7,552
Views
3
CrossRef citations to date
0
Altmetric
Reviews

A review of recent infrared spectroscopy research for paper

, , &

References

  • Ackerman, A. H.; Hurtubise, R. J. Methods for Coating Filter Paper for Solid-Phase Microextraction with Luminescence Detection and Characterization of the Coated Filter Paper by Infrared Spectrometry. Anal. Chim. Acta 2002, 474, 77–89. doi:10.1016/S0003-2670(02)01002-4
  • Bitossi, G.; Giorgi, R.; Mauro, M.; Salvadori, B.; Dei, L. Spectroscopic Techniques in Cultural Heritage Conservation: A Survey. Appl. Spectrosc. Rev. 2005, 40, 187–228. doi:10.1081/ASR-200054370
  • Manso, M.; Carvalho, M. L. Application of Spectroscopic Techniques for the Study of Paper Documents: A Survey. Spectrochim. Acta B: At. Spectrosc. 2009, 64, 482–490. doi:10.1016/j.sab.2009.01.009
  • Gunn, A.; Pitt, S. J. Review Paper Microbes as Forensic Indicators. Trop. Biomed. 2012, 29, 311–330.
  • Marco, . L. East Asian Paintings: Materials, Structures and Deterioration Mechanisms. Studies in Conservation 2009, 54(3),185–187. doi:10.1179/sic.2009.54.3.185.
  • Alava, M.; Niskanen, K. The Physics of Paper. Rep. Prog. Phys. 2006, 69, 669–723. doi:10.1088/0034-4885/69/3/R03
  • Nery, E. W.; Kubota, L. T. Sensing Approaches on Paper-based Devices: A Review. Analytical and bioanalytical chemistry 2013, 405, 7573–7595.
  • Choi, D.: Thorpe, J. L.; Hanna, R. B. Image Analysis to Measure Strain in Wood and Paper. Wood Science and Technology 1991, 25, 251–262.
  • Calcerrada, M.; Garcia-Ruiz, C. Analysis of Questioned Documents: A Review. Anal. Chim. Acta 2015, 853, 143–166. doi:10.1016/j.aca.2014.10.057
  • Ng, L. M.; Simmons, R. Infrared Spectroscopy. Analytical Chemistry 1999, 71, 343–350.
  • Arrigone, G. M.; Hilton, M. Theory and Practice in Using Fourier Transform Infrared Spectroscopy to Detect Hydrocarbons in Emissions from Gas Turbine Engines. Fuel 2005, 84, 1052–1058.
  • Kim, S. H.; Lee, C. M.; Kafle, K. Characterization of Crystalline Cellulose in Biomass: Basic Principles, Applications, and Limitations of XRD, NMR, IR, Raman, and SFG. Korean Journal of Chemical Engineering 2013, 30, 2127–2141.
  • Workman, J. J. Infrared and Raman Spectroscopy in Paper and Pulp Analysis. Appl. Spectrosc. Rev. 2001, 36, 139–168. doi:10.1081/ASR-100106154
  • Tsuchikawa, S. A Review of Recent Near Infrared Research for Wood and Paper. Appl. Spectrosc. Rev. 2007, 42, 43–71. doi:10.1080/05704920601036707
  • Area, M.; Cheradame, H. Paper Aging and Degradation: Recent Findings and Research Methods. BioResources 2011, 6, 5607–5637.
