128
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of the application of vibrational spectroscopy combined with chemometrics in genus Panax

, &

References

  • Wang, B. X. Ginseng Research. Tianjin Science and Technology Press: Tianjin, 1985; p 2
  • Gillis, C. N. Panax ginseng Pharmacology: A Nitric Oxide Link? Biochem. Pharmacol. 1997, 54, 1–8. doi:10.1016/s0006-2952(97)00193-7.
  • Raven, P. H.; Zhang, L.; Bartholomew, B.; Boufford, D. E. Brach; A. R.; Kress, W. J. Flora of China. http://www.iplant.cn/foc. (accessed Dec 20, 2020).
  • Wang, J. X. The Earliest Officially Published Pharmacopoeia in the World. Journal of Traditional Chinese Medicine 1987, 7, 155–156. doi:10.19852/j.cnki.jtcm.1987.02.021.
  • Yun, T. K. Brief Introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci. 2001, 16, S3–S5. doi:10.3346/jkms.2001.16.S.S3.
  • Flora of China. Editorial Committee of the Flora of China of Chinese Academy of Science; Beijing Science Press: Beijing, 2010.
  • Yue, J. Q.; Zuo, Z. T.; Huang, H. Y.; Wang, Y. Z. Application of Identification and Evaluation Techniques for Ethnobotanical Medicinal Plant of Genus Panax: A Review. Crit. Rev. Anal. Chem. 2021, 51, 373–398. doi:10.1080/10408347.2020.1736506.
  • Wen, J.; Zimmer, E. A. Phylogeny and Biogeography of Panax L. (the Ginseng Genus, Araliaceae): Inferences from ITS Sequences of Nuclear Ribosomal DNA. Mol. Phylogenet. Evol. 1996, 6, 167–177. doi:10.1006/mpev.1996.0069.
  • Xie, J.-T.; Mchendale, S.; Yuan, C.-S. Ginseng and Diabetes. Am. J. Chin. Med. 2005, 33, 397–404. doi:10.1142/S0192415X05003004.
  • Chen, J. K.; Chen, T. T.; Crampton, L. Chinese Medical Herbology and Pharmacology. Art of Medicine Press: City of Industry, Calif, 2004; p. 37
  • Chen, C. F.; Chiou, W. F.; Zhang, J. T. Comparison of the Pharmacological Effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol. Sin. 2008, 29, 1103–1108. doi:10.1111/j.1745-7254.2008.00868.x.
  • Wang, Y. P.; Choi, H. K.; Brinckmann, J. A.; Jiang, X.; Huang, L. F. Chemical Analysis of Panax quinquefolius (North American Ginseng): A Review. J. Chromatogr. A 2015, 1426, 1–15. doi:10.1016/j.chroma.2015.11.012.
  • Szczuka, D.; Nowak, A.; Zakłos-Szyda, M.; Kochan, E.; Szymańska, G.; Motyl, I.; Blasiak, J. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019, 11, 1041. doi:10.3390/nu11051041.
  • Patel, S.; Rauf, A. Adaptogenic Herb Ginseng (Panax) as Medical Food: Status Quo and Future Prospects. Biomed. Pharmacother. 2017, 85, 120–127. doi:10.1016/j.biopha.2016.11.112.
  • Yang, X.; Wang, R.; Zhang, S.; Zhu, W.; Tang, J.; Liu, J.; Chen, P.; Zhang, D.; Ye, W.; Zheng, Y. Polysaccharides from Panax Japonicus C.A. Meyer and Their Antioxidant Activities. Carbohydr. Polym. 2014, 101, 386–391. doi:10.1016/j.carbpol.2013.09.038.
  • Mancuso, C.; Santangelo, R. Panax ginseng and Panax quinquefolius: From Pharmacology to Toxicology. Food Chem. Toxicol. 2017, 107, 362–372. doi:10.1016/j.fct.2017.07.019.
  • Bae, S. J.; Rho, G. J.; Kim, K. M.; Kang, J. S. Pharmacological Effects of Active Saponins from Panax ginseng Meyer. Trop. J. Pharm. Res. 2021, 18, 555–561. doi:10.4314/tjpr.v18i3.16.
  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. China Medical Science Press: Beijing, 2020.
  • He, Z. B. A Review on the Processing of Ginseng. A Summary of the Latest Medical Information in the World 2018, 18, 132–133 + 136. doi:10.19613/j.cnki.1671-3141.2018.76.058.
