625
Views
1
CrossRef citations to date
0
Altmetric
Review

Optical interferometer-based methods for photoacoustic gas sensing: a review

ORCID Icon, , ORCID Icon, , , , , & show all

References

  • Huebner, S. Tackling Climate Change, Air Pollution, and Ecosystem Destruction: How US-Japanese Ocean Industrialization and the Metabolist Movement’s Global Legacy Shaped Environmental Thought (Circa 1950s Present). Environ. Hist. 2020, 25, 35–61. DOI: 10.1093/envhis/emz080.
  • Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health. 2020, 8, 14. DOI: 10.3389/fpubh.2020.00014.
  • Lovreglio, R.; Ronchi, E.; Maragkos, G.; Beji, T.; Merci, B. A Dynamic Approach for the Impact of a Toxic Gas Dispersion Hazard considering Human Behaviour and Dispersion Modelling. J. Hazard. Mater. 2016, 318, 758–771. DOI: 10.1016/j.jhazmat.2016.06.015.
  • Wang, T.; Peng, J.-C.; Wu, L. Heterogeneous Effects of Environmental Regulation on Air Pollution: Evidence from China’s Prefecture-Level Cities. Environ. Sci. Pollut. Res. Int. 2021, 28, 25782–25797. DOI: 10.1007/s11356-021-12434-7.
  • Wang, S.-C.; Chen, W.-G. A Large-Area and Nanoscale Graphene Oxide Diaphragm-Based Extrinsic Fiber-Optic Fabry-Perot Acoustic Sensor Applied for Partial Discharge Detection in Air. Nanomaterials 2020, 10, 2312. DOI: 10.3390/nano10112312.
  • Wang, S.-C.; Wan, F.; Zhao, H.; Chen, W.-G.; Zhang, W.-C.; Zhou, Q. A Sensitivity-Enhanced Fiber Grating Current Sensor Based on Giant Magnetostrictive Material for Large-Current Measurement. Sensors 2019, 19, 1755. DOI: 10.3390/s19081755.
  • Qian, S.; Chen, H.; Xu, Y.; Su, L. High Sensitivity Detection of Partial Discharge Acoustic Emission within Power Transformer by Sagnac Fiber Optic Sensor. IEEE Trans. Dielect. Electr. Insul. 2018, 25, 2313–2320. DOI: 10.1109/TDEI.2018.007131.
  • Ren, M.; Wang, S.-Y.; Zhou, J.-R.; Zhuang, T.-X.; Yang, S.-J. Multispectral Detection of Partial Discharge in SF6 Gas with Silicon Photomultiplier-Based Sensor Array. Sens. Actuators A 2018, 283, 113–122. DOI: 10.1016/j.sna.2018.09.036.
  • Hu, J.; Wan, F.; Wang, P.-Y.; Ge, H.; Chen, W.-G. Application of Frequency-Locking Cavity-Enhanced Spectroscopy for Highly Sensitive Gas Sensing: A Review. Appl. Spectrosc. Rev. 2022, 57, 378–410. DOI: 10.1080/05704928.2021.1894438.
  • Ghosh, A.; Zhang, C.; Shi, S.-Q.; Zhang, H.-F. High-Temperature Gas Sensors for Harsh Environment Applications: A Review. Clean – Soil, Air, Water 2019, 47, 1800491. DOI: 10.1002/clen.201800491.
  • Hodgkinson, J.; Tatam, R.-P. Optical Gas Sensing: A Review. Meas. Sci. Technol. 2013, 24, 012004. DOI: 10.1088/0957-0233/24/1/012004.
  • Smith, D.; Spanel, P. The Challenge of Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Analyst 2007, 132, 390–396. DOI: 10.1039/b700542n.
  • Fujimoto, A.; Tomatani, M.; Kuwahara, T. Model of Transient Response of Semiconductor Gas Sensor. Sen. Lett. 2008, 6, 883–886. DOI: 10.1166/sl.2008.523.
  • Privett, B.-J.; Shin, J.-H.; Schoenfisch, M.-H. Electrochemical Sensors. Anal. Chem. 2008, 80, 4499–4517. DOI: 10.1021/ac8007219.
  • Yang, T.-H.; Chen, W.-G.; Wang, P.-Y. A Review of All-Optical Photoacoustic Spectroscopy as a Gas Sensing Method. Appl. Spectrosc. Rev. 2021, 56, 143–170. DOI: 10.1080/05704928.2020.1760875
  • Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A Review on Non-Dispersive Infrared Gas Sensors: Improvement of Sensor Detection Limit and Interference Correction. Sens. Actuators, B 2016, 231, 529–538. DOI: 10.1016/j.snb.2016.03.040.
  • Hodgkinson, J.; Smith, R.; Ho, W.-O.; Saffell, J.-R.; Tatam, R.-P. Non-Dispersive Infra-Red (NDIR) Measurement of Carbon Dioxide at 4.2 µm in a Compact and Optically Efficient. Sensor. Sens. Actuators, B 2013, 186, 580–588. DOI: 10.1016/j.snb.2013.06.006.
  • Xu, M.-L.; Peng, B.; Zhu, X.-Y.; Guo, Y.-C. Multi-Gas Detection System Based on Non-Dispersive Infrared (NDIR) Spectral Technology. Sensors 2022, 22, 836. DOI: 10.3390/s22030836
  • Pogany, A.; Wagner, S.; Werhahn, O.; Ebert, V. Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor. Appl. Spectrosc. 2015, 69, 257–268. DOI: 10.1366/14-07575.
  • Bowling, D.-R.; Sargent, S.-D.; Tanner, B.-D.; Ehleringer, J.-R. Tunable Diode Laser Absorption Spectroscopy for Stable Isotope Studies of Ecosystem-Atmosphere CO2 Exchange. Agric. For. Meteorol. 2003, 118, 1–19. DOI: 10.1016/S0168-1923(03)00074-1.
  • Li, J.-S.; Yu, B.-L.; Zhao, W.-X.; Chen, W.-D. A Review of Signal Enhancement and Noise Reduction Techniques for Tunable Diode Laser Absorption Spectroscopy. Appl. Spectrosc. Rev. 2014, 49, 666–691. DOI: 10.1080/05704928.2014.903376.
  • Berden, G.; Peeters, R.; Meijer, G. Cavity Ring-Down Spectroscopy: Experimental Schemes and Applications. Int. Rev. Phys. Chem. 2000, 19, 565–607. DOI: 10.1080/014423500750040627
  • Gadedjisso-Tossou, K.-S.; Stoychev, L.-I.; Mohou, M.-A.; Cabrera, H.; Niemela, J.; Danailov, M.-B.; Vacchi, A. Cavity Ring-Down Spectroscopy for Molecular Trace Gas Detection Using a Pulsed DFB QCL Emitting at 6.8 µm. Photonics 2020, 7, 74. DOI: 10.3390/photonics7030074.