  • Zięba-Palus, J.; Wesełucha-Birczyńska, A.; Trzcińska, B.; Kowalski, R.; Moskal, P. Analysis of Degraded Papers by Infrared and Raman Spectroscopy for Forensic Purposes. J. Mol. Struct. 2017, 1140, 154–162. doi:10.1016/j.molstruc.2016.12.012
  • Proniewicz, L. M.; Paluszkiewicz, C.; Wesełucha-Birczyńska, A.; Barański, A.; Dutka, D. FT-IR and FT-Raman Study of Hydrothermally Degraded Groundwood Containing Paper. J. Mol. Struct. 2002, 614, 345–353. doi:10.1016/S0022-2860(02)00275-2
  • Munajad, A.; Subroto, C.; Suwarno. Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated Thermal Aging. Energies 2018, 11, 364. doi:10.3390/en11020364
  • Hajji, L.; Boukir, A.; Assouik, J.; Lakhiari, H.; Kerbal, A.; Doumenq, P.; Mille, G.; De Carvalho, M. L. Conservation of Moroccan Manuscript Papers Aged 150, 200 and 800 Years. Analysis by Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), and Scanning Electron Microscopy Energy Dispersive Spectrometry (SEM-EDS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 1038–1046. doi:10.1016/j.saa.2014.09.127
  • Hajji, L.; Boukir, A.; Assouik, J.; Pessanha, S.; Figueirinhas, J. L.; Carvalho, M. L. Artificial Aging Paper to Assess Long-Term Effects of Conservative Treatment. Monitoring by Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), and Energy Dispersive X-Ray Fluorescence (EDXRF). Microchem. J. 2016, 124, 646–656. doi:10.1016/j.microc.2015.10.015
  • Polovka, M.; Polovková, J.; Vizárová, K.; Kirschnerová, S.; Bieliková, L.; Vrška, M. The Application of FTIR Spectroscopy on Characterization of Paper Samples, Modified by Bookkeeper Process. Vib. Spectrosc. 2006, 41, 112–117. doi:10.1016/j.vibspec.2006.01.010
  • Rapp, K. J.; Mcshane, C. P.; Luksich, J. Interaction Mechanisms of Natural Ester Dielectric Fluid and Kraft Paper. Proceedings of the IEEE International Conference on Dielectric Liquids, 2005. ICDL 2005, 2005.
  • Bicchieri, M.; Ronconi, S.; Romano, F. P.; Pappalardo, L.; Corsi, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E. Study of Foxing Stains on Paper by Chemical Methods, Infrared Spectroscopy, Micro-X-Ray Fluorescence Spectrometry and Laser Induced Breakdown Spectroscopy. Spectrochim. Acta B: At. Spectrosc. 2002, 57, 1235–1249. doi:10.1016/S0584-8547(02)00056-3
  • Strlič, M.; Kolenc, J.; Kolar, J.; Pihlar, B. Enthalpic Interactions in Size Exclusion Chromatography of Pullulan and Cellulose in LiCl–N,N-Dimethylacetamide. J. Chromatogr. A 2002, 964, 47–54. doi:10.1016/s0021-9673(02)00591-5
  • Yonenobu, H.; Tsuchikawa, S.; Sato, K. Near-Infrared Spectroscopic Analysis of Aging Degradation in Antique Washi Paper Using a Deuterium Exchange Method. Vib. Spectrosc. 2009, 51, 100–104. doi:10.1016/j.vibspec.2008.11.001
  • Na, N.; Ouyang, Q.-M.; Ma, H.; Ouyang, J.; Li, Y. Non-Destructive and In Situ Identification of Rice Paper, Seals and Pigments by FT-IR and XRD Spectroscopy. Talanta 2004, 64, 1000–1008. doi:10.1016/j.talanta.2004.04.025
  • Ali, M.; Emsley, A. M.; Herman, H.; Heywood, R. J. Spectroscopic Studies of the Ageing of Cellulosic Paper. Polymer 2001, 42, 2893–2900. doi:10.1016/S0032-3861(00)00691-1
  • Silva, C. S.; Pimentel, M. F.; Amigo, J. M.; Garcia-Ruiz, C.; Ortega-Ojeda, F. Chemometric Approaches for Document Dating: Handling Paper Variability. Anal. Chim. Acta 2018, 1031, 28–37. doi:10.1016/j.aca.2018.06.031
  • Silva, C. S.; Pimentel, M. F.; Amigo, J. M.; Garcia-Ruiz, C.; Ortega-Ojeda, F. Infrared Spectroscopy and Chemometrics to Evaluate Paper Variability in Document Dating. Spectrosc. Eur. 2018, 30, 12–15.
