303
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Some green approaches in atomic absorption spectrometry. The last 10 years

ORCID Icon, , &

References

  • Anastas, P. T.; Kirchhoff, M. M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. doi: 10.1021/ar010065m
  • Anastas, P. T. Green Chemistry and the Role of Analytical Methodology Development. Crit. Rev. Anal. Chem. 1999, 29, 167–175. doi:10.1080/10408349891199356
  • Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green Analytical Chemistry in Sample Preparation for Determination of Trace Organic Pollutants. TrAC - Trends Anal. Chem. 2009, 28, 943–951. doi:10.1016/j.trac.2009.06.001
  • Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. doi:10.1039/C6AY00478D
  • Płotka-Wasylka, J.; Mohamed, H. M.; Kurowska-Susdorf, A.; Dewani, R.; Fares, M. Y.; Andruch, V. Green Analytical Chemistry as an Integral Part of Sustainable Education Development. Curr. Opin. Green Sustain. Chem. 2021, 31, 100508. doi:10.1016/j.cogsc.2021.100508
  • Cerutti, S.; Pacheco, P. H.; Gil, R.; Dante Martinez, L. Green Sample Preparation Strategies for Organic/Inorganic Compounds in Environmental Samples. Curr. Opin. Green Sustain. Chem. 2019, 19, 76–86. doi:10.1016/j.cogsc.2019.08.007
  • Yayayuruk, A. E.; Yayayuruk, O. Applications of Green Chemistry Approaches in Environmental Analysis. Curr. Anal. Chem. 2019, 15, 745–758. doi:10.2174/1573411015666190314154632
  • Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practices. TrAC - Trends Anal. Chem. 2013, 50, 78–84. doi:10.1016/j.trac.2013.04.010
  • Dutta, S.; Das, A. K. Green Strategies in Analytical Chemistry. J. Indian Chem. Soc. 2014, 91, 591–606.
  • Moreda-Pineiro, A.; del Carmen Barciela-Alonso, M.; Dominguez-Gonzalez, R.; Pena-Vazquez, E.; Herbello-Hermelo, P.; Bermejo-Barrera, P. Alternative Solid Sample Pretreatment Methods in Green Analytical Atomic Spectrometry. Spectrosc. Lett. 2009, 42, 394–417. doi:10.1080/00387010903187393
  • Rocha, F. R. P.; Teixeira, L. S. G.; Nobrega, J. A. Green Strategies in Trace Analysis: A Glimpse of Simple Alternatives for Sample Pretreatment and Analyte Determination. Spectrosc. Lett. 2009, 42, 418–429. doi:10.1080/00387010903187435
  • Sharma, R. K.; Mittal, S.; Koel, M. Analysis of Trace Amounts of Metal Ions Using Silica-Based Chelating Resins: A Green Analytical Method. Crit. Rev. Anal. Chem. 2003, 33, 183–197. doi:10.1080/713609163
  • La Colla, N. S.; Domini, C. E.; Marcovecchio, J. E.; Botte, S. E. Latest Approaches on Green Chemistry Preconcentration Methods for Trace Metal Determination in seawater - A Review. J. Environ. Manage. 2015, 151, 44–55. doi:10.1016/j.jenvman.2014.11.030
  • Escudero, L. B.; Avila Maniero, M.; Agostini, E.; Smichowski, P. N. Biological Substrates: Green Alternatives in Trace Elemental Preconcentration and Speciation Analysis. TrAC - Trends Anal. Chem. 2016, 80, 531–546. doi:10.1016/j.trac.2016.04.002
  • Rodriguez-Ramos, R.; Santana-Mayor, A.; Socas-Rodriguez, B.; Rodriguez-Delgado, M. A. Recent Applications of Deep Eutectic Solvents in Environmental Analysis. Appl. Sci.-Basel 2021, 11, 4779. doi:10.3390/app11114779
  • Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; Romero, V. Green Chemistry in Analytical Atomic Spectrometry: A Review. J. Anal. At. Spectrom. 2012, 27, 1831–1857. doi:10.1039/c2ja30214d
  • de la Calle, I.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Liquid-Phase Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry: A Review. Anal. Chim. Acta 2016, 936, 12–39. doi:10.1016/j.aca.2016.06.046
  • Farajzadeh, M. A.; Mohebbi, A.; Pazhohan, A.; Nemati, M.; Afshar Mogaddam, M. R. Air–Assisted Liquid–Liquid Microextraction; Principles and Applications with Analytical Instruments. TrAC - Trends Anal. Chem. 2020, 122, 115734. doi:10.1016/j.trac.2019.115734
  • Alshana, U.; Hassan, M.; Al-Nidawi, M.; Yilmaz, E.; Soylak, M. Switchable-Hydrophilicity Solvent Liquid-Liquid Microextraction. TrAC - Trends Anal. Chem. 2020, 131, 116025. doi:10.1016/j.trac.2020.116025
  • Andruch, V.; Halko, R.; Tuček, J.; Płotka-Wasylka, J. Application of Deep Eutectic Solvents in Atomic Absorption Spectrometry. TrAC - Trends Anal. Chem. 2022, 147, 116510. doi:10.1016/j.trac.2021.116510
  • Machado, R. C.; Andrade, D. F.; Babos, D. V.; Castro, J. P.; Costa, V. C.; Sperança, M. A.; Garcia, J. A.; Gamela, R. R.; Pereira-Filho, E. R. Solid Sampling: Advantages and Challenges for Chemical Element determination- A Critical Review. J. Anal. At. Spectrom. 2020, 35, 54–77. doi:10.1039/c9ja00306a
  • Resano, M.; Vanhaecke, F.; De Loos-Vollebregt, M. T. C. Electrothermal Vaporization for Sample Introduction in Atomic Absorption, Atomic Emission and Plasma Mass spectrometry - A Critical Review with Focus on Solid Sampling and Slurry Analysis. J. Anal. At. Spectrom. 2008, 23, 1450–1475. doi:10.1039/b807756h
  • Kriegerová, K.; Procházková, S.; Halko, R. Slurry Sampling in Atomic Spectrometry. Chem. Listy 2019, 113, 574–580.
  • Ferreira, S. L. C.; Miró, M.; Da Silva, E. G. P.; Matos, G. D.; Dos Reis, P. S.; Brandao, G. C.; Dos Santos, W. N. L.; Duarte, A. T.; Vale, M. G. R.; Araujo, R. G. O. Slurry Sampling-an Analytical Strategy for the Determination of Metals and Metalloids by Spectroanalytical Techniques. Appl. Spectrosc. Rev. 2010, 45, 44–62. doi:10.1080/05704920903435474
  • Kriegerová, K.; Procházková, S.; Tuček, J.; Halko, R. Direct Solid Sampling in Atomic Absorption Spectrometry with Electrothermic Atomization. Chem. Listy 2020, 114, 644–650.
  • Welz, B.; Vale, M. G. R.; Borges, D. L. G.; Heitmann, U. Progress in Direct Solid Sampling Analysis Using Line Source and High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Anal. Bioanal. Chem. 2007, 389, 2085–2095. doi:10.1007/s00216-007-1555-x
  • Vale, M. G. R.; Oleszczuk, N.; dos Santos, W. N. L. Current Status of Direct Solid Sampling for Electrothermal Atomic Absorption spectrometry - A Critical Review of the Development between 1995 and 2005. Appl. Spectrosc. Rev. 2006, 41, 377–400. doi:10.1080/05704920600726167
  • Sturgeon, R. E. Photochemical Vapor Generation: A Radical Approach to Analyte Introduction for Atomic Spectrometry. J. Anal. At. Spectrom. 2017, 32, 2319–2340. doi:10.1039/c7ja00285h
  • Welz, B.; Vale, M. G. R.; Pereira, E. R.; Castilho, I. N. B.; Dessuy, M. B. Continuum Source Atomic Absorption Spectrometry: Past, Present and Future Aspects-a Critical Review. J. Braz. Chem. Soc. 2014, 25, 799–821. doi:10.5935/0103-5053.20140053
  • Ozbek, N.; Baysal, A. Determination of Sulfur by High-Resolution Continuum Source Atomic Absorption Spectrometry: Review of Studies over the Last 10 Years. TrAC - Trends Anal. Chem. 2017, 88, 62–76. doi:10.1016/j.trac.2016.09.014
  • Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE - Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. doi:10.1021/acs.analchem.0c01887
  • Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep – Analytical Greenness Metric for Sample Preparation. TrAC - Trends Anal. Chem. 2022, 149, 116553. doi:10.1016/j.trac.2022.116553
  • Halko, R.; Neuročný, T.; Hutta, M. Combination of Liquid Chromatography and Atomic Spectrometry for Speciation of Elements. Chem. Listy 2010, 104, 223–231.