  • Lee, S. M.; Bae, B. S.; Park, H. W.; Ahn, N. G.; Cho, B. G.; Cho, Y. L.; Kwak, Y. S. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, Preparation Method, and Chemical Composition. J. Ginseng Res. 2015, 39, 384–391. doi:10.1016/j.jgr.2015.04.009.
  • Lavoie, C. Biological Collections in an Ever Changing World: Herbaria as Tools for Biogeographical and Environmental Studies. Perspect. Plant Ecol. Evol. Syst 2013, 15, 68–76. doi:10.1016/j.ppees.2012.10.002.
  • Lee, T. M.; Marderosian, A. D. Two-Dimensional TLC Analysis of Ginsenosides from Root of Dwarf Ginseng (Punux trifolius L.) Araliaceae. J. Pharm. Sci. 1981, 70, 89–91. doi:10.1002/jps.2600700119.
  • Vanhaelen-Fastré, R. J.; Faes, M. L.; Vanhaelen, M. H. High-Performance Thin-Layer Chromatographic Determination of Six Major Ginsenosides in Panax ginseng. J. Chromatogr. A 2000, 868, 269–276. doi:10.1016/s0021-9673(99)01253-4.
  • Qiao, Y. J.; Zhang, J. J.; Shang, J. H.; Zhu, H. T.; Wang, D.; Yang, C. R.; Zhang, Y. J. GC-MS-Based Identification and Statistical Analysis of Liposoluble Components in the Rhizosphere Soils of Panax notoginseng. RSC Adv. 2019, 9, 20557–20564. doi:10.1039/c9ra02110h.
  • Xu, C. L.; Zheng, Y. N.; Cui, S. Y.; Hu, H. L.; Li, X. Determination of Six Ginsenosides in Leaves and Stems of Panax quinuefolium L. by RP-HPLC. J. Jilin Agric. Univ. 2002, 24, 50–52.
  • Chen, J. H.; Xie, M. Y.; Fu, Z. H.; Lee, F. S. C.; Wang, X. R. Development of a Quality Evaluation System for Panax quinquefolium. L Based on HPLC Chromatographic Fingerprinting of Seven Major Ginsenosides. Microchem. J. 2007, 85, 201–208. doi:10.1016/j.microc.2006.05.007.
  • Morais, C. L. M.; Paraskevaidi, M.; Cui, L.; Fullwood, N. J.; Isabelle, M.; Lima, K. M. G.; Martin-Hirsch, P. L.; Sreedhar, H.; Trevisan, J.; Walsh, M. J.; et al. Standardization of Complex Biologically Derived Spectrochemical Datasets. Nat. Protoc. 2019, 14, 1546–1577. doi:10.1038/s41596-019-0150-x.
  • Chen, X.; Li, J. Q.; Li, T.; Liu, H. G.; Wang, Y. Z. Application of Infrared Spectroscopy Combined with Chemometrics in Mushroom. Appl. Spectrosc. Rev. 2023, 58, 318–345. doi:10.1080/05704928.2021.1994415.
  • Meenu, M.; Xu, B. J. Application of Vibrational Spectroscopy for Classification, Authentication and Quality Analysis of Mushroom: A Concise Review. Food Chem. 2019, 289, 545–557. doi:10.1016/j.foodchem.2019.03.091.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B. K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci Technol. 2015, 46, 85–98. doi:10.1016/j.tifs.2015.08.003.
  • Morais, C. L. M.; Lima, K. M. G.; Singh, M.; Martin, F. L. Tutorial: Multivariate Classification for Vibrational Spectroscopy in Biological Samples. Nat. Protoc. 2020, 15, 2143–2162. doi:10.1038/s41596-020-0322-8.
  • He, Y.; Bai, X. L.; Xiao, Q. L.; Liu, F.; Zhou, L.; Zhang, C. Detection of Adulteration in Food Based on Nondestructive Analysis Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2351–2371. doi:10.1080/10408398.2020.1777526.
  • Zou, H. B.; Yang, G. S.; Qin, Z. R.; Jiang, W. Q.; Du, A. Q.; Aboul Enein, H. Y. Progress in Quality Control of Herbal Medicine with IR Fingerprint Spectra. Anal. Lett. 2005, 38, 1457–1475. doi:10.1081/al-200062153.