  • Langridge, J.-M.; Laurila, T.; Watt, R.-S.; Jones, R.-L.; Kaminski, C.-F.; Hult, J. Cavity Enhanced Absorption Spectroscopy of Multiple Trace Gas Species Using a Supercontinuum Radiation Source. Opt. Express. 2008, 16, 10178–10188. DOI: 10.1364/OE.16.010178.
  • Chen, W.-G.; Wang, J.-X.; Wan, F.; Wang, P.-Y. Review of Optical Fiber Sensors for Electrical Equipment Characteristic State Parameters Detection. High Voltage 2019, 4, 271–281. DOI: 10.1049/hve.2019.0157.
  • Wang, P.-Y.; Chen, W.-G.; Wan, F.; Wang, J.-X.; Hu, J. A Review of Cavity-Enhanced Raman Spectroscopy as a Gas Sensing Method. Appl. Spectrosc. Rev. 2020, 55, 393–417. DOI: 10.1080/05704928.2019.1661850
  • Polubotko, A.-M.; Smirnov, V.-P. Cross-Section and Selection Rules in Surface-Enhanced Hyper Raman Scattering. J. Raman Spectrosc. 2012, 43, 380–388. DOI: 10.1002/jrs.3032.
  • Fernández-Sánchez, J. M.; Murphy, W. F. On the Trace Raman-Scattering Cross-Sections of Benzene C6H6, C6D6, and 13C6H6 in the Gas-Phase. Chem. Phys. 1994, 179, 479–486. DOI: 10.1016/0301-0104(94)87024-1
  • Wang, H.-M.; Xu, Z.-S.; Ma, S.-C.; Cai, M.-H.; You, S.-H.; Liu, H.-P. Artificial Modulation-Free Pound-Drever-Hall Method for Laser Frequency Stabilization. Opt. Lett. 2019, 44, 5816–5819. DOI: 10.1364/OL.44.005816.
  • Su, J.; Jiao, M.-X.; Jiang, F. Pound-Drever-Hall Laser Frequency Locking Technique Based on Orthogonal Demodulation. Optik 2018, 168, 348–354. DOI: 10.1016/j.ijleo.2018.04.098.
  • Huang, K.-K.; Zhang, J.-W.; Chen, J.-B.; Yang, D.-H. Reduction of the Linewidth of a Diode Laser by Locking to a High-Finesse Fabry-Perot Cavity. Chin. Phys. Lett. 2006, 23, 1777–1779. DOI: 10.1088/0256-307X/23/7/033.
  • Black, E.-D. An Introduction to Pound-Drever-Hall Laser Frequency Stabilization. Am. J. Phys 2001, 69, 79–87. DOI: 10.1119/1.1286663.
  • Geng, J.-T.; Yang, L.; Zhang, Y.-G. Resonant Optical Gyroscope Based on All-Optical Frequency Locking. IEEE Trans. Instrum. Meas. 2022, 71, 1–4. DOI: 10.1109/TIM.2022.3176281
  • Geng, J.-T.; Yang, L.; Liang, J.-T.; Liu, S.-L.; Zhang, Y.-G. Stability in Self-Injection Locking of the DFB Laser through a Fiber Optic Resonator. Opt. Commun. 2022, 505, 127531. DOI: 10.1016/j.optcom.2021.127531
  • Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D. Fast, Low-Noise, Mode-by-Mode, Cavity-Enhanced Absorption Spectroscopy by Diode-Laser Self-Locking. Appl. Phys. B 2005, 80, 1027–1038. DOI: 10.1007/s00340-005-1828-z.
  • Hippler, M.; Mohr, C.; Keen, K.-A.; Mc Naghten, E.-D. Cavity-Enhanced Resonant Photoacoustic Spectroscopy with Optical Feedback CW Diode Lasers: A Novel Technique for Ultratrace Gas Analysis and High-Resolution Spectroscopy. J. Chem. Phys. 2010, 133, 044308. DOI: 10.1063/1.3461061.
  • Fathy, A.; Sabry, Y.-M.; Hunter, I.-W.; Khalil, D.; Bourouina, T. Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review. Laser Photonics Rev. 2022, 16, 2100556. DOI: 10.1002/lpor.202100556.
  • Wu, H.-P.; Zhang, D.-D.; Dong, L.; Zheng, H.-D.; Liu, Y.-Y.; Yin, W.-B.; Ma, W.-G.; Zhang, L.; Jia, S.-T. Optical Detection Technique Using Quartz-Enhanced Photoacoustic Spectrum. Int. J. Thermophys. 2015, 36, 1297–1304. DOI: 10.1007/s10765-014-1694-1.
  • Chambers, J.; Bullock, D.; Kahana, Y.; Kots, A.; Palmer, A. Developments in Active Noise Control Sound Systems for Magnetic Resonance Imaging. Appl. Acoust. 2007, 68, 281–295. DOI: 10.1016/j.apacoust.2005.10.008.
  • Kohring, M.; Pohlkotter, A.; Willer, U.; Angelmahr, M.; Schade, W. Tuning Fork Enhanced Interferometric Photoacoustic Spectroscopy: A New Method for Trace Gas Analysis. Appl. Phys. B 2011, 102, 133–139. DOI: 10.1007/s00340-010-4222-4.
  • Volkov, D.-S.; Rogova, O.-B.; Proskurnin, M.-A. Photoacoustic and Photothermal Methods in Spectroscopy and Characterization of Soils and Soil Organic Matter. Photoacoustics 2020, 17, 100151. DOI: 10.1016/j.pacs.2019.100151.
  • Li, J.-S.; Chen, W.-D.; Yu, B.-L. Recent Progress on Infrared Photoacoustic Spectroscopy Techniques. Appl. Spectrosc. Rev. 2011, 46, 440–471. DOI: 10.1080/05704928.2011.570835.
  • Xu, J.-W.; Yao, K.; Xu, Z.-K. Nanomaterials with a Photothermal Effect for Antibacterial Activities: An Overview. Nanoscale 2019, 11, 8680–8691. DOI: 10.1039/c9nr01833f.
  • Sampaolo, A.; Patimisco, P.; Giglio, M.; Zifarelli, A.; Wu, H.-P.; Dong, L.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy for Multi-Gas Detection: A Review. Anal. Chim. Acta. 2022, 1202, 338894. DOI: 10.1016/j.aca.2021.338894.
  • Lang, Z.-T.; Qiao, S.-D.; Ma, Y.-F. Acoustic Microresonator Based in-Plane Quartz-Enhanced Photoacoustic Spectroscopy Sensor with a Line Interaction Mode. Opt. Lett. 2022, 47, 1295–1298. DOI: 10.1364/OL.452085.