  • Wu, P.; He, L.; Zheng, C.; Hou, X.; Sturgeon, R. E. Applications of Chemical Vapor Generation in Non-Tetrahydroborate Media to Analytical Atomic Spectrometry. J. Anal. At. Spectrom. 2010, 25, 1217–1246. doi:10.1039/c003483e
  • Matusiewicz, H.; Stanisz, E. Evaluation of High Pressure Oxygen Microwave-Assisted Wet Decomposition for the Determination of Mercury by CVAAS Utilizing UV-Induced Reduction. Microchem. J. 2010, 95, 268–273. doi:10.1016/j.microc.2009.12.012
  • Guo, X.; Sturgeon, R. E.; Mester, Z.; Gardner, G. J. UV Vapor Generation for Determination of Selenium by Heated Quartz Tube Atomic Absorption Spectrometry. Anal. Chem. 2003, 75, 2092–2099. doi:10.1021/ac020695h
  • Yin, Y.; Liu, J.; Jiang, G. Photo-Induced Chemical-Vapor Generation for Sample Introduction in Atomic Spectrometry. TrAC - Trends Anal. Chem. 2011, 30, 1672–1684. doi:10.1016/j.trac.2011.04.021
  • Miranda-Andrades, J. R.; Khan, S.; Toloza, C. A. T.; Maciel, R. M.; Escalfoni, R.; Jr. Tristão, M. L. B.; Aucelio, R. Q. Speciation and Ultra Trace Determination of Mercury in Produced Waters from Offshore Drilling Operations Using Portable Instrumentation and Matrix-Matching Calibration. Microchem. J. 2019, 146, 1072–1082. doi:10.1016/j.microc.2019.02.045
  • Linhart, O.; Kolorosová-Mrázová, A.; Kratzer, J.; Hraníček, J.; Červený, V. Mercury Speciation in Fish by High-Performance Liquid Chromatography (HPLC) and Post-Column Ultraviolet (UV)-Photochemical Vapor Generation (PVG): Comparison of Conventional Line-Source and High-Resolution Continuum Source (HR-CS) Atomic Absorption Spectrometry (AAS). Anal. Lett. 2019, 52, 613–632. doi:10.1080/00032719.2018.1483380
  • de Jesus, A.; Zmozinski, A. V.; Vieira, M. A.; Ribeiro, A. S.; da Silva, M. M. Determination of Mercury in Naphtha and Petroleum Condensate by Photochemical Vapor Generation Atomic Absorption Spectrometry. Microchem. J. 2013, 110, 227–232. doi:10.1016/j.microc.2013.03.019
  • de Jesus, A.; Sturgeon, R. E.; Liu, J.; Silva, M. M. Determination of Mercury in Gasoline by Photochemical Vapor Generation Coupled to Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2014, 117, 100–105. doi:10.1016/j.microc.2014.06.001
  • Vyhnanovský, J.; Yildiz, D.; Štádlerová, B.; Musil, S. Efficient Photochemical Vapor Generation of Bismuth Using a Coiled Teflon Reactor: Effect of Metal Sensitizers and Analytical Performance with Flame-in-Gas-Shield Atomizer and Atomic Fluorescence Spectrometry. Microchem. J. 2021, 164, 105997. doi:10.1016/j.microc.2021.105997
  • Caiminagua, A.; Fernández, L.; Romero, H.; Lapo, B.; Alvarado, J. Electrochemical Generation of Arsenic Volatile Species Using a Gold/Mercury Amalgam Cathode. Determination of Arsenic by Atomic Absorption Spectrometry. Anal. Chem. Res. 2015, 3, 82–88. doi:10.1016/j.ancr.2015.02.001
  • Ordoñes, J.; Fernández, L.; Romero, H.; Carrera, P.; Alvarado, J. Electrochemical Generation of Antimony Volatile Species, Stibine, Using Gold and Silver Mercury Amalgamated Cathodes and Determination of Sb by Flame Atomic Absorption Spectrometry. Talanta 2015, 141, 259–266. doi:10.1016/j.talanta.2015.04.025
  • Arbab-Zavar, M. H.; Chamsaz, M.; Youssefi, A.; Aliakbari, M. Flow Injection Electrochemical Hydride Generation Atomic Absorption Spectrometry for the Determination of Cadmium in Water Samples. Microchem. J. 2013, 108, 188–192. doi:10.1016/j.microc.2012.10.017
  • Arbab-Zavar, M. H.; Chamsaz, M.; Youssefi, A.; Aliakbari, M. Evaluation of Electrochemical Generation of Volatile Zinc Hydride by Heated Quartz Tube Atomizer Atomic Absorption Spectrometry. Anal. Sci. 2012, 28, 717–722. doi:10.2116/analsci.28.717
  • Nováková, E.; Rybínová, M.; Hraníček, J.; Rychlovský, P.; Červený, V. Comparison of Interference in Chemical, Electrochemical and UV-Photochemical Generation Methods of Volatile Se Species. J. Anal. At. Spectrom. 2018, 33, 118–126. doi:10.1039/c7ja00208d
  • Pinheiro, B. S.; Gimenes, L. L.; Moreira, A. J.; de Araújo, A. F.; Freschi, C. D.; Freschi, G. P. G. Speciation of As in Environmental Samples Using the nano-TiO2/PCHG-FAAS Online System. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 1089–1098. doi:10.1080/10934529.2017.1340749
  • Büyükpınar, Ç.; Bodur, S.; Yazıcı, E.; Tekin, Z.; San, N.; Tarık Komesli, O.; Bakırdere, S. An Accurate Analytical Method for the Determination of Cadmium: Ultraviolet Based Photochemical Vapor Generation-Slotted Quartz Tube Based Atom Trap-Flame Atomic Absorption Spectrophotometry. Meas. J. Int. Meas. Confed. 2021, 176, 109192. doi:10.1016/j.measurement.2021.109192
  • Büyükpınar, Ç.; San, N.; Komesli, O. T.; Bakırdere, S. Accurate, Sensitive, and Precise Determination of Cobalt in Soil Matrices by the Combination of Batch Type Gas-Liquid Separator-Assisted Photochemical Vapor Generation and Atomic Absorption Spectrophotometry. Environ. Monit. Assess. 2019, 191, 313. doi:10.1007/s10661-019-7486-0
  • Frois, C. F. G.; Boschetti, W.; dos Passos, A. S.; Potes, M. L.; Vale, M. G. R.; Silva, M. M. A Comparison between Chemical and Photochemical Vapor Generation Techniques for Mercury Determination Using Univariate and Multivariate Optimization. Microchem. J. 2020, 157, 105029. doi:10.1016/j.microc.2020.105029
  • He, C.; Cheng, G.; Zheng, C.; Wu, L.; Lee, Y. I.; Hou, X. Photochemical Vapor Generation and in Situ Preconcentration for Determination of Mercury by Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods 2015, 7, 3015–3021. doi:10.1039/c5ay00095e
  • Da Luz Potes, M.; Kolling, L.; De Jesus, A.; Dessuy, M. B.; Vale, M. G. R.; Da Silva, M. M. Determination of Mercury in Fish by Photochemical Vapor Generation Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods 2016, 8, 8165–8172. doi:10.1039/c6ay02342h
  • Lisboa, M. T.; Clasen, C. D.; Oreste, E. Q.; Schwingel Ribeiro, A.; Vieira, M. A. Comparison between Vapor Generation Methods Coupled to Atomic Absorption Spectrometry for Determination of Hg in Glycerin Samples. Energy Fuels 2015, 29, 1635–1640. doi:10.1021/ef501399d
  • Da Silva, C. S.; Oreste, E. Q.; Nunes, A. M.; Vieira, M. A.; Ribeiro, A. S. Determination of Mercury in Ethanol Biofuel by Photochemical Vapor Generation. J. Anal. At. Spectrom. 2012, 27, 689–694. doi:10.1039/c2ja10281a
  • Büyükpınar, Ç.; Maltepe, E.; Chormey, D. S.; San, N.; Bakırdere, S. Determination of Nickel in Water and Soil Samples at Trace Levels Using Photochemical Vapor Generation-Batch Type Ultrasonication Assisted Gas Liquid Separator-Atomic Absorption Spectrometry. Microchem. J. 2017, 132, 167–171. doi:10.1016/j.microc.2017.01.024
  • Yazıcı, E.; Büyükpınar, Ç.; Bodur, S.; San, N.; Komesli, O. T.; Bakırdere, S. Ultrasonic Assisted Glass Bead Loaded Gas Liquid Separator-Photochemical Vapor generation-T-Shaped Slotted Quartz Tube-Flame Atomic Absorption Spectrophotometry System for Antimony Determination in Tap Water and Wastewater Samples. Chem. Pap. 2021, 75, 1377–1386. doi:10.1007/s11696-020-01392-y
  • da Luz Potes, M.; Venâncio Nakadi, F.; Grasel Frois, C. F.; Rodrigues Vale, M. G.; Messias da Silva, M. Investigation of the Conditions for Selenium Determination by Photochemical Vapor Generation Coupled to Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2019, 147, 324–332. doi:10.1016/j.microc.2019.03.053
  • Mollo, A.; Knochen, M. Towards the Abatement of Nitrate Interference on Selenium Determination by Photochemical Vapor Generation. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105875. doi:10.1016/j.sab.2020.105875
  • Rybínová, M.; Červený, V.; Hraníček, J.; Rychlovský, P. UV-Photochemical Vapor Generation with Quartz Furnace Atomic Absorption Spectrometry for Simple and Sensitive Determination of Selenium in Dietary Supplements. Microchem. J. 2016, 124, 584–593. doi:10.1016/j.microc.2015.10.004
  • Rybínová, M.; Musil, S.; Červený, V.; Vobecký, M.; Rychlovský, P. UV-Photochemical Vapor Generation of Selenium for Atomic Absorption Spectrometry: Optimization and 75Se Radiotracer Efficiency Study. Spectrochim. Acta Part B At. Spectrosc. 2016, 123, 134–142. doi:10.1016/j.sab.2016.08.009
  • Nováková, E.; Linhart, O.; Červený, V.; Rychlovský, P.; Hraníček, J. Flow Injection Determination of Se in Dietary Supplements Using TiO2 Mediated Ultraviolet-Photochemical Volatile Species Generation. Spectrochim. Acta Part B At. Spectrosc. 2017, 134, 98–104. doi:10.1016/j.sab.2017.06.007
  • Rybínová, M.; Červený, V.; Rychlovský, P. UV-Photochemical Vapour Generation with in Situ Trapping in a Graphite Tube Atomizer for Ultratrace Determination of Selenium. J. Anal. At. Spectrom. 2015, 30, 1752–1763. doi:10.1039/c5ja00173k
  • Suzuki, T.; Sturgeon, R. E.; Zheng, C.; Hioki, A.; Nakazato, T.; Tao, H. Influence of Speciation on the Response from Selenium to UV-Photochemical Vapor Generation. Anal. Sci. 2012, 28, 807–811. doi:10.2116/analsci.28.807
  • Arbab-Zavar, M. H.; Chamsaz, M.; Youssefi, A.; Aliakbari, M. Multivariate Optimization on Flow-Injection Electrochemical Hydride Generation Atomic Absorption Spectrometry of Cadmium. Talanta 2012, 97, 229–234. doi:10.1016/j.talanta.2012.04.022
  • Nováková, E.; Rychlovský, P.; Resslerová, T.; Hraníček, J.; Červený, V. Electrochemical Generation of Volatile Form of Cadmium and Its in Situ Trapping in a Graphite Furnace. Spectrochim. Acta Part B At. Spectrosc. 2016, 117, 42–48. doi:10.1016/j.sab.2016.01.003
  • Sáenz, M.; Fernández, L.; Domínguez, J.; Alvarado, J. Electrochemical Generation of Volatile Lead Species Using a Cadmium Cathode: Comparison with Graphite, Glassy Carbon and Platinum Cathodes. Spectrochim. Acta Part B At. Spectrosc. 2012, 71-72, 107–111. doi:10.1016/j.sab.2012.03.009
  • Masac, J.; Machynak, L.; Lovic, J.; Beinrohr, E.; Cacho, F. On-Line Electrochemical Preconcentration and Electrochemical Hydride Generation for Determination of Antimony by High-Resolution Continuum Source Atomic Absorption Spectrometry. Talanta 2021, 223, 121767. doi:10.1016/j.talanta.2020.121767
  • Brady, D. V.; Montalvo, J. G.; Jr, Glowacki, G.; Pisciotta, A. Direct Determination of Zinc in Sea-Bottom Sediments by Carbon Tube Atomic Absorption Spectrometry. Anal. Chim. Acta 1974, 70, 448–452. doi:10.1016/S0003-2670(01)85200-4
  • Kurfürst, U. Solid Sample Analysis: Direct and Slurry Sampling Using GF-AAS and ETV-ICP; Springer-Verlag: Berlin, Germany, 1998.