  • Nagy, M. M.; Wang, S. P.; Farag, M. A. Quality Analysis and Authentication of Nutraceuticals Using near IR (NIR) Spectroscopy: A Comprehensive Review of Novel Trends and Applications. Trends Food Sci. Technol. 2022, 123, 290–309. doi:10.1016/j.tifs.2022.03.005.
  • Su, W. H.; He, H. J.; Sun, D. W. Non-Destructive and Rapid Evaluation of Staple Foods Quality by Using Spectroscopic Techniques: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 1039–1051. doi:10.1080/10408398.2015.1082966.
  • Liu, F.; Zhang, F.; Jin, Z. L.; He, Y.; Fang, H.; Ye, Q. F.; Zhou, W. J. Determination of Acetolactate Synthase Activity and Protein Content of Oilseed Rape (Brassica napus L.) Leaves Using Visible/near-Infrared Spectroscopy. Anal. Chim. Acta. 2008, 629, 56–65. doi:10.1016/j.aca.2008.09.027.
  • Liebmann, B.; Friedl, A.; Varmuza, K. Determination of Glucose and Ethanol in Bioethanol Production by near Infrared Spectroscopy and Chemometrics. Anal. Chim. Acta. 2009, 642, 171–178. doi:10.1016/j.aca.2008.10.069.
  • Bu, H. B.; Nie, L. X.; Wang, D.; Yuan, S. X.; Li, S.; Guo, Z. Y.; Xu, X. J.; Wang, G. L.; Li, X. R. Rapid Determination of Panax ginseng by near-Infrared Spectroscopy. Anal. Methods 2013, 5, 6715–6721. doi:10.1039/c3ay40947c.
  • Abbas, O.; Zadravec, M.; Baeten, V.; Mikus, T.; Lesic, T.; Vulic, A.; Prpic, J.; Jemersic, L.; Pleadin, J. Analytical Methods Used for the Authentication of Food of Animal Origin. Food Chem. 2018, 246, 6–17. doi:10.1016/j.foodchem.2017.11.007.
  • Kandpal, L. M.; Lee, J.; Bae, H.; Kim, M. S.; Baek, I.; Cho, B. K. Near-Infrared Transmittance Spectral Imaging for Nondestructive Measurement of Internal Disorder in Korean Ginseng. Sensors (Basel) 2020, 20, 273. doi:10.3390/s20010273.
  • Li, Y.; Zhang, J. Y.; Wang, Y. Z. FT-MIR and NIR Spectral Data Fusion: A Synergetic Strategy for the Geographical Traceability of Panax notoginseng. Anal. Bioanal. Chem. 2018, 410, 91–103. doi:10.1007/s00216-017-0692-0.
  • Su, W. H.; Sun, D. W. Fourier Transform Infrared and Raman and Hyperspectral Imaging Techniques for Quality Determinations of Powdery Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. doi:10.1111/1541-4337.12314.
  • Davis, R.; Mauer, L. J. Fourier Transform Infrared (FT-IR) Spectroscopy: A Rapid Tool for Detection and Analysis of Foodborne Pathogenic Bacteria. Curr Res Technol Educ Top Appl. Microbiol. Microbial Biotechnol. 2010, 2, 1582–1594.
  • Ma, F.; Chen, J. B.; Wu, X. X.; Zhou, Q.; Sun, S. Q. Rapid Discrimination of Panax notogeinseng of Different Grades by FT-IR and 2DCOS-IR. J. Mol. Struct. 2016, 1124, 131–137. doi:10.1016/j.molstruc.2016.02.087.
  • Petersen, M.; Yu, Z. L.; Lu, X. N. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors (Basel) 2021, 11, 187. doi:10.3390/bios11060187.
  • Guo, S. X.; Popp, J. G.; Bocklitz, T. Chemometric Analysis in Raman Spectroscopy from Experimental Design to Machine Learning-Based Modeling. Nat. Protoc. 2021, 16, 5426–5459. doi:10.1038/s41596-021-00620-3.
  • Abbas, O.; Pissard, A.; Baeten, V. Near-infrared, mid-infrared, and Raman spectroscopy. In Chemical Analysis of Food, 2020; pp 77–134.
  • Xu, Y. L.; Zhang, J. Y.; Wang, Y. Z. Recent Trends of Multi-Source and Non-Destructive Information for Quality Authentication of Herbs and Spices. Food Chem. 2023, 398, 133939. doi:10.1016/j.foodchem.2022.133939.