  • Shang, Z.-J.; Wu, H.-P.; Li, S.-Z.; Tittel, F.-K.; Dong, L. Elliptical-Tube off-Beam Quartz-Enhanced Photoacoustic Spectroscopy. Appl. Phys. Lett. 2022, 120, 171101. DOI: 10.1063/5.0086697
  • Trzpil, W.; Charensol, J.; Ayache, D.; Maurin, N.; Rousseau, R.; Vicet, A.; Bahriz, M. A Silicon Micromechanical Resonator with Capacitive Transduction for Enhanced Photoacoustic Spectroscopy. Sens. Actuators, B 2022, 353, 131070. DOI: 10.1016/j.snb.2021.131070.
  • Dumitras, D.-C.; Petrus, M.; Bratu, A.-M.; Popa, C. Applications of near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020, 25, 1728. DOI: 10.3390/molecules25071728.
  • Helander, P.; Lundstrom, I.; Mcqueen, D. Light-Scattering Effects in Photoacoustic Spectroscopy. J. Appl. Phys. 1980, 51, 3841–3847. DOI: 10.1063/1.328127.
  • Yi, H.-M.; Liu, K.; Chen, W.-D.; Tan, T.; Wang, L.; Gao, X.-M. Application of a Broadband Blue Laser Diode to Trace NO2 Detection Using off-Beam Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2011, 36, 481–483. DOI: 10.1364/OL.36.000481.
  • Rothman, L. S.; Gordon, I. E.; Barbe, A.; Benner, D.; Bernath, P. F.; Birk, M.; Boudon, V.; Brown, L. R.; Campargue, A.; Champion, J.-P.; et al. The HITRAN 2008 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. DOI: 10.1016/j.jqsrt.2009.02.013.
  • Lin, H.-Y.; Zheng, H.-D.; Montano, B.-A.-Z.; Wu, H.-P.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Zhu, W.-G.; Zhong, Y.-C.; Dong, L.; et al. Ppb-Level Gas Detection Using on-Beam Quartz-Enhanced Photoacoustic Spectroscopy Based on a 28 kHz Tuning Fork. Photoacoustics 2022, 25, 100321. DOI: 10.1016/j.pacs.2021.100321.
  • Shah, G.-A.; Shah, G.-M.; Rashid, M.-I.; Groot, J.-C.-J.; Traore, B.; Lantinga, E.-A. Bedding Additives Reduce Ammonia Emission and Improve Crop N Uptake after Soil Application of Solid Cattle Manure. J. Environ. Manage. 2018, 209, 195–204. DOI: 10.1016/j.jenvman.2017.12.035.
  • Sheng, Y.; Fang, L.; Sun, Y.-X. An Experimental Evaluation on Air Purification Performance of Clean-Air Heat Pump (CAHP) Air Cleaner. Build. Sci. 2018, 127, 69–76. DOI: 10.1016/j.buildenv.2017.10.039.
  • Catterson, V.-M.; McArthur, S.-D.-J.; Moss, G. Online Conditional Anomaly Detection in Multivariate Data for Transformer Monitoring. IEEE Trans. Power Deliv. 2010, 25, 2556–2564. DOI: 10.1109/TPWRD.2010.2049754.
  • Westergaard, P.-G.; Lassen, M. All-Optical Detection of Acoustic Pressure Waves with Applications in Photoacoustic Spectroscopy. Appl. Opt. 2016, 55, 8266–8270. DOI: 10.1364/AO.55.008266.
  • Kosterev, A.-A.; Bakhirkin, Y.-A.; Curl, R. F.; Tittel, F. K. Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2002, 27, 1902–1904. DOI: 10.1364/OL.27.001902.
  • Wu, H.-P.; Dong, L.; Ren, W.; Yin, W.-B.; Ma, W.-G.; Zhang, L.; Jia, S.-T.; Tittel, F.-K. Position Effects of Acoustic Micro-Resonator in Quartz Enhanced Photoacoustic Spectroscopy. Sens. Actuators, B 2015, 206, 364–370. DOI: 10.1016/j.snb.2014.09.044.
  • Zheng, H.-D.; Dong, L.; Sampaolo, A.; Wu, H.-P.; Patimisco, P.; Yin, X.-K.; Ma, W.-G.; Zhang, L.; Yin, W.-B.; Spagnolo, V.; et al. Single-Tube on-Beam Quartz-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2016, 41, 978–981. DOI: 10.1364/OL.41.000978.
  • Wu, H.-P.; Dong, L.; Zheng, H.-D.; Yu, Y.-J.; Ma, W.-G.; Zhang, L.; Yin, W.-B.; Xiao, L.-T.; Jia, S.-T.; Tittel, F.-K. Beat Frequency Quartz-Enhanced Photoacoustic Spectroscopy for Fast and Calibration-Free Continuous Trace-Gas Monitoring. Nat. Commun. 2017, 8, 15331. DOI: 10.1038/ncomms15331.
  • Zheng, H.-D.; Dong, L.; Sampaolo, A.; Patimisco, P.; Ma, W.-G.; Zhang, L.; Yin, W.-B.; Xiao, L.-T.; Spagnolo, V.; Jia, S.-T.; Tittel, F.-K. Overtone Resonance Enhanced Single-Tube on-Beam Quartz Enhanced Photoacoustic Spectrophone. Appl. Phys. Lett. 2016, 109, 111103. DOI: 10.1063/1.4962810.
  • Wilcken, K.; Kauppinen, J. Optimization of a Microphone for Photoacoustic Spectroscopy. Appl. Spectrosc. 2003, 57, 1087–1092. DOI: 10.1366/00037020360695946.
  • Yin, Y.-G.; Ren, D.-Y.; Li, C.-Y.; Chen, R.-M.; Shi, J.-H. Cantilever-Enhanced Photoacoustic Spectroscopy for Gas Sensing: A Comparison of Different Displacement Detection Methods. Photoacoustics 2022, 28, 100423. DOI: 10.1016/j.pacs.2022.100423.
  • Calderisi, M.; Ulrici, A.; Sinisalo, S.; Uotila, J.; Seeber, R. Simulation of an Experimental Database of Infrared Spectra of Complex Gaseous Mixtures for Detecting Specific Substances. The Case of Drug Precursors. Sens. Actuators, B 2014, 193, 806–814. DOI: 10.1016/j.snb.2013.12.035
  • Laurila, T.; Cattaneo, H.; Koskinen, V.; Kauppinen, J.; Hernberg, R. Diode Laser-Based Photoacoustic Spectroscopy with Interferometrically-Enhanced Cantilever Detection. Opt. Express. 2005, 13, 2453–2458. DOI: 10.1364/OPEX.13.002453.