  • Butcher, D. J. Recent Highlights in Graphite Furnace Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. 2017, 52, 755–773. doi:10.1080/05704928.2017.1303504
  • Yang, S.; Jiang, S.; Hu, K.; Wen, X. Investigation of Dispersive Solid-Phase Extraction Combined with Slurry Sampling Thermospray Flame Furnace Atomic Absorption Spectrometry for the Determination of Cadmium. Microchem. J. 2020, 154, 104542. doi:10.1016/j.microc.2019.104542
  • Hu, K.; Li, P.; Yang, S.; Wen, X. Slurry Sampling Thermospray Flame Furnace Atomic Absorption Spectrometric Determination of Bismuth in Water and Geological Samples Combined with Ultrasound-Assisted Dispersive Micro Solid Phase Extraction. J. Anal. At. Spectrom. 2020, 35, 526–533. doi:10.1039/c9ja00436j
  • Trindade, A. C.; Araújo, S. A.; Amorim, F. A. C.; Silva, D. S.; Alves, J. P. S.; Trindade, J. S.; Aguiar, R. M.; Bezerra, M. A. Development of a Method Based on Slurry Sampling for Determining Ca, Fe, and Zn in Coffee Samples by Flame Atomic Absorption Spectrometry. Food Anal. Methods 2020, 13, 203–211. doi:10.1007/s12161-019-01578-5
  • de Andrade, C. K.; de Andrade, J. K.; dos Anjos, V. E.; Quináia, S. P. Bioaccessibility of Zinc from Yogurt and Determination of Total Concentration Using Slurry Sampling and Flame Atomic Absorption Spectrometry. J. Braz. Chem. Soc. 2019, 30, 2721–2730. doi:10.21577/0103-5053.20190213
  • Amorim, F. A. C.; Costa, V. C.; Silva, E. G. P. D.; Lima, D. D. C.; Jesus, R. M. D.; Bezerra, M. D. A. Multivariate Optimization of Simple Procedure for Determination of Fe and Mg in Cassava Starch Employing Slurry Sampling and FAAS. Food Chem. 2017, 227, 41–47. doi:10.1016/j.foodchem.2016.12.029
  • Amorim, F. A. C.; Costa, V. C.; Guedes, W. N.; de Sá, I. P.; dos Santos, M. C.; da Silva, E. G. P.; Lima, D. C. Multivariate Optimization of Method of Slurry Sampling for Determination of Iron and Zinc in Starch Samples by Flame Atomic Absorption Spectrometry. Food Anal. Methods 2016, 9, 1719–1725. doi:10.1007/s12161-015-0296-2
  • Yilmaz, E.; Ocsoy, I.; Ozdemir, N.; Soylak, M. Bovine Serum albumin-Cu(II) Hybrid Nanoflowers: An Effective Adsorbent for Solid Phase Extraction and Slurry Sampling Flame Atomic Absorption Spectrometric Analysis of Cadmium and Lead in Water, Hair, Food and Cigarette Samples. Anal. Chim. Acta 2016, 906, 110–117. doi:10.1016/j.aca.2015.12.001
  • Kriegerová, K.; Procházková, S.; Tuček, J.; Rísová, V.; Halko, R. Determination of Lead in Human Placenta Tissue Employing Slurry Sampling and Detection by Electrothermal Atomic Absorption Spectrometry. Anal. Methods 2020, 12, 4235–4244. doi:10.1039/d0ay00848f
  • Zhang, P.; Yang, Z.; Yu, T.; Hou, Q.; Xia, X.; Gao, G.; Yang, R. Determination of pb in Geological Materials by Heat Extraction Slurry Sampling et-Aas. At. Spectrosc. 2020, 41, 205–210. doi:10.46770/AS.2020.05.005
  • Procházková, S.; Kriegerová, K.; Boháčová, I.; Halko, R. Speciation Analysis of Chromium in Water Samples Using Nanometer Zirconium Dioxide and Direct Ultrasonic Slurry Sampling with Electrothermal Atomic Absorption Spectrometry. Int. J. Environ. Anal. Chem. 2019, 99, 157–171. doi:10.1080/03067319.2019.1581884
  • Oreste, E. Q.; de Souza, A. O.; Pereira, C. C.; Bonemann, D. H.; Vieira, M. A.; Ribeiro, A. S. Evaluation of Sample Preparation Methods for the Determination of Cd, Cr and Pb in Ceramic Tableware by Graphite Furnace Atomic Absorption Spectrometry. Anal. Lett. 2020, 53, 436–458. doi:10.1080/00032719.2019.1655759
  • Konshina, D. N.; Burylin, M. Y.; Anashkin, R.; Konshin, V. V. Solid-Phase Extraction with Injection of Modified Silica Gel Slurries into ETAAS for Determination of Cu(II), Hg(II), Pd(II). Int. J. Environ. Sci. Technol. 2019, 16, 2885–2894. doi:10.1007/s13762-018-1917-2
  • Dobrzyńska, J.; Dobrowolski, R.; Olchowski, R.; Zięba, E.; Barczak, M. Palladium Adsorption and Preconcentration onto Thiol- and Amine-Functionalized Mesoporous Silicas with Respect to Analytical Applications. Microporous Mesoporous Mater. 2019, 274, 127–137. doi:10.1016/j.micromeso.2018.07.038
  • Alizadeh, K.; Pourhossein, A. Slurry Sampling for Determination of Iron and Copper in Inactive Yeast Samples by Electrothermal Atomic Absorption Spectrometry. Res. J. Chem. Environ. 2018, 22, 63–71.