  • Baena, J. R.; Lendl, B. Raman Spectroscopy in Chemical Bioanalysis. Curr. Opin. Chem. Biol. 2004, 8, 534–539. doi:10.1016/j.cbpa.2004.08.014.
  • Edwards, H. G.; Munshi, T.; Page, K. Analytical Discrimination between Sources of Ginseng Using Raman Spectroscopy. Anal. Bioanal. Chem. 2007, 389, 2203–2215. doi:10.1007/s00216-007-1605-4.
  • Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral Imaging-an Emerging Process Analytical Tool for Food Quality and Safety Control. Trends Food Sci. Technol. 2007, 18, 590–598. doi:10.1016/j.tifs.2007.06.001.
  • Zhang, C.; Liu, F.; He, Y. Identification of Coffee Bean Varieties Using Hyperspectral Imaging: Influence of Preprocessing Methods and Pixel-Wise Spectra Analysis. Sci. Rep. 2018, 8, 1–11. doi:10.1038/s41598-018-20270-y.
  • ElMasry, G.; Sun, D. W. Principles of Hyperspectral Imaging Technology. In Hyperspectral Imaging for Food Quality Analysis and Control. Academic Press, 2010; pp 3–43. doi:10.1016/B978-0-12-374753-2.10001-2
  • Williams, D. J.; Feldman, B. L.; Williams, T. J.; Pilant, A. N.; Lucey, P. G.; Worthy, L. D. Detection and Identification of Toxic Air Pollutants Using Airborne LWIR Hyperspectral Imaging. In Multispectral and Hyperspectral Remote Sensing Instruments and Applications II., 2005, Vol. 5655, pp 20. 134–41. 10.1117/12.578819
  • Fortunato de Carvalho Rocha, W.; Sabin, G. P.; Março, P. H.; Poppi, R. J. Quantitative Analysis of Piroxicam Polymorphs Pharmaceutical Mixtures by Hyperspectral Imaging and Chemometrics. Chemom. Intell. Lab. Syst. 2011, 106, 198–204. doi:10.1016/j.chemolab.2010.04.015.
  • Lu, G. L.; Fei, B. W. Medical Hyperspectral Imaging: A Review. J. Biomed. Opt. 2014, 19, 10901. doi:10.1117/1.JBO.19.1.010901.
  • Zhao, S. Y.; Song, W. R.; Hou, Z. Y.; Wang, Z. Classification of Ginseng according to Plant Species, Geographical Origin, and Age Using Laser-Induced Breakdown Spectroscopy and Hyperspectral Imaging. J. Anal. At. Spectrom. 2021, 36, 1704–1711. doi:10.1039/d1ja00136a.
  • Park, E.; Kim, Y. S.; Omari, M. K.; Suh, H. K.; Faqeerzada, M. A.; Kim, M. S.; Baek, I.; Cho, B. K. High-Throughput Phenotyping Approach for the Evaluation of Heat Stress in Korean Ginseng (Panax ginseng Meyer) Using a Hyperspectral Reflectance Image. Sensors (Basel) 2021, 21, 5634. doi:10.3390/s21165634.
  • Gerretzen, J.; Szymańska, E.; Jansen, J. J.; Bart, J.; van Manen, H.-J.; van den Heuvel, E. R.; Buydens, L. M. C. A Novel, Simple and Effective Way for Data Preprocessing Selection Based on Design of Experiments. Anal. Chem. 2015, 87, 12096–12103. doi:10.1021/acs.analchem.5b02832.
  • Rinnan, Å.; Berg, F. v d.; Engelsen, S. B. Review of the Most Common Pre-Processing Techniques for near-Infrared Spectra. TrAC, Trends Anal. Chem. 2009, 28, 1201–1222. doi:10.1016/j.trac.2009.07.007.
  • Bian, X. H.; Wang, K. Y.; Tan, E.; Diwu, P. Y.; Zhang, F.; Guo, Y. G. A Selective Ensemble Preprocessing Strategy for near-Infrared Spectral Quantitative Analysis of Complex Samples. Chemom. Intell. Lab. Syst. 2020, 197, 103916. doi:10.1016/j.chemolab.2019.103916.
  • Martens, H.; Stark, E. Extended Multiplicative Signal Correction and Spectral Interference Subtraction: New Preprocessing Methods for near Infrared Spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. doi:10.1016/0731-7085(91)80188-f.