  • Kuusela, T.; Kauppinen, J. Photoacoustic Gas Analysis Using Interferometric Cantilever Microphone. Appl. Spectrosc. Rev. 2007, 42, 443–474. DOI: 10.1080/00102200701421755.
  • Wu, H.-P.; Sampaolo, A.; Dong, L.; Patimisco, P.; Liu, X.-L.; Zheng, H.-D.; Yin, X.-K.; Ma, W.-G.; Zhang, L.; Yin, W.-B.; et al. Quartz Enhanced Photoacoustic H2S Gas Sensor Based on a Fiber-Amplifier Source and a Custom Tuning Fork with Large Prong Spacing. Appl. Phys. Lett. 2015, 107, 111104. DOI: 10.1063/1.4930995.
  • Suchanek, J.; Dostal, M.; Vlasakova, T.; Janda, P.; Klusackova, M.; Kubat, P.; Nevrly, V.; Bitala, P.; Civis, S.; Zelinger, Z. First Application of Multilayer Graphene Cantilever for Laser Photoacoustic Detection. Measurement 2017, 101, 9–14. DOI: 10.1016/j.measurement.2017.01.011
  • Rousseau, R.; Loghmari, Z.; Bahriz, M.; Chamassi, K.; Teissier, R.; Baranov, A.-N.; Vicet, A. Off-Beam QEPAS Sensor Using an 11-μm DFB-QCL with an Optimized Acoustic Resonator. Opt. Express. 2019, 27, 7435–7446. DOI: 10.1364/OE.27.007435.
  • Ma, Y.-F.; Tong, Y.; He, Y.; Jin, X.-G.; Tittel, F.-K. Compact and Sensitive Mid-Infrared All-Fiber Quartz-Enhanced Photoacoustic Spectroscopy Sensor for Carbon Monoxide Detection. Opt. Express. 2019, 27, 9302–9312. DOI: 10.1364/OE.27.009302.
  • Wu, H.-P.; Dong, L.; Zheng, H.-D.; Liu, X.-L.; Yin, X.-K.; Ma, W.-G.; Zhang, L.; Yin, W.-B.; Jia, S.-T.; Tittel, F.-K. Enhanced near-Infrared QEPAS Sensor for sub-Ppm Level H2S Detection by Means of a Fiber Amplified 1582 nm DFB Laser. Sens. Actuators, B 2015, 221, 666–672. DOI: 10.1016/j.snb.2015.06.049.
  • Peltola, J.; Hieta, T.; Vainio, M. Parts-Per-Trillion-Level Detection of Nitrogen Dioxide by Cantilever-Enhanced Photoacoustic Spectroscopy. Opt. Lett. 2015, 40, 2933–2936. DOI: 10.1364/OL.40.002933.
  • Kuusela, T.; Peura, J.; Matveev, B. A.; Remennyy, M. A.; Stus’, N. M. Photoacoustic Gas Detection Using a Cantilever Microphone and III–V Mid-IR LEDs. Vib. Spectrosc. 2009, 51, 289–293. DOI: 10.1016/j.vibspec.2009.08.001.
  • Dong, L.; Tittel, F.-K.; Li, C.-G.; Sanchez, N.-P.; Wu, H.-P.; Zheng, C.-T.; Yu, Y.-J.; Sampaolo, A.; Griffin, R.-J. Compact TDLAS Based Sensor Design Using Interband Cascade Lasers for Mid-IR Trace Gas Sensing. Opt. Express. 2016, 24, A528–A535. DOI: 10.1364/OE.24.00A528.
  • Hinkley, E.-D. High-Resolution Infrared Spectroscopy with a Tunable Diode Laser. Appl. Phys. Lett. 1970, 16, 351–354. DOI: 10.1063/1.1653222.
  • Catoire, V.; Bernard, F.; Mebarki, Y.; Mellouki, A.; Eyglunent, G.; Daele, V.; Robert, C. A Tunable Diode Laser Absorption Spectrometer for Formaldehyde Atmospheric Measurements Validated by Simulation Chamber Instrumentation. J. Environ. Sci. (China) 2012, 24, 22–33. DOI: 10.1016/S1001-0742(11)60726-2.
  • Simon, U.; Tittel, F.-K. Recent Progress in Tunable Nonlinear-Optical Devices for Infrared-Spectroscopy. Infrared Phys. Technol. 1995, 36, 427–438. DOI: 10.1016/1350-4495(94)00083-W.
  • Goldenstein, C.-S.; Spearrin, R.-M.; Jeffries, J.-B.; Hanson, R.-K. Infrared Laser-Absorption Sensing for Combustion Gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. DOI: 10.1016/j.pecs.2016.12.002.
  • Zitnik, M.; Krusic, S.; Bucar, K.; Mihelic, A. Beer-Lambert Law in the Time Domain. Phys. Rev. A 2018, 97, 063424. DOI: 10.1103/PhysRevA.97.063424.
  • Lykos, P. The Beer-Lambert Law Revisited: A Development without Calculus. J. Chem. Educ. 1992, 69, 730–732. DOI: 10.1021/ed069p730.
  • Watanabe, T.; Okazaki, S.; Nakagawa, H.; Murata, K.; Fukuda, K. A Fiber-Optic Hydrogen Gas Sensor with Low Propagation Loss. Sens. Actuators, B 2010, 145, 781–787. DOI: 10.1016/j.snb.2010.01.040.
  • Du, Y.-J.; Peng, Z.-M.; Ding, Y.-J. High-Accuracy Sinewave-Scanned Direct Absorption Spectroscopy. Opt. Express. 2018, 26, 29550–29560. DOI: 10.1364/OE.26.029550.
  • Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-Based, High-Speed, in Situ TDLAS for in-Cylinder Water Vapor Measurements in IC Engines. Opt. Express. 2013, 21, 19951–19965. DOI: 10.1364/OE.21.019951.
  • Hunsmann, S.; Wunderle, K.; Wagner, S.; Rascher, U.; Schurr, U.; Ebert, V. Absolute, High Resolution Water Transpiration Rate Measurements on Single Plant Leaves via Tunable Diode Laser Absorption Spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B 2008, 92, 393–401. DOI: 10.1007/s00340-008-3095-2.
  • Kormann, R.; Konigstedt, R.; Parchatka, U.; Lelieveld, J.; Fischer, H. QUALITAS: A Mid-Infrared Spectrometer for Sensitive Trace Gas Measurements Based on Quantum Cascade Lasers in CW Operation. Rev. Sci. Instrum. 2005, 76, 075102. DOI: 10.1063/1.1931233.