  • de Queiroz, J. V.; Vieira, J. C. S.; da Cunha Bataglioli, I.; Bittarello, A. C.; Braga, C. P.; de Oliveira, G.; do Carmo Federici Padilha, C.; de Magalhães Padilha, P. Total Mercury Determination in Muscle and Liver Tissue Samples from Brazilian Amazon Fish Using Slurry Sampling. Biol. Trace Elem. Res. 2018, 184, 517–522. doi:10.1007/s12011-017-1212-y
  • de Andrade, C. K.; de Brito, P. M. K.; dos Anjos, V. E.; Quináia, S. P. Determination of Cu, Cd, Pb and Cr in Yogurt by Slurry Sampling Electrothermal Atomic Absorption Spectrometry: A Case Study for Brazilian Yogurt. Food Chem. 2018, 240, 268–274. doi:10.1016/j.foodchem.2017.07.111
  • Caliskan, E.; Tinas, H.; Ozbek, N.; Akman, S. Determination of Lead in Water Samples by GFAAS after Collection on Montmorillonite with Slurry Introduction. Anal. Sci. 2017, 33, 387–390. doi:10.2116/analsci.33.387
  • Krawczyk, M.; Stanisz, E. Ultrasound-Assisted Dispersive Micro Solid-Phase Extraction with nano-TiO2 as Adsorbent for the Determination of Mercury Species. Talanta 2016, 161, 384–391. doi:10.1016/j.talanta.2016.08.071
  • Barbosa, U.; Silva, L.; Santos, I.; Ferreira, S.; Santos, A. Determination of Mercury in Iron Supplement Using Slurry Sampling and Cold Vapor Atomic Absorption Spectrometry. CAC. 2014, 11, 44–49. doi:10.2174/1573411010666141031003321
  • Silva, L. O. B.; Leao, D. J.; Dos Santos, D. C.; Matos, G. D.; De Andrade, J. B.; Ferreira, S. L. C. Determination of Copper in Airborne Particulate Matter Using Slurry Sampling and Chemical Vapor Generation Atomic Absorption Spectrometry. Talanta 2014, 127, 140–145. doi:10.1016/j.talanta.2014.04.010
  • De Jesus, R. M.; Silva, L. O. B.; Castro, J. T.; De Azevedo Neto, A. D.; De Jesus, R. M.; Ferreira, S. L. C. Determination of Mercury in Phosphate Fertilizers by Cold Vapor Atomic Absorption Spectrometry. Talanta 2013, 106, 293–297. doi:10.1016/j.talanta.2012.11.001
  • Ribeiro, V. S.; Souza, S. O.; Costa, S. S. L.; Almeida, T. S.; Soares, S. A. R.; Korn, M. G. A.; Araujo, R. G. O. Speciation Analysis of Inorganic As and Sb in Urban Dust Using Slurry Sampling and Detection by Fast Sequential Hydride Generation Atomic Absorption Spectrometry. Environ. Geochem. Health 2020, 42, 2179–2193. doi:10.1007/s10653-019-00488-z
  • Correia, F. O.; Almeida, T. S.; Garcia, R. L.; Queiroz, A. F. S.; Smichowski, P.; da Rocha, G. O.; Araujo, R. G. O. Sequential Determination and Chemical Speciation Analysis of Inorganic As and Sb in Airborne Particulate Matter Collected in Outdoor and Indoor Environments Using Slurry Sampling and Detection by HG AAS. Environ. Sci. Pollut. Res. Int. 2019, 26, 21416–21424. doi:10.1007/s11356-019-04638-9
  • Widziewicz, K.; Rogula-Kozłowska, W.; Loska, K. Cancer Risk from Arsenic and Chromium Species Bound to PM2.5 and PM1 – Polish Case Study. Atmos. Pollut. Res 2016, 7, 884–894. doi:10.1016/j.apr.2016.05.002
  • Silva, M. M.; Jr. Leao, D. J.; Moreira, Í. T. A.; de Oliveira, O. M. C.; de Souza Queiroz, A. F.; Ferreira, S. L. C. Speciation Analysis of Inorganic Antimony in Sediment Samples from São Paulo Estuary, Bahia State, Brazil. Environ. Sci. Pollut. Res. Int. 2015, 22, 8386–8391. doi:10.1007/s11356-014-3956-7
  • Cal-Prieto, M. J.; Felipe-Sotelo, M.; Carlosena, A.; Andrade, J. M.; López-Mahía, P.; Muniategui, S.; Prada, D. Slurry Sampling for Direct Analysis of Solid Materials by Electrothermal Atomic Absorption Spectrometry (ETAAS). A Literature Review from 1990 to 2000. Talanta 2002, 56, 1–51. doi:10.1016/S0039-9140(01)00543-4
  • Pucholobek, G.; de Andrade, C. K.; Quináia, S. P. Development of an Analytical Method for Rapid Metal Determination in Stingless Bee Honey. Orbital 2021, 13, 96–101. doi:10.17807/orbital.v13i2.1449
  • Galvão, F.; Felsner, M. L. Direct Determination of Chromium in Cane Syrup by GF AAS. Rev. Virtual Quim. 2021, 13, 2–12. doi:10.21577/1984-6835.20200127
  • Dobrowolski, R.; Otto, M. Preparation and Evaluation of Ni-Loaded Activated Carbon for Enrichment of Arsenic for Analytical and Environmental Purposes. Microporous Mesoporous Mater. 2013, 179, 1–9. doi:10.1016/j.micromeso.2013.05.017
  • Garcia, M. A. S.; Silvestre, D. M.; Nomura, C. S.; Rossi, L. M. Determination of Metal Loading in Heterogeneous Catalyst by Slurry Sampling Flame Atomic Absorption Spectrometry. J. Braz. Chem. Soc. 2015, 26, 359–364. doi:10.5935/0103-5053.20140287
  • Cui, H.; Guo, W.; Cheng, M.; Zhang, P.; Jin, L.; Guo, Q.; Hu, S. Direct Determination of Cadmium in Geological Samples by Slurry Sampling Electrothermal Atomic Absorption Spectrometry. Anal. Methods 2015, 7, 8970–8976. doi:10.1039/c5ay01719j
  • Camba, M.; Romero, V.; Lavilla, I.; Bendicho, C. In Situ Growth of Feinf3/infOinf4/Inf Nanoparticles for Dispersive Magnetic Micro-Solid Phase Extraction of Cadmium Followed by ETAAS Detection. Anal. Methods 2015, 7, 1154–1160. doi:10.1039/c4ay02522a
  • Peng, Y.; Guo, W.; Zhang, P.; Jin, L.; Hu, S. Heated Slurry Sampling for the Determination of Cadmium in Food by Electrothermal Atomic Absorption Spectrometry. Anal. Lett. 2015, 48, 2894–2907. doi:10.1080/00032719.2015.1052972
  • Miranda, K.; Dionísio, A. G. G.; Pessoa Neto, O. D.; Gomes, M. S.; Pereira-Filho, E. R. Determination of Cd Levels in Smoke Condensate of Brazilian and Paraguayan Cigarettes by Thermospray Flame Furnace Atomic Absorption Spectrometry (TS-FF-AAS). Microchem. J. 2012, 100, 27–30. doi:10.1016/j.microc.2011.08.004
  • De Amorim, F. R.; Knupp, E. A. N.; Da Silva, J. B. B.; Nascentes, C. C. Multivariate Optimization Applied to Chromium Determination in Milk and Similar Baby Food Samples by Graphite Furnace Atomic Absorption Spectrometry. At. Spectrosc. 2016, 37, 252–259. doi:
  • Liu, Y.; Hu, J.; Li, Y.; Wei, H. P.; Li, X. S.; Zhang, X. H.; Chen, S. M.; Chen, X. Q. Synthesis of Polyethyleneimine Capped Carbon Dots for Preconcentration and Slurry Sampling Analysis of Trace Chromium in Environmental Water Samples. Talanta 2015, 134, 16–23. doi:10.1016/j.talanta.2014.11.001
  • Silva, L. O. B.; da Silva, D. G.; Leao, D. J.; Matos, G. D.; Ferreira, S. L. C. Slurry Sampling for the Determination of Mercury in Rice Using Cold Vapor Atomic Absorption Spectrometry. Food Anal. Methods 2012, 5, 1289–1295. doi:10.1007/s12161-012-9371-0
  • Peng, Y.; Guo, W.; Zhang, P.; Jin, L. Heat-Assisted Slurry Sampling GFAAS Method for Determination of Lead in Food Standard Reference Materials. J. Food Compost. Anal. 2015, 42, 78–83. doi:10.1016/j.jfca.2015.03.007
  • Borges, A. R.; Becker, E. M.; Dessuy, M. B.; Vale, M. G. R.; Welz, B. Investigation of Chemical Modifiers for the Determination of Lead in Fertilizers and Limestone Using Graphite Furnace Atomic Absorption Spectrometry with Zeeman-Effect Background Correction and Slurry Sampling. Spectrochim. Acta Part B At. Spectrosc. 2014, 92, 1–8. doi:10.1016/j.sab.2013.11.001
  • Soares, A. R.; Nascentes, C. C. Simple Method for Determination of Lead in Hair Dyes Using Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry. Anal. Lett. 2013, 46, 356–366. doi:10.1080/00032719.2012.710868
  • Dobrowolski, R.; Mróz, A.; Otto, M.; Kuryło, M. Development of Sensitive Determination Method for Platinum in Geological Materials by Carbon Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2015, 121, 18–24. doi:10.1016/j.microc.2015.01.013
  • Hagarová, I.; Matúš, P.; Bujdoš, M.; Kubová, J. Analytical Application of Nano-Sized Titanium Dioxide for the Determination of Trace Inorganic Antimony in Natural Waters. Acta Chim. Slov. 2012, 59, 102–108. doi:
  • Dobrowolski, R.; Otto, M. Preparation and Evaluation of Fe-Loaded Activated Carbon for Enrichment of Selenium for Analytical and Environmental Purposes. Chemosphere 2013, 90, 683–690. doi:10.1016/j.chemosphere.2012.09.049
  • Dobrowolski, R.; Adamczyk, A.; Otto, M. Determination of Vanadium in Soils and Sediments by the Slurry Sampling Graphite Furnace Atomic Absorption Spectrometry Using Permanent Modifiers. Talanta 2013, 113, 19–25. doi:10.1016/j.talanta.2013.03.085
  • De Oliveira, R. F.; Neto, W. B.; Windmöller, C. C.; Beinner, M. A.; Da Silva, J. B. B. Methods for the Determination of As, Cd, and Pb in Potato Slurry Using Multivariate Optimization and Graphite Furnace Atomic Absorption Spectrometry. At. Spectrosc. 2015, 36, 273–285. doi:
  • Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R. M.; Herrero Latorre, C. Determination of Cadmium and Lead in Urine Samples after Dispersive Solid-Liquid Extraction on Multiwalled Carbon Nanotubes by Slurry Sampling Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc 2015, 106, 13–19. doi:10.1016/j.sab.2015.01.008