  • Barnes, R. J.; Dhanoa, M. S.; Lister, S. J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. doi:10.1366/0003702894202201.
  • Cao, R. Y.; Chen, Y.; Shen, M. G.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A Simple Method to Improve the Quality of NDVI Time-Series Data by Integrating Spatiotemporal Information with the Savitzky-Golay Filter. Remote Sens. Environ 2018, 217, 244–257. doi:10.1016/j.rse.2018.08.022.
  • Roger, J. M.; Boulet, J. C.; Zeaiter, M.; Rutledge, D. N. Pre-Processing Methods. In Comprehensive Chemometrics, Brown, S. D., Tauler, R., Walczak, B. Eds. Elsevier, 2020, pp 1–75.
  • Mishra, P.; Biancolillo, A.; Roger, J. M.; Marini, F.; Rutledge, D. N. New Data Preprocessing Trends Based on Ensemble of Multiple Preprocessing Techniques. TrAC, Trends Anal. Chem. 2020, 132, 116045. doi:10.1016/j.trac.2020.116045.
  • Dong, T.; Lin, L.; He, Y.; Nie, P. C.; Qu, F. F.; Xiao, S. P. Density Functional Theory Analysis of Deltamethrin and Its Determination in Strawberry by Surface Enhanced Raman Spectroscopy. Molecules 2018, 23, 1458. doi:10.3390/molecules23061458.
  • Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X. M.; Xu, Z. L.; Shen, Y. D.; Sun, Y. M.; Lei, H. T. Raman Spectroscopy Coupled with Chemometrics for Food Authentication: A Review. TrAC, Trends Anal. Chem. 2020, 131, 116017. doi:10.1016/j.trac.2020.116017.
  • Liu, L.; Zuo, Z. T.; Wang, Y. Z.; Xu, F. R. A Fast Multi-Source Information Fusion Strategy Based on FTIR Spectroscopy for Geographical Authentication of Wild Gentiana rigescens. Microchem. J. 2020, 159, 105360. doi:10.1016/j.microc.2020.105360.
  • Yang, W. Z.; Zhang, J. Y.; Zhang, J.; Wang, Y. Z. ATR-FTIR and UV-Vis Combined with Data Fusion Strategy to Identify the Origin of Polygonatum kingianum. Spectrosc. Spectrosc. Anal. 2021, 41, 1410. doi:10.3964/j.issn.1000-0593(2021)05-1410-07.
  • Gad, H. A.; El Ahmady, S. H.; Abou Shoer, M. I.; Al Azizi, M. M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2013, 24, 1–24. doi:10.1002/pca.2378.
  • Rodriguez, C.; Ruiz Samblas, L.; Valverde Som, C.; Perez Castano, L.; Gonzalez Casado, E. A. Chromatographic Fingerprinting: An Innovative Approach for Food 'Identitation’ and Food Authentication-A Tutorial. Anal. Chim. Acta 2016, 909, 9–23. doi:10.1016/j.aca.2015.12.042.
  • Liu, C. L.; Zuo, Z. T.; Xu, F. R.; Wang, Y. Z. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit. Rev. Anal. Chem 2022, 1–26. doi:10.1080/10408347.2021.2023460.
  • Thiangthum, S.; Dejaegher, B.; Goodarzi, M.; Tistaert, C.; Gordien, A. Y.; Nguyen Hoai, N.; Chau Van, M.; Quetin Leclercq, J.; Suntornsuk, L.; Vander Heyden, Y. Potentially Antioxidant Compounds Indicated from Mallotus and Phyllanthus Species Fingerprints. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 910, 114–121. doi:10.1016/j.jchromb.2012.06.025.
  • Alaerts, G.; Dejaegher, B.; Smeyers Verbeke, J.; Vander Heyden, Y. Recent Developments in Chromatographic Fingerprints from Herbal Products: Set-Up and Data Analysis. Comb. Chem. High Throughput Screen. 2010, 13, 900–922. doi:10.2174/138620710793360284.
  • Lavine, B. K.; Workman, J. Chemometrics. Anal. Chem. 2013, 85, 705–714. doi:10.1021/ac303193j.
  • Yang, W. Z.; Qiao, X.; Li, K.; Fan, J. R.; Bo, T.; Guo, D. A.; Ye, M. Identification and Differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by Monitoring Multiple Diagnostic Chemical Markers. Acta Pharm. Sin. B 2016, 6, 568–575. doi:10.1016/j.apsb.2016.05.005.