  • Fawcett, B.-L.; Parkes, A.-M.; Shallcross, D.-E.; Orr-Ewing, A.-J. Trace Detection of Methane Using Continuous Wave Cavity Ring-Down Spectroscopy at 1.65 μm. Phys. Chem. Chem. Phys. 2002, 4, 5960–5965. DOI: 10.1039/b208486b.
  • Liu, C.; Xu, L.-J.; Chen, J.-L.; Cao, Z.; Lin, Y.-Z.; Cai, W.-W. Development of a Fan-Beam TDLAS-Based Tomographic Sensor for Rapid Imaging of Temperature and Gas Concentration. Opt. Express. 2015, 23, 22494–22511. DOI: 10.1364/OE.23.022494.
  • Schilt, S.; Thevenaz, L. Experimental Method Based on Wavelength-Modulation Spectroscopy for the Characterization of Semiconductor Lasers under Direct Modulation. Appl. Opt. 2004, 43, 4446–4453. DOI: 10.1364/AO.43.004446.
  • Bolshov, M.-A.; Kuritsyn, Y.-A.; Romanovskii, Y.-V. Tunable Diode Laser Spectroscopy as a Technique for Combustion Diagnostics. Spectrochim. Acta, Part B 2015, 106, 45–66. DOI: 10.1016/j.sab.2015.01.010.
  • Comenge, J.; Fragueiro, O.; Sharkey, J.; Taylor, A.; Held, M.; Burton, N. C.; Park, B. K.; Wilm, B.; Murray, P.; Brust, M.; Lévy, R. Preventing Plasmon Coupling between Gold Nanorods Improves the Sensitivity of Photoacoustic Detection of Labeled Stem Cells in Vivo. ACS Nano. 2016, 10, 7106–7116. DOI: 10.1021/acsnano.6b03246.
  • Zheng, C.-T.; Ye, W.-L.; Huang, J.-Q.; Cao, T.-S.; Lv, M.; Dang, J.-M.; Wang, Y.-D. Performance Improvement of a near-Infrared CH4 Detection Device Using Wavelet-Denoising-Assisted Wavelength Modulation Technique. Sens. Actuators, B 2014, 190, 249–258. DOI: 10.1016/j.snb.2013.08.055.
  • Maya-Hernandez, P.-M.; Alvarez-Simon, L.-C.; Sanz-Pascual, M.-T.; Calvo-Lopez, B. An Integrated Low-Power Lock-In Amplifier and Its Application to Gas Detection. Sensors (Basel) 2014, 14, 15880–15899. DOI: 10.3390/s140915880.
  • D’Amico, A.; De Marcellis, A.; Di Carlo, C.; Di Natale, C.; Ferri, G.; Martinelli, E.; Paolesse, R.; Stornelli, V. Low-Voltage Low-Power Integrated Analog Lock-In Amplifier for Gas Sensor Applications. Sens. Actuators, B 2010, 144, 400–406. DOI: 10.1016/j.snb.2009.01.045.
  • Fu, X.-M.; Colombo, D.-M.; Alamdari, H.-H.; Yin, Y.-D.; El-Sankary, K. Lock-In Amplifier for Sensor Application Using Second Order Harmonic Frequency with Automatic Background Phase Calibration. IEEE Sens. J. 2022, 22, 16067–16080. DOI: 10.1109/JSEN.2022.3191128.
  • Baranov, P.; Zatonov, I.; Duc, B.-B. Dual Phase Lock-In Amplifier with Photovoltaic Modules and Quasi-Invariant Common-Mode Signal. Electronics 2022, 11, 1512. DOI: 10.3390/electronics11091512.
  • Ahn, D.; Park, J.-S.; Kim, C.-S.; Kim, J.; Qian, Y.-X.; Itoh, T. A Design of the Low-Pass Filter Using the Novel Microstrip Defected Ground Structure. IEEE Trans. Microwave Theory Techn. 2001, 49, 86–93. DOI: 10.1109/22.899965.
  • Kaiser, J.-F.; Reed, W.-A. Data Smoothing Using Low-Pass Digital-Filters. Rev. Sci. Instrum. 1977, 48, 1447–1457. DOI: 10.1063/1.1134918.
  • Krzempek, K.; Hudzikowski, A.; Głuszek, A.; Dudzik, G.; Abramski, K.; Wysocki, G.; Nikodem, M. Multi-Pass Cell-Assisted Photoacoustic/Photothermal Spectroscopy of Gases Using Quantum Cascade Laser Excitation and Heterodyne Interferometric Signal Detection. Appl. Phys. B 2018, 124, 74. DOI: 10.1007/s00340-018-6941-x.
  • Munir, Q.; Weber, H.-P. Fiber-Optic Sensor in a Resonant Optoacoustic Cell. Opt. Commun. 1984, 52, 269–273. DOI: 10.1016/0030-4018(85)90225-1.
  • Krzempek, K.; Dudzik, G.; Abramski, K.; Wysocki, G.; Jaworski, P.; Nikodem, M. Heterodyne Interferometric Signal Retrieval in Photoacoustic Spectroscopy. Opt. Express. 2018, 26, 1125–1132. DOI: 10.1364/OE.26.001125.
  • Chen, C.; Feng, W.-L. Intensity-Modulated Carbon Monoxide Gas Sensor Based on Cerium Dioxide-Coated Thin-Core-Fiber Mach-Zehnder Interferometer. Opt. Laser Technol. 2022, 152, 108183. DOI: 10.1016/j.optlastec.2022.108183.
  • Lagakos, N.; Schnaus, E.-U.; Cole, J.-H.; Jarzynski, J.; Bucaro, J.-A. Optimizing Fiber Coatings for Interferometric Acoustic Sensors. IEEE J. Quantum Electron. 1982, 18, 683–689. DOI: 10.1109/JQE.1982.1071565.
  • Oe, R.; Minamikawa, T.; Taue, S.; Koresawa, H.; Mizuno, T.; Yamagiwa, M.; Mizutani, Y.; Yamamoto, H.; Iwata, T.; Yasui, T. Refractive Index Sensing with Temperature Compensation by a Multimode-Interference Fiber-Based Optical Frequency Comb Sensing Cavity. Opt. Express. 2019, 27, 21463–21476. DOI: 10.1364/OE.27.021463.
  • Hocker, G.-B. Fiber-Optic Acoustic Sensors with Increased Sensitivity by Use of Composite Structures. Opt. Lett. 1979, 4, 320–321. DOI: 10.1364/OL.4.000320.
  • Xu, F.; Shi, J.-H.; Gong, K.; Li, H.-F.; Hui, R.-Q.; Yu, B.-L. Fiber-Optic Acoustic Pressure Sensor Based on Large-Area Nanolayer Silver Diaghragm. Opt. Lett. 2014, 39, 2838–2840. DOI: 10.1364/OL.39.002838.