  • Oliveira, H. R.; Mesko, M. F.; Vale, M. G. R.; Silveira, C. A. P.; Picoloto, R. S.; Becker, E. M. Development of Methods for the Determination of Cadmium and Thallium in Oil Shale by-Products with Graphite Furnace Atomic Absorption Spectrometry Using Direct Analysis. Microchem. J. 2014, 116, 55–61. doi:10.1016/j.microc.2014.04.006
  • Scaccia, S.; Mecozzi, R. Trace Cd, Co, and Pb Elements Distribution during Sulcis Coal Pyrolysis: GFAAS Determination with Slurry Sampling Technique. Microchem. J. 2012, 100, 48–54. doi:10.1016/j.microc.2011.09.001
  • de Paula, C. E. R.; Cruz, G. F. B.; Rezende, C. M. S. P.; Cassella, R. J. Determination of Cr and Mn in Moisturizing Creams by Graphite Furnace Atomic Absorption Spectrometry through Direct Introduction of the Samples in the Form of Emulsions. Microchem. J. 2016, 127, 1–6. doi:10.1016/j.microc.2016.01.017
  • de Paula, C. E. R.; Caldas, L. F. S.; Brum, D. M.; Cassella, R. J. Development of an Ultrasonic Slurry Sampling Method for the Determination of Cu and Mn in Antibiotic Tablets by Electrothermal Atomic Absorption Spectrometry. J. Pharm. Biomed. Anal. 2012, 66, 197–203. doi:10.1016/j.jpba.2012.03.057
  • De Almeida, T. S.; Sant’Ana, M. O.; Cruz, J. M.; Tormen, L.; Curtius, A. J.; Do Patrocínio, H.; Alves, J.; Garcia, C. A. B.; Santos, P. A.; Araujo, R. G. O. Optimization Method for Sequential Determination of Cu and Fe in Airborne Particulate Matter Collected on Glass Fiber Filters by Slurry Sampling FAAS. J. Braz. Chem. Soc. 2013, 24, 700–706. doi:10.5935/0103-5053.20130088
  • Ozbek, N.; Akman, S. A Slurry Sampling Method for the Determination of Iron and Zinc in Baby Food by Flame Atomic Absorption Spectrometry. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 208–216. doi:10.1080/19440049.2011.631193
  • Dobrowolski, R.; Otto, M. Determination of Nickel and Cobalt in Reference Plant Materials by Carbon Slurry Sampling GFAAS Technique after Their Simultaneous Preconcentration onto Modified Activated Carbon. J. Food Compost. Anal. 2012, 26, 58–65. doi:10.1016/j.jfca.2012.03.002
  • Resano, M.; Aramendía, M.; Belarra, M. A. High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry for Direct Analysis of Solid Samples and Complex Materials: A Tutorial Review. J. Anal. At. Spectrom 2014, 29, 2229–2250. doi:10.1039/c4ja00176a
  • Husáková, L.; Šídová, T.; Ibrahimová, L.; Svízelová, M.; Mikysek, T. Direct Determination of Lead in Bones Using Slurry Sampling and High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Anal. Methods 2019, 11, 1254–1263. doi:10.1039/c8ay02555j
  • Boschetti, W.; Orlando, M.; Dullius, M.; Dessuy, M. B.; Vale, M. G. R.; Welz, B.; De Andrade, J. B. Sequential and Simultaneous Determination of Four Elements in Soil Samples Using High-Resolution Continuum Source Graphite Furnace Atomic and Molecular Absorption Spectrometry. J. Anal. At. Spectrom. 2016, 31, 1269–1277. doi:10.1039/c6ja00031b
  • Gómez-Nieto, B.; Gismera, M. J.; Sevilla, M. T.; Procopio, J. R. Simultaneous and Direct Determination of Iron and Nickel in Biological Solid Samples by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2013, 116, 860–865. doi:10.1016/j.talanta.2013.07.083
  • Resano, M.; Lapeña, A. C.; Belarra, M. A. Potential of Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry to Monitor the Ag Body Burden in Individual Daphnia Magna Specimens Exposed to Ag Nanoparticles. Anal. Methods 2013, 5, 1130–1139. doi:10.1039/c2ay26456k
  • Krawczyk, M. Determination of Macro and Trace Elements in Multivitamin Dietary Supplements by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry with Slurry Sampling. J. Pharm. Biomed. Anal. 2014, 88, 377–384. doi:10.1016/j.jpba.2013.09.016
  • Husáková, L.; Urbanová, I.; Šafránková, M.; Šídová, T. Slurry Sampling High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry for Direct Beryllium Determination in Soil and Sediment Samples after Elimination of SiO Interference by Least-Squares Background Correction. Talanta 2017, 175, 93–100. doi:10.1016/j.talanta.2017.07.031
  • Brandao, G. C.; Gomes, D. P.; Matos, G. D. Development of an Analytical Method Based in the Slurry Sampling for Iron Determination in Fortified Milk Powder by HR-CS FAAS. Food Anal. Methods 2012, 5, 579–584. doi:10.1007/s12161-011-9282-5
  • Rosa Souza, L. R.; Teixeira Zanatta, M. B.; Amoroso Da Silva, I.; Mesquita Silva Da Veiga, M. A. Mercury Determination in Soil and Sludge Samples by HR CS GFAAS: Comparison of Sample Preparation Procedures and Chemical Modifiers. J. Anal. At. Spectrom. 2018, 33, 1477–1485. doi:10.1039/c8ja00152a
  • Borges, A. R.; Becker, E. M.; François, L. L.; De Jesus, A.; Vale, M. G. R.; Welz, B.; Dessuy, M. B.; De Andrade, J. B. Investigation of Spectral Interferences in the Determination of Lead in Fertilizers and Limestone Samples Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 213–219. doi:10.1016/j.sab.2014.08.040
  • Oliveira, S. S.; Ribeiro, V. S.; Almeida, T. S.; Araujo, R. G. O. Quantification of Ytterbium in Road Dust Applying Slurry Sampling and Detection by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2020, 171, 105938. doi:10.1016/j.sab.2020.105938
  • Filatova, D. G.; Eskina, V. V.; Baranovskaya, V. B.; Vladimirova, S. A.; Gaskov, A. M.; Rumyantseva, M. N.; Karpov, Y. A. Determination of Gold and Cobalt Dopants in Advanced Materials Based on Tin Oxide by Slurry Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 140, 1–4. doi:10.1016/j.sab.2017.12.003
  • Frohlich, A. C.; Pereira, L. S. F.; Junges, A. F.; Flores, E. M. M.; Paniz, J. N. G.; Duarte, F. A. Direct Sampling Graphite Furnace Atomic Absorption Spectrometry® a Suitable Tool for the Determination of Metallic Contaminants in Pitch. BCSJ. 2021, 94, 1963–1969. doi:10.1246/bcsj.20210118
  • Rodrigues, L. F.; Santos, R. F.; Bolzan, R. C.; Duarte, F. A.; Mattos, J. C. P.; Flores, E. M. M. Feasibility of DS-GF AAS for the Determination of Metallic Impurities in Raw Material for Polymers Production. Talanta 2020, 218, 121129. doi:10.1016/j.talanta.2020.121129
  • Santos, R. F.; Carvalho, G. S.; Duarte, F. A.; Bolzan, R. C.; Flores, E. M. M. High Purity Polyimide Analysis by Solid Sampling Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2017, 129, 42–48. doi:10.1016/j.sab.2017.01.005
  • Török, P.; Žemberyová, M. Direct Solid Sampling Electrothermal Atomic Absorption Spectrometric Determination of Toxic and Potentially Toxic Elements in Certified Reference Materials of Brown Coal Fly Ash. Spectrochim. Acta Part B At. Spectrosc. 2012, 71–72, 80–85. doi:10.1016/j.sab.2012.03.008
  • Chelegão, R.; Carioni, V. M. O.; Naozuka, J.; Nomura, C. S. Feasibility of Using AAS for the Characterization of a Tuna Fish Candidate Reference Material for Total hg and methyl-Hg Measurement. J. Braz. Chem. Soc. 2016, 27, 712–718. doi:10.5935/0103-5053.20150320
  • Zmozinski, A. V.; Llorente-Mirandes, T.; Damin, I. C. F.; López-Sánchez, J. F.; Vale, M. G. R.; Welz, B.; Silva, M. M. Direct Solid Sample Analysis with Graphite Furnace Atomic Absorption spectrometry - A Fast and Reliable Screening Procedure for the Determination of Inorganic Arsenic in Fish and Seafood. Talanta 2015, 134, 224–231. doi:10.1016/j.talanta.2014.11.009
  • Zelinková, H.; Červenka, R.; Komárek, J. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry. Sci. World J. 2012, 2012, 439875. doi:10.1100/2012/439875
  • Török, P.; Žemberyová, M. Comparison of Chemical Modifiers for Direct Determination of Cd, Cu and Zn in Food Stuffs by Solid-sampling-ETAAS. Food Chem. 2012, 132, 554–560. doi:10.1016/j.foodchem.2011.10.068
  • Laczai, N.; Kovács, L.; Péter, Á.; Bencs, L. Solid Sampling Determination of Lithium and Sodium Additives in Microsamples of Yttrium Oxyorthosilicate by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2016, 117, 8–15. doi:10.1016/j.sab.2015.12.008
  • Resano, M.; Flórez, M. D. R.; Queralt, I.; Marguí, E. Determination of Palladium, Platinum and Rhodium in Used Automobile Catalysts and Active Pharmaceutical Ingredients Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Spectrochim. Acta Part B At. Spectrosc. 2015, 105, 38–46. doi:10.1016/j.sab.2014.09.013
  • Adolfo, F. R.; do Nascimento, P. C.; Leal, G. C.; Bohrer, D.; Viana, C.; de Carvalho, L. M. Simultaneous Determination of Fe and Ni in Guarana (Paullinia Cupana Kunth) by HR-CS GF AAS: Comparison of Direct Solid Analysis and Wet Acid Digestion Procedures. J. Food Compost. Anal. 2020, 88, 103459. doi:10.1016/j.jfca.2020.103459