  • Xia, J.; Huang, Y.; Zhang, J.; Du, X.; Yan, H.; Li, Q.; Li, Y.; Xiong, Y.; Min, S. Development of a Chemometric Methodology Based on FTIR Spectra for Paper Dating. Cellulose 2020, 27, 5323–5335. doi:10.1007/s10570-019-02892-1
  • Xia, J.; Du, X.; Xu, W.; Wei, Y.; Xiong, Y.; Min, S. Non-Destructive Analysis the Dating of Paper Based on Convolutional Neural Network. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119290. doi:10.1016/j.saa.2020.119290
  • Calvini, P.; Gorassini, A.; Chiggiato, R. Fourier Transform Infrared Analysis of Some Japanese Papers. Restaurator 2006, 27, 81–89. doi:10.1515/REST.2006.81
  • Sandak, A.; Jaszczur, A.; Sandak, J.; Modzelewska, I. Near Infrared Assessment of Biodegradability and Mechanical Properties of Paper Made of Cellulose Sulfate Bleached Coniferous Pulp with Addition of Cationic Starch and Resinous Adhesive. Int. Biodeterior. Biodegrad. 2015, 97, 31–39. doi:10.1016/j.ibiod.2014.09.019
  • Dos Santos, E. O.; Silva, A. M. S.; Fragoso, W. D.; Pasquini, C.; Pimentel, M. F. Determination of Degree of Polymerization of Insulating Paper Using Near Infrared Spectroscopy and Multivariate Calibration. Vib. Spectrosc. 2010, 52, 154–157. doi:10.1016/j.vibspec.2009.12.004
  • Guo, F.; Altaner, C. M. Molecular Deformation of Wood and Cellulose Studied by Near Infrared Spectroscopy. Carbohydr. Polym. 2018, 197, 1–8. doi:10.1016/j.carbpol.2018.05.064
  • Trafela, T.; Strlic, M.; Kolar, J.; Lichtblau, D. A.; Anders, M.; Mencigar, D. P.; Pihlar, B. Nondestructive Analysis and Dating of Historical Paper Based on IR Spectroscopy and Chemometric Data Evaluation. Anal. Chem. 2007, 79, 6319–6323. doi:10.1021/ac070392t
  • Moral, A.; Cabeza, E.; Aguado, R.; Tijero, A. Relating Near Infrared Spectra of Oryza sativa Pulps to Paper Mechanical Strength and Brightness. Ind. Crops Prod. 2016, 89, 493–497. doi:10.1016/j.indcrop.2016.04.009
  • Chia, C. H.; Zakaria, S.; Nguyen, K. L.; Dang, V. Q.; Duong, T. D. Characterization of Magnetic Paper Using Fourier Transform Infrared Spectroscopy. Mater. Chem. Phys. 2009, 113, 768–772. doi:10.1016/j.matchemphys.2008.08.059
  • Kangasrääsiö, J. Improving the Integrity of IR Based Online Moisture Measurement Used in the Paper and Board Industry. Measurement 2011, 44, 1937–1944. doi:10.1016/j.measurement.2011.08.024
  • Gao, W.-H.; Chen, K.-F.; Yang, R.-D.; Yang, F.; Han, W.-J. Properties of Bacterial Cellulose and Its Influence on the Physical Properties of Paper. BioRes 2011, 6 (1), 144–153. doi:10.15376/biores.6.1.144-153
  • Causin, V.; Marega, C.; Marigo, A.; Casamassima, R.; Peluso, G.; Ripani, L. Forensic Differentiation of Paper by X-Ray Diffraction and Infrared Spectroscopy. Forensic Sci. Int. 2010, 197, 70–74. doi:10.1016/j.forsciint.2009.12.056