  • Wen, H.; Wiesler, D.-G.; Tveten, A.; Danver, B.; Dandridge, A. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications. Ultrason. Imaging. 1998, 20, 103–112. DOI: 10.1177/016173469802000202.
  • Gallego, D.; Lamela, H. High-Sensitivity Ultrasound Interferometric Single-Mode Polymer Optical Fiber Sensors for Biomedical Applications. Opt. Lett. 2009, 34, 1807–1809. DOI: 10.1364/OL.34.001807.
  • Shi, J.; Wang, Y.-Y.; Xu, D.-G.; He, Y.-X.; Jiang, J.-F.; Xu, W.; Zhang, H.-W.; Su, G.-H.; Yan, C.; Yan, D.-X.; et al. Remote Gas Pressure Sensor Based on Fiber Ring Laser Embedded with Fabry-Perot Interferometer and Sagnac Loop. IEEE Photonics J. 2016, 8, 1–8. DOI: 10.1109/JPHOT.2016.2605460.
  • Ma, J.; Yu, Y.-Q.; Jin, W. Demodulation of Diaphragm Based Acoustic Sensor Using Sagnac Interferometer with Stable Phase Bias. Opt. Express. 2015, 23, 29268–29278. DOI: 10.1364/OE.23.029268.
  • Markowski, K.; Turkiewicz, J.; Osuch, T. Optical Microphone Based on Sagnac Interferometer with Polarization Maintaining Optical Fibers. Proc. SPIE 2013, 8903, 89030Q. DOI: 10.1117/12.2035415.
  • Lefevre, H. Sagnac Effect Analysis: Optical Fiber Gyrometers Example. J. Opt. 1988, 19, 117–121. DOI: 10.1088/0150-536X/19/3/002.
  • Farries, M.-C.; Payne, D.-N. Optical Fiber Switch Employing a Sagnac Interferometer. Appl. Phys. Lett. 1989, 55, 25–26. DOI: 10.1063/1.101737.
  • Wang, Q.-Y.; Wang, J.-W.; Li, L.-A.; Yu, Q.-X. An All-Optical Photoacoustic Spectrometer for Trace Gas Detection. Sens. Actuators, B 2011, 153, 214–218. DOI: 10.1016/j.snb.2010.10.035
  • Guo, M.; Chen, K.; Gong, Z.-F.; Yu, Q.-X. Trace Ammonia Detection Based on near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy. Photonic Sens. 2019, 9, 293–301. DOI: 10.1007/s13320-019-0545-x.
  • Elia, A.; Lugara, P.-M.; Di Franco, C.; Spagnolo, V. Photoacoustic Techniques for Trace Gas Sensing Based on Semiconductor Laser Sources. Sensors (Basel) 2009, 9, 9616–9628. DOI: 10.3390/s91209616.
  • Miklos, A.; Hess, P.; Bozoki, Z. Application of Acoustic Resonators in Photoacoustic Trace Gas Analysis and Metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. DOI: 10.1063/1.1353198.
  • Wang, F.-P.; Cheng, Y.-P.; Xue, Q.-S.; Wang, Q.; Liang, R.; Wu, J.-H.; Sun, J.-C.; Zhu, C.-G.; Li, Q. Techniques to Enhance the Photoacoustic Signal for Trace Gas Sensing: A Review. Sens. Actuators, A 2022, 345, 113807. DOI: 10.1016/j.sna.2022.113807.
  • Chen, K.; Zhang, B.; Liu, S.; Jin, F.; Guo, M.; Chen, Y.-W.; Yu, Q.-X. Highly Sensitive Photoacoustic Gas Sensor Based on Multiple Reflections on the Cell Wall. Sens. Actuators, A 2019, 290, 119–124. DOI: 10.1016/j.sna.2019.03.014.
  • Kapitanov, V.-A.; Kim, J.-T. Study on the Charateristics of Homemade Photoacoustic Gas Cell Resonator for Laser Gas Analysis. J. Nanosci. Nanotechnol. 2008, 8, 5143–5146. DOI: 10.1166/jnn.2008.1164.
  • Gondal, M.-A.; Dastageer, A.; Shwehdi, M.-H. Photoacoustic Spectrometry for Trace Gas Analysis and Leak Detection Using Different Cell Geometries. Talanta 2004, 62, 131–141. DOI: 10.1016/S0039-9140(03)00418-1.
  • Zeninari, V.; Kapitanov, V.-A.; Courtois, D.; Ponomarev, Y.-N. Design and Characteristics of a Differential Helmholtz Resonant Photoacoustic Cell for Infrared Gas Detection. Infrared Phys. Technol. 1999, 40, 1–23. DOI: 10.1016/S1350-4495(98)00038-3.
  • Mao, X.-F.; Ji, X.-Y.; Tan, Y.-T.; Ye, H.; Wang, X.-F. High-Sensitivity All-Optical PA Spectrometer Based on Fast Swept Laser Interferometry. Photoacoustics 2022, 28, 100391. DOI: 10.1016/j.pacs.2022.100391.
  • Gong, Z.-F.; Gao, T.-L.; Chen, Y.-W.; Zhang, B.; Peng, W.; Yu, Q.-X.; Ma, F.-X.; Mei, L.; Chen, K. Sub-Ppb Level Detection of Nitrogen Dioxide Based on an Optimized H-Type Longitudinal Acoustic Resonator and a Lock-In White-Light Interferometry Demodulation Algorithm. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107136. DOI: 10.1016/j.jqsrt.2020.107136
  • Mao, X.-F.; Zheng, P.-C.; Wang, X.-F.; Yuan, S.-Z. Breath Methane Detection Based on All-Optical Photoacoustic Spectrometer. Sens. Actuators, B 2017, 239, 1257–1260. DOI: 10.1016/j.snb.2016.09.132.
  • Gong, Z.-F.; Chen, K.; Yang, Y.; Zhou, X.-L.; Peng, W.; Yu, Q.-X. High-Sensitivity Fiber-Optic Acoustic Sensor for Photoacoustic Spectroscopy Based Traces Gas Detection. Sens. Actuators, B 2017, 247, 290–295. DOI: 10.1016/j.snb.2017.03.009.
  • Zhang, B.; Chen, K.; Chen, Y.-W.; Yang, B.-L.; Guo, M.; Deng, H.; Ma, F.-X.; Zhu, F.; Gong, Z.-F.; Peng, W.; Yu, Q.-X. High-Sensitivity Photoacoustic Gas Detector by Employing Multi-Pass Cell and Fiber-Optic Microphone. Opt. Express. 2020, 28, 6618–6630. DOI: 10.1364/OE.382310.
