisms in Home and Indoor Work Environments : Diversity, Health Impacts, Investigation and Control, Second Edition. 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, 2011. doi:10.1201/B10838.
  • Fronczek, C.; Yoon, J. Biosensors for Monitoring Airborne Pathogens. J. Lab. Autom. 2015, 20, 390–410. doi:10.1177/2211068215580935.
  • Hook-Barnard, I.; Smp, N.; Alper, J. Technologies to Enable Autonomous Detection for BioWatch. 2014, doi:10.17226/18495.
  • Savory, E.; Sabarinathan, J.; Sauer, A.; Scott, J. A. An Optoelectronic Sensor for the Monitoring of Mould Growth in Concealed Spaces. Build. Environ 2012, 49, 9–16. doi:10.1016/j.buildenv.2011.09.023
  • Kuske, M.; Padilla, M.; Romain, A. C.; Nicolas, J.; Rubio, R.; Marco, S. Detection of Diverse Mould Species Growing on Building Materials by Gas Sensor Arrays and Pattern Recognition. Sensors Actuators B Chem. 2006, 119, 33–40. doi:10.1016/j.snb.2005.02.059
  • West, J.; Atkins, S.; Emberlin, J.; Fitt, B. PCR to Predict Risk of Airborne Disease. Trends Microbiol. 2008, 16, 380–387. doi:10.1016/J.TIM.2008.05.004.
  • Cella, L.; Blackstock, D.; Ma, Y.; Mulchandani, A.; Chen, W. Detection of RNA Viruses: Current Technologies and Future Perspectives. Crit Rev Eukaryot Gene Expr. 2013, 23, 125–137. doi:10.1615/CRITREVEUKARYOTGENEEXPR.2013006974.
  • Mahony, J. Detection of Respiratory Viruses by Molecular Methods. Clin. Microbiol. Rev. 2008, 21, 716–747. doi:10.1128/CMR.00037-07.
  • Real-Time PCR Learning Center – EE.
  • Hu, J.; Ben Maamar, S.; Glawe, A. J.; Gottel, N.; Gilbert, J. A.; Hartmann, E. M. Impacts of Indoor Surface Finishes on Bacterial Viability. Indoor Air. 2019, 29, 551–562. doi:10.1111/ina.12558.
  • Morris, B.; EL; Crable, B. R.; Suflita, J. M. On the Contributions of David Cleaveland White, MD, PhD to Microbial Ecology: Celebrating the Life of a Pioneer. Isme J. 2008 28 2008, 2, 797–804. doi:10.1038/ismej.2008.65.