  • Xia, J.; Zhang, J.; Zhao, Y.; Huang, Y.; Xiong, Y.; Min, S. Fourier Transform Infrared Spectroscopy and Chemometrics for the Discrimination of Paper Relic Types. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 219, 8–14. doi:10.1016/j.saa.2018.09.059
  • Kumar, R.; Kumar, V.; Sharma, V. Fourier Transform Infrared Spectroscopy and Chemometrics for the Characterization and Discrimination of Writing/Photocopier Paper Types: Application in Forensic Document Examinations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 170, 19–28. doi:10.1016/j.saa.2016.06.042
  • Causin, V.; Casamassima, R.; Marruncheddu, G.; Lenzoni, G.; Peluso, G.; Ripani, L. The Discrimination Potential of Diffuse-Reflectance Ultraviolet-Visible-Near Infrared Spectrophotometry for the Forensic Analysis of Paper. Forensic Sci. Int. 2012, 216, 163–167. doi:10.1016/j.forsciint.2011.09.015
  • Sugawara, S.; Huck, C. W. Preliminary Study on Using Near-Infrared Spectroscopy at 1.6–2.4 µm for Document Examination. Infrared Phys. Technol. 2020, 105, 103212. doi:10.1016/j.infrared.2020.103212
  • Kher, A.; Stewart, S.; Mulholland, M. Forensic Classification of Paper with Infrared Spectroscopy and Principal Components Analysis. J. Near Infrared Spectrosc. 2005, 13, 225–229. doi:10.1255/jnirs.540
  • Canals, T.; Riba, J.; Cantero, R.; Cansino, J.; Domingo, D.; Iturriaga, H. Characterization of Paper Finishes by Use of Infrared Spectroscopy in Combination with Canonical Variate Analysis. Talanta 2008, 77, 751–757. doi:10.1016/j.talanta.2008.07.059
  • Itrić, K.; Vukoje, M.; Banić, D. FT-IR Spectroscopy as a Discrimination Method for Establishing Authenticity of Euro Banknotes. Acta Graph. 2018, 29, 27–30. doi:10.25027/agj2017.28.v29i2.156
  • Sonnex, E.; Almond, M. J.; Baum, J. V.; Bond, J. W. Identification of Forged Bank of England pound20 Banknotes Using IR Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 1158–1163. doi:10.1016/j.saa.2013.09.115
  • Baek, S.; Choi, E.; Baek, Y.; Lee, C. Detection of Counterfeit Banknotes Using Multispectral Images. Digit. Signal Process. 2018, 78, 294–304. doi:10.1016/j.dsp.2018.03.015
  • Da Silva Oliveira, V.; Honorato, R. S.; Honorato, F. A.; Pereira, C. F. Authenticity Assessment of Banknotes Using Portable Near Infrared Spectrometer and Chemometrics. Forensic Sci. Int. 2018, 286, 121–127. doi:10.1016/j.forsciint.2018.03.001
  • Ajid, N. F. D.; Keat How, F.; Mahat, N. A.; Desa, W. N. S. M.; Kamaluddin, M. R.; Mohamed Huri, M. A.; Maarof, H.; Ismail, D. Counterfeit One Hundred Malaysian Ringgit Banknotes Discrimination Using Chemical Imaging Inspection and Pattern Recognition. Aust. J. Forensic Sci. 2022, 54 (5), 695–709. doi:10.1080/00450618.2021.1892187
  • Bruna, A.; Farinella, G. M.; Guarnera, G. C.; Battiato, S. Forgery Detection and Value Identification of Euro Banknotes. Sensors (Basel) 2013, 13, 2515–2529. doi:10.3390/s130202515