  • Chen, X. J.; Wu, D.; He, Y.; Liu, S. Nondestructive Differentiation of Panax Species Using Visible and Shortwave near-Infrared Spectroscopy. Food Bioprocess Technol. 2011, 4, 753–761. doi:10.1007/s11947-009-0199-6.
  • Li, Y.; Shen, Y.; Yao, C. L.; Guo, D. A. Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Review. J. Pharm. Biomed. Anal. 2020, 185, 113215. doi:10.1016/j.jpba.2020.113215.
  • Li, Y.; Wang, Y. Z.; Yang, W. Z.; Yang, S. B.; Zhang, J. Y.; Xu, F. R. Study on the Genetic Relationship of Panax notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy. Spectrosc Spectr Anal 2016, 36, 2420–2424. doi:10.3964/j.issn.1000-0593(2016)08-2420-05.
  • Lu, G. H.; Zhou, Q.; Sun, S. Q.; Leung, K. S.; Zhang, H.; Zhao, Z. Z. Differentiation of Asian Ginseng, American Ginseng and Notoginseng by Fourier Transform Infrared Spectroscopy Combined with Two-Dimensional Correlation Infrared Spectroscopy. J. Mol. Struct. 2008, 883-884, 91–98. doi:10.1016/j.molstruc.2007.12.008.
  • Yap, K. Y.; Lai, T. K.; Chan, S. Y.; Lim, C. S. Infrared Authentication of Ginseng Species: The Use of the 2-6PC Rule. J. AOAC Int. 2009, 92, 672–679. doi:10.1134/S1061934809030216. 10.1093/jaoac/92.2.672
  • Mao, J. J.; Xu, J. W. Discrimination of Herbal Medicines by Molecular Spectroscopy and Chemical Pattern Recognition. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2006, 65, 497–500. doi:10.1016/j.saa.2005.11.030.
  • Sandasi, M.; Vermaak, I.; Chen, W. Y.; Viljoen, A. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng. Molecules 2016, 21, 472. doi:10.3390/molecules21040472.
  • Chen, P.; Luthria, D.; Harrington, P. d B.; Harnly, J. M. Discrimination among Panax Species Using Spectral Fingerprinting. J. AOAC Int. 2011, 94, 1411–1421. doi:10.5740/jaoacint.10-291.
  • Zhao, H. Y.; Guo, B. L.; Wei, Y. M.; Zhang, B. Near Infrared Reflectance Spectroscopy for Determination of the Geographical Origin of Wheat. Food Chem. 2013, 138, 1902–1907. doi:10.1016/j.foodchem.2012.11.037.
  • Xie, H. P.; Jiang, J. H.; Chen, Z. Q.; Shen, G. L.; Yu, R. Q. Chemometric Classification of Traditional Chinese Medicines by Their Geographical Origins Using near-Infrared Reflectance Spectra. Anal. Sci. 2006, 22, 1111–1116. doi:10.2116/analsci.22.1111.
  • Chen, H.; Tan, C.; Lin, Z. Identification of Ginseng according to Geographical Origin by near-Infrared Spectroscopy and Pattern Recognition. Vib. Spectrosc. 2020, 110, 103149. doi:10.1016/j.vibspec.2020.103149.
  • Li, Y. M.; Sun, S. Q.; Zhou, Q.; Qin, Z.; Tao, J. X.; Wang, J.; Fang, X. Identification of American Ginseng from Different Regions Using FT-IR and Two-Dimensional Correlation IR Spectroscopy. Vib. Spectrosc. 2004, 36, 227–232. doi:10.1016/j.vibspec.2003.12.009.
  • Chen, H.; Lin, Z.; Tan, C. Fast Discrimination of the Geographical Origins of Notoginseng by near-Infrared Spectroscopy and Chemometrics. J. Pharm. Biomed. Anal. 2018, 161, 239–245. doi:10.1016/j.jpba.2018.08.052.
  • Zhou, Y. H.; Zuo, Z. T.; Xu, F. R.; Wang, Y. Z. Origin Identification of Panax notoginseng by Multi-Sensor Information Fusion Strategy of Infrared Spectra Combined with Random Forest. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020, 226, 117619. doi:10.1016/j.saa.2019.117619.