  • Tan, Y.-Z.; Zhang, C.-Z.; Jin, W.; Yang, F.; Ho, H.-L.; Ma, J. Optical Fiber Photoacoustic Gas Sensor with Graphene Nano-Mechanical Resonator as the Acoustic Detector. IEEE J. Select. Topics Quantum Electron. 2017, 23, 199–209. DOI: 10.1109/JSTQE.2016.2606339.
  • Gong, Z.-F.; Chen, K.; Yang, Y.; Zhou, X.-L.; Yu, Q.-X. Photoacoustic Spectroscopy Based Multi-Gas Detection Using High-Sensitivity Fiber-Optic Low-Frequency Acoustic Sensor. Sens. Actuators, B 2018, 260, 357–363. DOI: 10.1016/j.snb.2018.01.005.
  • Cao, Y.-C.; Jin, W.; Ho, H.-L.; Ma, J. Miniature Fiber-Tip Photoacoustic Spectrometer for Trace Gas Detection. Opt. Lett. 2013, 38, 434–436. DOI: 10.1364/OL.38.000434.
  • Yang, T.-H.; Chen, W.-G.; Zhang, Z.-X.; Lei, J.-L.; Wan, F.; Song, R.-M. Multiple Reflections Enhanced Fiber-Optic Photoacoustic Sensor for Gas Micro-Leakage. Opt. Express. 2021, 29, 2142–2152. DOI: 10.1364/OE.415607.
  • Lanevski, D.; Mauring, K.; Tkaczyk, E. Interference Filter Tilting to Detect a Polycyclic Aromatic Hydrocarbon at the Second Harmonic of Wavelength Modulation Frequency. Appl. Opt. 2017, 56, 3155–3161. DOI: 10.1364/AO.56.003155.
  • Zhang, C.-Z.; Yang, Y.-H.; Tan, Y.-Z.; Ho, H.-L.; Jin, W. All-Optical Fiber Photoacoustic Gas Sensor with Double Resonant Enhancement. IEEE Photon. Technol. Lett. 2018, 30, 1752–1755. DOI: 10.1109/LPT.2018.2868450.
  • Gong, Z.-F.; Chen, K.; Chen, Y.-W.; Mei, L.; Yu, Q.-X. Integration of T-Type Half-Open Photoacoustic Cell and Fiber-Optic Acoustic Sensor for Trace Gas Detection. Opt. Express. 2019, 27, 18222–18231. DOI: 10.1364/OE.27.018222.
  • Chen, K.; Liu, S.; Zhang, B.; Gong, Z.-F.; Chen, Y.-W.; Zhang, M.; Deng, H.; Guo, M.; Ma, F.-X.; Zhu, F.; Yu, Q.-X. Highly Sensitive Photoacoustic Multi-Gas Analyzer Combined with Mid-Infrared Broadband Source and near-Infrared Laser. Opt. Lasers Eng. 2020, 124, 105844. DOI: 10.1016/j.optlaseng.2019.105844.
  • Orlikoff, R.-F.; Baken, R.-J. Fundamental-Frequency Modulation of the Human Voice by the Heartbeat-Preliminary-Results and Possible Mechanisms. J. Acoust. Soc. Am. 1989, 85, 888–893. DOI: 10.1121/1.397560.
  • Yu, Y.-J.; Sanchez, N.-P.; Yi, F.; Zheng, C.-T.; Ye, W.-L.; Wu, H.-P.; Griffin, R.-J.; Tittel, F.-K. Dual Quantum Cascade Laser-Based Sensor for Simultaneous NO and NO2 Detection Using a Wavelength Modulation-Division Multiplexing Technique. Appl. Phys. B 2017, 123, 164. DOI: 10.1007/s00340-017-6742-7.
  • Lin, C.; Liao, Y.; Fang, F. Trace Gas Detection System Based on All-Optical Quartz-Enhanced Photoacoustic Spectroscopy. Appl. Spectrosc. 2019, 73, 1327–1333. DOI: 10.1177/0003702819866468.
  • Feng, X.-X.; Jiang, Y.; Gao, H.-C.; Tang, C.-J.; Wang, X.-F. Diaphragm-Free Gas Pressure Sensor Based on All-Sapphire Fiber Fabry-Perot Interferometers. Appl. Opt. 2022, 61, 6584–6589. DOI: 10.1364/AO.463892.
  • Ma, W.-Y.; Jiang, Y.; Zhang, H.; Zhang, L.-C.; Hu, J.; Jiang, L. Miniature on-Fiber Extrinsic Fabry-Perot Interferometric Vibration Sensors Based on Micro-Cantilever Beam. Nanotechnol. Rev 2019, 8, 293–298. DOI: 10.1515/ntrev-2019-0028.
  • Zhang, L.-C.; Jiang, Y.; Jia, J.-S.; Gao, H.-C.; Wang, S.-M. Micro All-Glass Fiber-Optic Accelerometers. Opt. Eng. 2018, 57, 1. DOI: 10.1117/1.OE.57.8.087107.
  • Guo, M.; Chen, K.; Yang, B.-L.; Li, C.-Y.; Zhang, B.; Yang, Y.; Wang, Y.; Li, C.-X.; Gong, Z.-F.; Ma, F.-X.; Yu, Q.-X. Ultrahigh Sensitivity Fiber-Optic Fabry-Perot Interferometric Acoustic Sensor Based on Silicon Cantilever. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. DOI: 10.1109/TIM.2021.3101573.
  • Guo, M.; Chen, K.; Li, C.-X.; Xu, L.; Zhang, G.-Y.; Wang, N.; Li, C.-Y.; Ma, F.-X.; Gong, Z.-F.; Yu, Q.-X. High-Sensitivity Silicon Cantilever-Enhanced Photoacoustic Spectroscopy Analyzer with Low Gas Consumption. Anal. Chem. 2022, 94, 1151–1157. DOI: 10.1021/acs.analchem.1c04309.
  • Babatain, W.; Bhattacharjee, S.; Hussain, A.-M.; Hussain, M.-M. Acceleration Sensors: Sensing Mechanisms, Emerging Fabrication Strategies, Materials, and Applications. ACS Appl. Electron. Mater. 2021, 3, 504–531. DOI: 10.1021/acsaelm.0c00746.
  • Wang, F.-Y.; Shao, Z.-Z.; Xie, J.-H.; Hu, Z.-L.; Luo, H.; Hu, Y.-M. Extrinsic Fabry-Perot Underwater Acoustic Sensor Based on Micromachined Center-Embossed Diaphragm. J. Lightwave Technol. 2014, 3, 504–531. DOI: 10.1109/JLT.2014.2362494.
  • Chen, K.; Yu, Z.-H.; Yu, Q.-X.; Guo, M.; Zhao, Z.-H.; Qu, C.; Gong, Z.-F.; Yang, Y. Fast Demodulated White-Light Interferometry-Based Fiber-Optic Fabry-Perot Cantilever Microphone. Opt. Lett. 2018, 43, 3417–3420. DOI: 10.1364/OL.43.003417.