  • Araujo, R. G. O.; Vignola, F.; Castilho, I. N. B.; Welz, B.; Vale, M. G. R.; Smichowski, P.; Ferreira, S. L. C.; Becker-Ross, H. Determination of Silver in Airborne Particulate Matter Collected on Glass Fiber Filters Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sampling. Microchem. J. 2013, 109, 36–40. doi:10.1016/j.microc.2012.05.009
  • Feichtmeier, N. S.; Leopold, K. Detection of Silver Nanoparticles in Parsley by Solid Sampling High-Resolution-Continuum Source Atomic Absorption Spectrometry Characterisation of Nanomaterials in Biological Samples. Anal. Bioanal. Chem. 2014, 406, 3887–3894. doi:10.1007/s00216-013-7510-0
  • Schneider, M.; Cadorim, H. R.; Welz, B.; Carasek, E.; Feldmann, J. Determination of Arsenic in Agricultural Soil Samples Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Talanta 2018, 188, 722–728. doi:10.1016/j.talanta.2018.06.052
  • Virgilio, A.; Nóbrega, J. A.; Rêgo, J. F.; Neto, J. A. G. Evaluation of Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry for Direct Determination of Chromium in Medicinal Plants. Spectrochim. Acta Part B At. Spectrosc. 2012, 78, 58–61. doi:10.1016/j.sab.2012.09.003
  • Barrera, E. G.; Bazanella, D.; Castro, P. W.; Boschetti, W.; Vale, M. G. R.; Dessuy, M. B. Alternative Method for Chromium Determination in Pharmaceutical Drugs by HR-CS GF AAS and Direct Analysis of Solid Samples. Microchem. J. 2017, 132, 365–370. doi:10.1016/j.microc.2017.02.020
  • Silva, A. S.; Brandao, G. C.; Matos, G. D.; Ferreira, S. L. C. Direct Determination of Chromium in Infant Formulas Employing High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry and Solid Sample Analysis. Talanta 2015, 144, 39–43. doi:10.1016/j.talanta.2015.05.046
  • Vereda Alonso, E.; López Guerrero, M. M.; Siles Cordero, M. T.; Cano Pavón, J. M.; García De Torres, A. Characterization of Solid magnetic nanoparticles by Means of Solid Sampling High Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2016, 31, 2391–2398. doi:10.1039/c6ja00225k
  • Schreiter, N.; Wiche, O.; Aubel, I.; Roode-Gutzmer, Q.; Bertau, M. Determination of Germanium in Plant and Soil Samples Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry (HR CS GFAAS) with Solid Sampling. J. Geochem. Explor. 2021, 220, 106674. doi:10.1016/j.gexplo.2020.106674
  • Mandjukov, P.; Orani, A. M.; Han, E.; Vassileva, E. Determination of Total Mercury for Marine Environmental Monitoring Studies by Solid Sampling Continuum Source High Resolution Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2015, 103-104, 24–33. doi:10.1016/j.sab.2014.11.006
  • Figuerêdo Rêgo, J.; Virgilio, A.; Nóbrega, J. A.; Gomes Neto, J. A. Determination of Lead in Medicinal Plants by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry Using Direct Solid Sampling. Talanta 2012, 100, 21–26. doi:10.1016/j.talanta.2012.08.038
  • Leal, G. C.; Mattiazzi, P.; Rovasi, F.; Molin, T. D.; Bohrer, D.; do Nascimento, P. C.; de Carvalho, L. M.; Viana, C. Determination of Lead in Dietary Supplements by High-Resolution Continuum-Source Graphite Furnace Atomic Absorption Spectrometry with Direct Solid Sampling. J. Food Compost. Anal. 2020, 86, 103360. doi:10.1016/j.jfca.2019.103360
  • Tinas, H.; Ozbek, N.; Akman, S. Determination of Lead in Flour Samples Directly by Solid Sampling High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 140, 73–75. doi:10.1016/j.sab.2017.12.002
  • Gunduz, S.; Akman, S. Investigation of Lead Contents in Lipsticks by Solid Sampling High Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Regul. Toxicol. Pharmacol. 2013, 65, 34–37. doi:10.1016/j.yrtph.2012.10.009
  • Gunduz, S.; Akman, S. Determination of Lead in Rice Grains by Solid Sampling HR-CS GFAAS. Food Chem. 2013, 141, 2634–2638. doi:10.1016/j.foodchem.2013.05.020
  • Fick, S. S.; Nakadi, F. V.; Fujiwara, F.; Smichowski, P.; Vale, M. G. R.; Welz, B.; De Andrade, J. B. Investigation of Spectral Interference in the Determination of Pb in Road Dust Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. J. Anal. At. Spectrom. 2018, 33, 593–602. doi:10.1039/c7ja00405b
  • Duarte, Á. T.; Borges, A. R.; Zmozinski, A. V.; Dessuy, M. B.; Welz, B.; De Andrade, J. B.; Vale, M. G. R. Determination of Lead in Biomass and Products of the Pyrolysis Process by Direct Solid or Liquid Sample Analysis Using HR-CS GF AAS. Talanta 2016, 146, 166–174. doi:10.1016/j.talanta.2015.08.041
  • Kelestemur, S.; Özcan, M. Determination of Pb in Glasses by Direct Solid Sampling and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry: Method Development and Analyses of Glass Samples. Microchem. J. 2015, 118, 55–61. doi:10.1016/j.microc.2014.08.005
  • Atilgan, S.; Akman, S.; Baysal, A.; Bakircioglu, Y.; Szigeti, T.; Óvári, M.; Záray, G. Monitoring of Pd in Airborne Particulates by Solid Sampling High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 33–38. doi:10.1016/j.sab.2012.04.008
  • Barros, A. I.; Victor de Babos, D.; Ferreira, E. C.; Gomes Neto, J. A. Effect of Different Precursors on Generation of Reference Spectra for Structural Molecular Background Correction by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry: Determination of Antimony in Cosmetics. Talanta 2016, 161, 547–553. doi:10.1016/j.talanta.2016.09.017
  • de Jesus, A.; Dessuy, M. B.; Huber, C. S.; Zmozinski, A. V.; Duarte, T. T.; Vale, M. G. R.; Andrade, J. B. Determination of Antimony in Pet Containers by Direct Analysis of Solid Samples Using Graphite Furnace Atomic Absorption Spectrometry and Leaching Studies. Microchem. J. 2016, 124, 222–227. doi:10.1016/j.microc.2015.08.016
  • Boschetti, W.; Dalagnol, L. M. G.; Dullius, M.; Zmozinski, A. V.; Becker, E. M.; Vale, M. G. R.; de Andrade, J. B. Determination of Silicon in Plant Materials Using Direct Solid Sample Analysis with High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2016, 124, 380–385. doi:10.1016/j.microc.2015.09.017
  • Orani, A. M.; Han, E.; Mandjukov, P.; Vassileva, E. Marine Sediments Monitoring Studies for Trace Elements with the Application of Fast Temperature Programs and Solid Sampling High Resolution Continuum Source Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2015, 103-104, 131–143. doi:10.1016/j.sab.2014.12.005
  • Resano, M.; Mozas, E.; Crespo, C.; Pérez, J.; García-Ruiz, E.; Belarra, M. A. Direct Analysis of silica by Means of Solid Sampling Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2012, 71-72, 24–30. doi:10.1016/j.sab.2012.03.005
  • Almeida, T. S.; Brancher, M.; de Melo Lisboa, H.; Franco, D.; Maranhão, T. A.; Borges, D. L. G. Direct Analysis of Particulate Matter (PM10) for the Determination of Be, Cd and Pb Using High Resolution-Continuum Source Electrothermal Atomic Absorption Spectrometry: Assessment of the Potential Correlation between Analyte Content and Meteorological Parameters. Spectrochim. Acta Part B At. Spectrosc. 2020, 172, 105951. doi:10.1016/j.sab.2020.105951
  • Duarte, A. T.; Dessuy, M. B.; Vale, M. G. R.; Welz, B.; De Andrade, J. B. Sequential Determination of Cd and Cr in Biomass Samples and Their Ashes Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Talanta 2013, 115, 55–60. doi:10.1016/j.talanta.2013.04.036
  • Virgilio, A.; Rêgo, J. F.; Barros, A. I.; Neto, J. A. G. Determination of Cd, Ni and V in Spices by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Braz. Chem. Soc. 2015, 26, 1988–1993. doi:10.5935/0103-5053.20150178
  • Gómez-Nieto, B.; Motyzhov, V.; Gismera, M. J.; Procopio, J. R.; Sevilla, M. T. Fast-Sequential Determination of Cadmium and Copper in Milk Powder and Infant Formula by Direct Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2020, 159, 105335. doi:10.1016/j.microc.2020.105335
  • Borges, A. R.; Bazanella, D. N.; Duarte, Á. T.; Zmozinski, A. V.; Vale, M. G. R.; Welz, B. Development of a Method for the Sequential Determination of Cadmium and Chromium from the Same Sample Aliquot of Yerba Mate Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2017, 130, 116–121. doi:10.1016/j.microc.2016.08.010
  • Resano, M.; Bolea-Fernández, E.; Mozas, E.; Flórez, M. R.; Grinberg, P.; Sturgeon, R. E. Simultaneous Determination of Co, fe, ni and Pb in Carbon Nanotubes by Means of Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Anal. At. Spectrom. 2013, 28, 657–665. doi:10.1039/c3ja30377b