  • Yap, K. Y. L.; Chan, S. Y.; Lim, C. S. Authentication of Traditional Chinese Medicine Using Infrared Spectroscopy: Distinguishing between Ginseng and Its Morphological Fakes. J. Biomed. Sci. 2007, 14, 265–273. doi:10.1007/s11373-006-9133-3.
  • Lucio Gutiérrez, J. R.; Coello, J.; Maspoch, S. Expeditious Identification and Semi-Quantification of Panax ginseng Using near Infrared Spectral Fingerprints and Multivariate Analysis. Anal. Methods 2013, 5, 857–865. doi:10.1039/c2ay26235e.
  • Nie, P. C.; Wu, D.; Sun, D. W.; Cao, F.; Bao, Y. D.; He, Y. Potential of Visible and near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants. Sensors (Basel) 2013, 13, 13820–13834. doi:10.3390/s131013820.
  • Liu, P.; Wang, J.; Li, Q.; Gao, J.; Tan, X. Y.; Bian, X. H. Rapid Identification and Quantification of Panax notoginseng with Its Adulterants by near Infrared Spectroscopy Combined with Chemometrics. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 206, 23–30. doi:10.1016/j.saa.2018.07.094.
  • Yang, X. D.; Li, G.; Song, J.; Gao, M. J.; Zhou, S. L. Rapid Discrimination of Notoginseng Powder Adulteration of Different Grades Using FT-MIR Spectroscopy Combined with Chemometrics. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 205, 457–464. doi:10.1016/j.saa.2018.07.056.
  • Yang, X. D.; Song, J.; Wu, X.; Xie, L.; Liu, X. W.; Li, G. L. Identification of Unhealthy Panax notoginseng from Different Geographical Origins by Means of Multi-Label Classification. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 222, 117243. doi:10.1016/j.saa.2019.117243.
  • Lee, S. H.; Jung, B. H.; Kim, S. Y.; Lee, E. H.; Chung, B. C. The Antistress Effect of Ginseng Total Saponin and Ginsenoside Rg3 and Rb1 Evaluated by Brain Polyamine Level under Immobilization Stress. Pharmacol. Res. 2006, 54, 46–49. doi:10.1016/j.phrs.2006.02.001.
  • Wang, J.; Li, S. S.; Fan, Y. Y.; Chen, Y.; Liu, D.; Cheng, H. R.; Gao, X. G.; Zhou, Y. F. Anti-Fatigue Activity of the Water-Soluble Polysaccharides Isolated from Panax ginseng C. A. Meyer. J. Ethnopharmacol. 2010, 130, 421–423. doi:10.1016/j.jep.2010.05.027.
  • Lim, T. S.; Na, K.; Choi, E. M.; Chung, J. Y.; Hwang, J. K. Immunomodulating Activities of Polysaccharides Isolated from Panax ginseng. J. Med. Food. 2004, 7, 1–6. doi:10.1089/109662004322984626.
  • Oshima, Y.; Konno, C.; Hikino, H. Isolation and Hypoglycemic Activity of Panax I, J, K and L, Glycans of Panax ginseng Roots. J. Ethnopharmacol. 1985, 14, 255–259. doi:10.1016/0378-8741(85)90091-1.
  • Shin, H. J.; Kim, Y. S.; Kwak, Y. S.; Song, Y. B.; Kim, Y. S.; Park, J. D. Enhancement of Antitumor Effects of Paclitaxel (Taxol) in Combination with Red Ginseng Acidic Polysaccharide (RGAP). Planta Med. 2004, 70, 1033–1038. doi:10.1055/s-2004-832643.
  • Ji, L.; Jie, Z. J.; Ying, X.; Yue, Q.; Zhou, Y. F.; Sun, L. Structural Characterization of Alkali-Soluble Polysaccharides from Panax ginseng C. A. Meyer. R Soc. Open Sci. 2018, 5, 171644. doi:10.1098/rsos.171644.
  • Zhong, R. X.; Liu, Y. J.; Wan, J.; Zhu, L. Y.; Chen, Y. B.; Wen, H. M.; Duan, X. Y.; Wang, X. L.; Wei, T. S.; Wu, C. H.; Feng, G. F. Online Quality Control of Panaxatriol Saponins Percolation Extraction Using near-Infrared Technology. Trop. J. Pharm. Res. 2019, 17, 2055–2060. doi:10.4314/tjpr.v17i10.23.