  • Del Hoyo-Meléndez, J. M.; Gondko, K.; Mendys, A.; Król, M.; Klisiſska-Kopacz, A.; Sobczyk, J.; Jaworucka-Drath, A. A Multi-Technique Approach for Detecting and Evaluating Material Inconsistencies in Historical Banknotes. Forensic Sci. Int. 2016, 266, 329–337. doi:10.1016/j.forsciint.2016.06.018
  • Ng, L. M.; Simmons, R. Infrared Spectroscopy. Anal. Chem. 1999, 71, 343–350. doi:10.1021/a1999908r
  • Sun, B.; Hou, Q.; Liu, Z.; Ni, Y. Sodium Periodate Oxidation of Cellulose Nanocrystal and Its Application as a Paper Wet Strength Additive. Cellulose 2015, 22, 1135–1146. doi:10.1007/s10570-015-0575-5
  • Rohm, S.; Hirn, U.; Ganser, C.; Teichert, C.; Schennach, R. Thin Cellulose Films as a Model System for Paper Fibre Bonds. Cellulose 2014, 21, 237–249. doi:10.1007/s10570-013-0098-x
  • Li, Z.; Zhang, M.; Cheng, D.; Yang, R. Preparation of Silver Nano-Particles Immobilized onto Chitin Nano-Crystals and Their Application to Cellulose Paper for Imparting Antimicrobial Activity. Carbohydr. Polym. 2016, 151, 834–840. doi:10.1016/j.carbpol.2016.06.012
  • Haider, A.; Haider, S.; Kang, I. K.; Kumar, A.; Kummara, M. R.; Kamal, T.; Han, S. S. A Novel Use of Cellulose Based Filter Paper Containing Silver Nanoparticles for Its Potential Application as Wound Dressing Agent. Int. J. Biol. Macromol. 2018, 108, 455–461. doi:10.1016/j.ijbiomac.2017.12.022
  • Qin, Z.; Liu, W.; Chen, H.; Chen, J.; Wang, H.; Song, Z. Preparing Photocatalytic Paper with Improved Catalytic Activity by in Situ Loading Poly-Dopamine on Cellulose Fibre. Bull. Mater. Sci. 2019, 42, 54. doi:10.1007/s12034-019-1736-1
  • Chen, Q.; Kang, M.; Xie, Q.; Wang, J. Effect of Melamine Modified Cellulose Nanocrystals on the Performance of Oil-Immersed Transformer Insulation Paper. Cellulose 2020, 27, 7621–7636. doi:10.1007/s10570-020-03305-4
  • Joshi, G.; Naithani, S.; Varshney, V. K.; Bisht, S. S.; Rana, V. Potential Use of Waste Paper for the Synthesis of Cyanoethyl Cellulose: A Cleaner Production Approach towards Sustainable Environment Management. J. Clean. Prod. 2017, 142, 3759–3768. doi:10.1016/j.jclepro.2016.10.089
  • Orue, A.; Santamaria-Echart, A.; Eceiza, A.; Peña-Rodriguez, C.; Arbelaiz, A. Office Waste Paper as Cellulose Nanocrystal Source. J. Appl. Polym. Sci. 2017, 134, 45257. doi:10.1002/app.45257
  • Sugawara, S.; Sugizaki, S.; Nakayama, Y.; Taniguchi, H.; Ishimaru, I. Preliminary Study for Detection of Adhesive on a Painted Ceramic Plate and Varnish on Printed Paper Using Near-Infrared Hyperspectral Imaging at Wavelengths of 1.0–2.35 µm. Infrared Phys. Technol. 2021, 117, 103809. doi:10.1016/j.infrared.2021.103809
  • Ferreira, P. J.; Gamelas, J. A.; Moutinho, I. M.; Ferreira, A. G.; Gómez, N.; Molleda, C.; Figueiredo, M. M. Application of FT-IR-ATR Spectroscopy to Evaluate the Penetration of Surface Sizing Agents into the Paper Structure. Ind. Eng. Chem. Res. 2009, 48, 3867–3872. doi:10.1021/ie801765c