  • Ávila, D. V. L.; Borges, A. R.; Vale, M. G. R.; Araujo, R. G. O.; Passos, E. A. Determination of Co and Cr in Wet Animal Feeds Using Direct Solid Sample Analysis by HR-CS GF AAS. Microchem. J. 2017, 133, 524–529. doi:10.1016/j.microc.2017.04.028
  • Borges, A. R.; François, L. L.; Becker, E. M.; Vale, M. G. R.; Welz, B. Method Development for the Determination of Chromium and Thallium in Fertilizer Samples Using Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Microchem. J. 2015, 119, 169–175. doi:10.1016/j.microc.2014.11.007
  • Duarte, A. T.; Dessuy, M. B.; Vale, M. G. R.; Welz, B. Determination of Chromium and Antimony in Polymers from Electrical and Electronic Equipment Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Anal. Methods 2013, 5, 6941–6946. doi:10.1039/c3ay41392f
  • De Oliveira Souza, S.; François, L. L.; Borges, A. R.; Vale, M. G. R.; Araujo, R. G. O. Determination of Copper and Mercury in Phosphate Fertilizers Employing Direct Solid Sampling Analysis and High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2015, 114, 58–64. doi:10.1016/j.sab.2015.10.003
  • Castilho, I. N. B.; Welz, B.; Vale, M. G. R.; De Andrade, J. B.; Smichowski, P.; Shaltout, A. A.; Colares, L.; Carasek, E. Comparison of Three Different Sample Preparation Procedures for the Determination of Traffic-Related Elements in Airborne Particulate Matter Collected on Glass Fiber Filters. Talanta 2012, 88, 689–695. doi:10.1016/j.talanta.2011.11.066
  • Soares, B. M.; Santos, R. F.; Bolzan, R. C.; Muller, E. I.; Primel, E. G.; Duarte, F. A. Simultaneous Determination of Iron and Nickel in Fluoropolymers by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2016, 160, 454–460. doi:10.1016/j.talanta.2016.07.040
  • Adolfo, F. R.; do Nascimento, P. C.; Leal, G. C.; Bohrer, D.; Viana, C.; de Carvalho, L. M.; Colim, A. N. Simultaneous Determination of Iron and Nickel as Contaminants in Multimineral and Multivitamin Supplements by Solid Sampling HR-CS GF AAS. Talanta 2019, 195, 745–751. doi:10.1016/j.talanta.2018.12.010
  • Vieira, A. L.; Ferreira, E. C.; Oliveira, S. R.; Barbosa, F.; Neto, J. A. G. Simultaneous Determination of Fe and Zn in Dried Blood Spot by HR-CS GF AAS Using Solid Sampling. Microchem. J. 2021, 160, 105637. doi:10.1016/j.microc.2020.105637
  • De Babos, D. V.; Bechlin, M. A.; Barros, A. I.; Ferreira, E. C.; Neto, J. A. G.; De Oliveira, S. R. Cobalt Internal Standard for Ni to Assist the Simultaneous Determination of Mo and Ni in Plant Materials by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry Employing Direct Solid Sample Analysis. Talanta 2016, 152, 457–462. doi:10.1016/j.talanta.2016.02.046
  • Babos, D. V.; Barros, A. I.; Ferreira, E. C.; Neto, J. A. G. Evaluation of Solid Sampling for Determination of Mo, Ni, Co, and V in Soil by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2017, 130, 39–44. doi:10.1016/j.sab.2017.02.005
  • de Gois, J. S.; Almeida, T. S.; de Andrade, R. M.; Toaldo, I. M.; Bordignon-Luiz, M. T.; Borges, D. L. G. Direct Solid Analysis for the Determination of Mn, Ni, Rb and Sr in Powdered Stimulant Plants Using High-Resolution Continuum Source Atomic Absorption Spectrometry Followed by Chemometric Classification Based on Elemental Composition, Polyphenol Content and Antioxidant Activity. Microchem. J. 2016, 124, 283–289. doi:10.1016/j.microc.2015.08.020
  • Pozzatti, M.; Nakadi, F. V.; Vale, M. G. R.; Welz, B. Simultaneous Determination of Nickel and Iron in Vegetables of Solanaceae Family Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Microchem. J. 2017, 133, 162–167. doi:10.1016/j.microc.2017.03.021
  • Kolling, L.; Zmozinski, A. V.; Rodrigues Vale, M. G.; Messias da Silva, M. The Use of Dried Matrix Spot for Determination of Pb and Ni in Automotive Gasoline by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2019, 205, 120105. doi:10.1016/j.talanta.2019.06.105
  • Shaltout, A. A.; Welz, B.; Castilho, I. N. B. Determinations of Sb and Mo in Cairo’s Dust Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Atmos. Environ. 2013, 81, 18–24. doi:10.1016/j.atmosenv.2013.08.049
  • Cárdenas Valdivia, A.; Vereda Alonso, E.; López Guerrero, M. M.; Gonzalez-Rodriguez, J.; Cano Pavón, J. M.; García de Torres, A. Simultaneous Determination of V, Ni and Fe in Fuel Fly Ash Using Solid Sampling High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2018, 179, 1–8. doi:10.1016/j.talanta.2017.10.033
  • García-Mesa, J. C.; Montoro-Leal, P.; Rodríguez-Moreno, A.; López Guerrero, M. M.; Vereda Alonso, E. I. Direct Solid Sampling for Speciation of Zn2+ and ZnO Nanoparticles in Cosmetics by Graphite Furnace Atomic Absorption Spectrometry. Talanta 2021, 223, 121795. doi:10.1016/j.talanta.2020.121795
  • Liu, H.; Dasgupta, P. K. Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop. Anal. Chem. 1996, 68, 1817–1821. doi:
  • Kapitány, S.; Sóki, E.; Posta, J.; Béni, Á. Separation/Preconcentration of Cr(VI) with a Modified Single-Drop Microextraction Device and Determination by GFAAS. Acta Chim. Slov. 2017, 64, 248–255. doi:10.17344/acsi.2017.3137
  • Neri, T. S.; Rocha, D. P.; Muñoz, R. A. A.; Coelho, N. M. M.; Batista, A. D. Highly Sensitive Procedure for Determination of Cu(II) by GF AAS Using Single-Drop Microextraction. Microchem. J. 2019, 147, 894–898. doi:10.1016/j.microc.2019.04.014
  • García-Figueroa, A.; Lavilla, I.; Bendicho, C. Speciation of CdTe Quantum Dots and Te(IV) following Oxidative Degradation Induced by Iodide and Headspace Single-Drop Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2019, 158, 105631. doi:10.1016/j.sab.2019.06.001
  • Mitani, C.; Kotzamanidou, A.; Anthemidis, A. N. Automated Headspace Single-Drop Microextraction via a Lab-in-Syringe Platform for Mercury Electrothermal Atomic Absorption Spectrometric Determination after in Situ Vapor Generation. J. Anal. At. Spectrom. 2014, 29, 1491–1498. doi:10.1039/c4ja00062e
  • Almeida, J. S.; Anunciação, T. A.; Brandão, G. C.; Dantas, A. F.; Lemos, V. A.; Teixeira, L. S. G. Ultrasound-Assisted Single-Drop Microextraction for the Determination of Cadmium in Vegetable Oils Using High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2015, 107, 159–163. doi:10.1016/j.sab.2015.03.002
  • Akhtar, A.; Kazi, T. G.; Afridi, H. I.; Baig, J. A.; Khan, M. Simultaneous Preconcentration of Toxic Elements in Eye Makeup Products through Single Drop Ionic Liquid Based Non-Dispersive Microextraction Method Using Narrow Glass Column: Multivariate Application. Microchem. J. 2020, 157, 104963. doi:10.1016/j.microc.2020.104963
  • Khalili Zanjani, M. R.; Yamini, Y.; Shariati, S.; Jönsson, J. A. A New Liquid-Phase Microextraction Method Based on Solidification of Floating Organic Drop. Anal. Chim. Acta 2007, 585, 286–293. doi:10.1016/j.aca.2006.12.049
  • Jessop, P. G.; Phan, L.; Carrier, A.; Robinson, S.; Dürr, C. J.; Harjani, J. R. A Solvent Having Switchable Hydrophilicity. Green Chem. 2010, 12, 809–814. doi:10.1039/b926885e
  • Yilmaz, E.; Soylak, M. Switchable Polarity Solvent for Liquid Phase Microextraction of Cd(II) as Pyrrolidinedithiocarbamate Chelates from Environmental Samples. Anal. Chim. Acta 2015, 886, 75–82. doi:10.1016/j.aca.2015.06.021
  • Pelvan, H. E.; Arpa, Ç. An Effervescence-Assisted Switchable Hydrophobicity Solvent Microextraction before Microsampling Flame Atomic Absorption Spectrometry for Copper Ions in Vegetables. Int. J. Environ. Anal. Chem. 2021, Feb 2021 (Early Access). doi:10.1080/03067319.2021.1884859
  • Wen, X.; Deng, Q.; Wang, J.; Yang, S.; Zhao, X. A New Coupling of Ionic Liquid Based-Single Drop Microextraction with Tungsten Coil Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 105, 320–325. doi:10.1016/j.saa.2012.12.040
  • Wen, S.; Zhu, X.; Wu, X.; Qin, X. Directly Suspended Droplet Microextraction Coupled with Electrothermal Atomic Absorption Spectrometry for the Speciation of Chromium(III)/Chromium(VI). Anal. Methods 2014, 6, 9777–9782. doi:10.1039/c4ay02262a
  • Sarica, D. Y.; Türker, A. R. Speciation and Determination of Inorganic Mercury and Methylmercury by Headspace Single Drop Microextraction and Electrothermal Atomic Absorption Spectrometry in Water and Fish. Clean Soil. Air. Water 2012, 40, 523–530. doi:10.1002/clen.201100535
  • Lemos, V. A.; Vieira, U. S. Single-Drop Microextraction for the Determination of Manganese in Seafood and Water Samples. Microchim. Acta 2013, 180, 501–507. doi:10.1007/s00604-013-0961-3