  • Chen, K.; Zhang, B.; Guo, M.; Chen, Y.-W.; Deng, H.; Yang, B.-L.; Liu, S.; Ma, F.-X.; Zhu, F.; Gong, Z.-F.; Yu, Q.-X. Photoacoustic Trace Gas Detection of Ethylene in High-Concentration Methane Background Based on Dual Light Sources and Fiber-Optic Microphone. Sens. Actuators, B 2020, 310, 127825. DOI: 10.1016/j.snb.2020.127825.
  • Chen, K.; Zhang, B.; Liu, S.; Yu, Q.-X. Parts-Per-Billion-Level Detection of Hydrogen Sulfide Based on near-Infrared All-Optical Photoacoustic Spectroscopy. Sens. Actuators, B 2019, 283, 1–5. DOI: 10.1016/j.snb.2018.11.163.
  • Chen, K.; Yu, Q.-X.; Gong, Z.-F.; Guo, M.; Qu, C. Ultra-High Sensitive Fiber-Optic Fabry-Perot Cantilever Enhanced Resonant Photoacoustic Spectroscopy. Sens. Actuators, B 2018, 268, 205–209. DOI: 10.1016/j.snb.2018.04.123.
  • Chen, K.; Deng, H.; Guo, M.; Luo, C.; Liu, S.; Zhang, B.; Ma, F.-X.; Zhu, F.; Gong, Z.-F.; Peng, W.; Yu, Q.-X. Tube-Cantilever Double Resonance Enhanced Fiber-Optic Photoacoustic Spectrometer. Opt. Laser Technol. 2020, 123, 105894. DOI: 10.1016/j.optlastec.2019.105894.
  • Zhou, S.; Slaman, M.; Iannuzzi, D. Demonstration of a Highly Sensitive Photoacoustic Spectrometer Based on a Miniaturized All-Optical Detecting Sensor. Opt. Express. 2017, 25, 17541–17548. DOI: 10.1364/OE.25.017541.
  • Guo, F.-W.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J.-S. High-Sensitivity, High-Frequency Extrinsic Fabry-Perot Interferometric Fiber-Tip Sensor Based on a Thin Silver Diaphragm. Opt. Lett. 2012, 37, 1505–1507. DOI: 10.1364/OL.37.001505.
  • Ma, J.; Xuan, H.-F.; Ho, H.-L.; Jin, W.; Yang, Y.-H.; Fan, S.-C. Fiber-Optic Fabry-Perot Acoustic Sensor with Multilayer Graphene Diaphragm. IEEE Photon. Technol. Lett. 2013, 25, 932–935. DOI: 10.1109/LPT.2013.2256343.
  • Liu, L.; Lu, P.; Liao, H.; Wang, S.; Yang, W.; Liu, D.-M.; Zhang, J.-S. Fiber-Optic Michelson Interferometric Acoustic Sensor Based on a PP/PET Diaphragm. IEEE Sensors J. 2016, 16, 3054–3058. DOI: 10.1109/JSEN.2016.2526644.
  • Murray, M.-J.; Davis, A.; Redding, B. Fiber-Wrapped Mandrel Microphone for Low-Noise Acoustic Measurements. J. Lightwave Technol. 2018, 36, 3205–3210. DOI: 10.1109/JLT.2018.2838051. 10.1109/JLT.2018.2838051
  • Kauppinen, J.; Wilcken, K.; Kauppinen, I.; Koskinen, V. High Sensitivity in Gas Analysis with Photoacoustic Detection. Microchem. J. 2004, 76, 151–159. DOI: 10.1016/j.microc.2003.11.007
  • Koskinen, V.; Fonsen, J.; Roth, K.; Kauppinen, J. Progress in Cantilever Enhanced Photoacoustic Spectroscopy. Vib. Spectrosc. 2008, 48, 16–21. DOI: 10.1016/j.vibspec.2008.01.013
  • Fonsen, J.; Koskinen, V.; Roth, K.; Kauppinen, J. Dual Cantilever Enhanced Photoacoustic Detector with Pulsed Broadband IR-Source. Vib. Spectrosc. 2009, 50, 214–217. DOI: 10.1016/j.vibspec.2008.12.001.
  • Karioja, P.; Keranen, K.; Kautio, K.; Ollila, J.; Heikkinen, M.; Kauppinen, I.; Kuusela, T.; Matveev, B.; Mcnie, M.-E.; Jenkins, R.-M.; Palve, J. LTCC Based Differential Photo Acoustic Gas Cell for Ppm Gas Sensing. Proc. SPIE 2010, 7726, 77260H. DOI: 10.1117/12.851854.
  • Uotila, J.; Koskinen, V.; Kauppinen, J. Selective Differential Photoacoustic Method for Trace Gas Analysis. Vib. Spectrosc. 2005, 38, 3–9. DOI: 10.1016/j.vibspec.2005.02.002.
  • Uotila, J. Comparison of Infrared Sources for a Differential Photoacoustic Gas Detection System. Infrared Phys. Technol. 2007, 51, 122–130. DOI: 10.1016/j.infrared.2007.05.001.
  • Hoffmann, M. Photoacoustic Interferometry for Gas Detection,. Ph.D. Dissertation, Technical University of Munich, Munich, Germany, 2021. http://mediatum.ub.tum.de/?id=1575036.
  • Jones, F.-E. The Refractivity of Air. J. Res. Natl. Bur Stand (1977) 1981, 86, 27–32. DOI: 10.6028/jres.086.002.
  • Sebesta, G.-J.; Hofer, A.; Carlisle, R.-W. Acoustical Compound Reflex Resonator System. J. Acoust. Soc. Am. 1977, 62, S72–S72. DOI: 10.1121/1.2016351.
  • Schneider, F.-M.; Esterhazy, S.; Perugia, I.; Bokelmann, G. Seismic Resonances of Spherical Acoustic Cavities. Geophys. Prospect. 2017, 65, 1–24. DOI: 10.1111/1365-2478.12523.
  • Ziada, S.; Bolduc, M.; Lafon, P. Flow-Excited Resonance of Diametral Acoustic Modes in Ducted Rectangular Cavities. Aiaa J. 2017, 55, 3817–3830. DOI: 10.2514/1.J056010.
  • Gorelik, A.-V.; Ulasevich, A.-L.; Nikonovich, F.-N.; Zakharich, M.-P.; Firago, V.-A.; Kazak, N.-S.; Starovoitov, V.-S. Miniaturized Resonant Photoacoustic Cell of Inclined Geometry for Trace-Gas Detection. Appl. Phys. B 2010, 100, 283–289. DOI: 10.1007/s00340-009-3884-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.