  • Nunes, L. S.; das Graças Andrade Korn, M.; Lemos, V. A. Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples. Food Anal. Methods 2020, 13, 1681–1689. doi:10.1007/s12161-020-01794-4
  • Asadollahzadeh, M.; Niksirat, N.; Tavakoli, H.; Hemmati, A.; Rahdari, P.; Mohammadi, M.; Fazaeli, R. Application of Multi-Factorial Experimental Design to Successfully Model and Optimize Inorganic Arsenic Speciation in Environmental Water Samples by Ultrasound Assisted Emulsification of Solidified Floating Organic Drop Microextraction. Anal. Methods 2014, 6, 2973–2981. doi:10.1039/c3ay41712c
  • Tekin, K.; Durukan, I. Preconcentration of Bismuth(III) by Ultrasound Assisted Emulsification Solidified Floating Organic Drop Microextraction and Analysis by Atomic Absorption Spectrometry. Clean Soil. Air. Water 2016, 44, 356–361. doi:10.1002/clen.201500205
  • Alahabadi, A.; Rastegar, A.; Esrafili, A.; Rezai, Z.; Bandegharaei, A. H.; Farzadkia, M. Solidified Floating Organic Drop Microextraction for Pre-Concentration and Trace Monitoring of Cadmium Ions in Environmental Food and Water Samples. J. Iran. Chem. Soc. 2017, 14, 1725–1733. doi:10.1007/s13738-017-1113-1
  • Thongsaw, A.; Chaiyasith, W. C.; Sananmuang, R.; Ross, G. M.; Ampiah-Bonney, R. J. Determination of Cadmium in Herbs by SFODME with ETAAS Detection. Food Chem. 2017, 219, 453–458. doi:10.1016/j.foodchem.2016.09.177
  • Lan, J.; Zhao, Z. Determination of Cobalt in Water Samples Using Solidified Floating Organic Drop Microextraction Coupled with Graphite Furnace Atomic Absorption Spectrometry. Chem. Speciat. Bioavailab. 2012, 24, 124–128. doi:10.3184/095422912X13337892648723
  • Mohadesi, A.; Falahnejad, M. Ultrasound-Assisted Emulsification Microextraction Based on Solidification Floating Organic Drop Trace Amounts of Manganese Prior to Graphite Furnace Atomic Absorption Spectrometry Determination. Sci. World J. 2012, 2012, 987645. doi:10.1100/2012/987645
  • Oviedo, J. A.; Fialho, L. L.; Nóbrega, J. A. Determination of Molybdenum in Plants by Vortex-Assisted Emulsification Solidified Floating Organic Drop Microextraction and Flame Atomic Absorption Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2013, 86, 142–145. doi:10.1016/j.sab.2013.02.005
  • Tuzen, M.; Shemsi, A. M.; Bukhari, A. A. Vortex-Assisted Solidified Floating Organic Drop Microextraction of Molybdenum in Beverages and Food Samples Coupled with Graphite Furnace Atomic Absorption Spectrometry. Food Anal. Methods 2017, 10, 219–226. doi:10.1007/s12161-016-0571-x
  • Thongsaw, A.; Sananmuang, R.; Ross, G. M.; Chaiyasith, W. C. Microextraction Based on Solidified Floating Organic Drop Coupled with ETAAS for the Determination of Lead in Herbs. Nova Biotechnol. Chim. 2017, 16, 124–131. doi:10.1515/nbec-2017-0017
  • Dadfarnia, S.; Haji Shabani, A. M.; Amirkavei, M. Ultrasound-Assisted Emulsification-Solidified Floating Organic Drop Microextraction Combined with Flow Injection-Flame Atomic Absorption Spectrometry for the Determination of Palladium in Water Samples. Turk. J. Chem. 2013, 37, 746–755. doi:10.3906/kim-1212-23
  • Huang, X.; Guan, M.; Lu, Z.; Hang, Y. Determination of Trace Antimony (III) in Water Samples with Single Drop Microextraction Using BPHA-[C4mim][PF6] System Followed by Graphite Furnace Atomic Absorption Spectrometry. Int. J. Anal. Chem. 2018, 2018, 8045324. doi:10.1155/2018/8045324
  • Wen, S.; Zhu, X. Speciation of Antimony(III) and Antimony(V) by Electrothermal Atomic Absorption Spectrometry after Ultrasound-Assisted Emulsification of Solidified Floating Organic Drop Microextraction. Talanta 2013, 115, 814–818. doi:10.1016/j.talanta.2013.06.057
  • Dadfarnia, S.; Haji Shabani, A. M.; Nili Ahmad Abadi, M. Solidified Floating Organic Drop Microextraction-Electrothermal Atomic Absorption Spectrometry for Ultra Trace Determination of Antimony Species in Tea, Basil and Water Samples. J. Iran. Chem. Soc. 2012, 10, 289–296. doi:10.1007/s13738-012-0157-5
  • Çitak, D.; Tüzen, M. Solidified Floating Organic Drop Microextraction for Speciation of Se (IV) and Se (VI) in Water Samples Prior to Electrothermal Atomic Absorption Spectrometric Detection. Turk. J. Chem. 2016, 40, 1012–1018. doi:10.3906/kim-1606-16
  • Fathirad, F.; Afzali, D.; Mostafavi, A.; Ghanbarian, M. Ultrasound-Assisted Emulsification Solidified Floating Organic Drops Microextraction of Ultra Trace Amount of Te (IV) Prior to Graphite Furnace Atomic Absorption Spectrometry Determination. Talanta 2012, 88, 759–764. doi:10.1016/j.talanta.2011.11.078
  • Fazelirad, H.; Taher, M. A. Ligandless, Ion Pair-Based and Ultrasound Assisted Emulsification Solidified Floating Organic Drop Microextraction for Simultaneous Preconcentration of Ultra-Trace Amounts of Gold and Thallium and Determination by GFAAS. Talanta 2013, 103, 375–383. doi:10.1016/j.talanta.2012.10.082
  • Jalbani, N.; Soylak, M. Determination of Cadmium and Lead in Water and Food by Organic Drop Microextraction and Flame Atomic Absorption Spectrometry. Instrum. Sci. Technol. 2015, 43, 573–587. doi:10.1080/10739149.2015.1017768
  • Khayatian, G.; Hassanpoor, S. Development of Ultrasound-Assisted Emulsification Solidified Floating Organic Drop Microextraction for Determination of Trace Amounts of Iron and Copper in Water, Food and Rock Samples. J. Iran. Chem. Soc. 2013, 10, 113–121. doi:10.1007/s13738-012-0131-2
  • Sakanupongkul, A.; Sananmuang, R.; Udnan, Y.; Ampiah-Bonney, R. J.; Chaiyasith, W. C. Speciation of Mercury in Water and Freshwater Fish Samples by a Two-Step Solidified Floating Organic Drop Microextraction with Electrothermal Atomic Absorption Spectrometry. Food Chem. 2019, 277, 496–503. doi:10.1016/j.foodchem.2018.10.131
  • Vessally, E.; Ghorbani-Kalhor, E.; Hosseinzadeh-Khanmiri, R.; Babazadeh, M.; Hosseinian, A.; Omidi, F.; Ebrahimi, M. H. Application of Switchable Solvent-Based Liquid Phase Microextraction for Preconcentration and Trace Detection of Cadmium Ions in Baby Food Samples. J. Iran. Chem. Soc. 2018, 15, 491–498. doi:10.1007/s13738-017-1249-z
  • Memon, Z. M.; Yilmaz, E.; Soylak, M. Switchable Solvent Based Green Liquid Phase Microextraction Method for Cobalt in Tobacco and Food Samples Prior to Flame Atomic Absorption Spectrometric Determination. J. Mol. Liq 2017, 229, 459–464. doi:10.1016/j.molliq.2016.12.098
  • Tekin, Z.; Erarpat, S.; Şahin, A.; Selali Chormey, D.; Bakırdere, S. Determination of Vitamin B12 and Cobalt in Egg Yolk Using Vortex Assisted Switchable Solvent Based Liquid Phase Microextraction Prior to Slotted Quartz Tube Flame Atomic Absorption Spectrometry. Food Chem. 2019, 286, 500–505. doi:10.1016/j.foodchem.2019.02.036
  • Yilmaz, E.; Soylak, M. Switchable Solvent-Based Liquid Phase Microextraction of Copper(ii): Optimization and Application to Environmental Samples. J. Anal. At. Spectrom. 2015, 30, 1629–1635. doi:10.1039/c5ja00012b
  • Atsever, N.; Borahan, T.; Gülhan Bakırdere, E.; Bakırdere, S. Determination of Iron in Hair Samples by Slotted Quartz Tube-Flame Atomic Absorption Spectrometry after Switchable Solvent Liquid Phase Extraction. J. Pharm. Biomed. Anal. 2020, 186, 113274. doi:10.1016/j.jpba.2020.113274
  • Kasa, N. A.; Bakirdere, E. G.; Bakirdere, S. A Simple and Green Vortex-Assisted Switchable Solvent-Based Microextraction Method by Using Schiff Base Ligand Complexation for Iron Determination in Mineral Spring Water Samples Prior to Slotted Quartz Tube Flame Atomic Absorption Spectrophotometry. Water. Air. Soil Pollut. 2020, 231, 417. doi:10.1007/s11270-020-04754-0
  • Fereshteh, H.; Majid, R. Application of Response Surface Methodology for Optimization of Conditions for Nickel Determination in Water and Vegetables by Switchable Solvent Based Liquid Phase Microextraction. J. Anal. Chem. 2019, 74, 1081–1088. doi:10.1134/S1061934819110054
  • Habibiyan, A.; Ezoddin, M.; Lamei, N.; Abdi, K.; Amini, M.; Ghazi-Khansari, M. Ultrasonic Assisted Switchable Solvent Based on Liquid Phase Microextraction Combined with Micro Sample Injection Flame Atomic Absorption Spectrometry for Determination of Some Heavy Metals in Water, Urine and Tea Infusion Samples. J. Mol. Liq. 2017, 242, 492–496. doi:10.1016/j.molliq.2017.07.043
  • Zhang, S.; Chen, B.; He, M.; Hu, B. Switchable Solvent Based Liquid Phase Microextraction of Trace Lead and Cadmium from Environmental and Biological Samples Prior to Graphite Furnace Atomic Absorption Spectrometry Detection. Microchem. J. 2018, 139, 380–385. doi:10.1016/j.microc.2018.03.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.