  • Yun, T. K.; Lee, Y. S.; Lee, Y. H.; Kim, S. I.; Yun, H. Y. Anticarcinogenic Effect of Panax ginseng C.A. Meyer and Identification of Active Compounds. J. Korean Med. Sci. 2001, 16 Suppl, S6–S18. doi:10.3346/jkms.2001.16.S.S6.
  • Shi, W.; Wang, Y. T.; Li, J.; Zhang, H. Q.; Ding, L. Investigation of Ginsenosides in Different Parts and Ages of Panax ginseng. Food Chem. 2007, 102, 664–668. doi:10.1016/j.foodchem.2006.05.053.
  • Lum, J. H. K.; Fung, K. L.; Cheung, P. Y.; Wong, M. S.; Lee, C. H.; Kwok, F. S. L.; Leung, M. C. P.; Hui, P. K.; Lo, S. C. L. Proteome of Oriental Ginseng Panax ginseng C. A. Meyer and the Potential to Use It as an Identification Tool. Proteomics. 2002, 2, 1123–1130. doi:10.1002/1615-9861(200209)2:9<1123::Aid-prot1123>3.0.Co;2-s. 10.1002/1615-9861(200209)2:9<1123::AID-PROT1123>3.0.CO;2-S
  • Lee, B. J.; Kim, H. Y.; Lim, S. R.; Huang, L. F.; Choi, H. K. Discrimination and Prediction of Cultivation Age and Parts of Panax ginseng by Fourier-Transform Infrared Spectroscopy Combined with Multivariate Statistical Analysis. PLoS One. 2017, 12, e0186664. doi:10.1371/journal.pone.0186664.
  • Kwon, Y. K.; Ahn, M. S.; Park, J. S.; Liu, J. R.; In, D. S.; Min, B. W.; Kim, S. W. Discrimination of Cultivation Ages and Cultivars of Ginseng Leaves Using Fourier Transform Infrared Spectroscopy Combined with Multivariate Analysis. J. Ginseng Res. 2014, 38, 52–58. doi:10.1016/j.jgr.2013.11.006.
  • Ren, G. X.; Chen, F. Determination of Moisture Content of Ginseng by near Infra-Red Reflectance Spectroscopy. Food Chem. 1997, 60, 433–436. doi:10.1016/S0308-8146(96)00363-9.
  • Xu, X. F.; Nie, L. X.; Pan, L. L.; Hao, B.; Yuan, S. X.; Lin, R. C.; Bu, H. B.; Wang, D.; Dong, L.; Li, X. R. Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy. J. Anal. Methods Chem. 2014, 2014, 741571. doi:10.1155/2014/741571.
  • Ng, T. B. Pharmacological Activity of Sanchi Ginseng (Panax notoginseng). J. Pharm. Pharmacol. 2006, 58, 1007–1019. doi:10.1211/jpp.58.8.0001.
  • Jiang, C.; Qu, H. B. A Comparative Study of Using in-Line near-Infrared Spectra, Ultraviolet Spectra and Fused Spectra to Monitor Panax notoginseng Adsorption Process. J. Pharm. Biomed. Anal. 2015, 102, 78–84. doi:10.1016/j.jpba.2014.08.029.
  • Li, Y.; Zhang, J.; Xu, F. R.; Wang, Y. Z.; Zhang, J. Y. Rapid Prediction of Total Flavonoids in Panax notoginseng by Infrared Spectroscopy Combined with Chemometrics. Spectroscopy and Spectral Analysis 2017, 37, 70–74. doi:10.3964/j.issn.1000-0593(2017)01-0070-05.
  • de Vasconcelos, F. V.; de Souza, P. F.; Jr. Pimentel, M. F.; Pontes, M. J.; Pereira, C. F. Using near-Infrared Overtone Regions to Determine Biodiesel Content and Adulteration of Diesel/Biodiesel Blends with Vegetable Oils. Anal. Chim. Acta. 2012, 716, 101–107. doi:10.1016/j.aca.2011.12.027.
  • Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M. F.; Fabbri, A. FT-NIR and FT-MIR Spectroscopy to Discriminate Competitors, Non Compliance and Compliance Grated Parmigiano Reggiano Cheese. Food Res. Int. 2013, 52, 214–220. doi:10.1016/j.foodres.2013.03.016.
  • He, H.; Sun, D. W.; Pu, H.; Chen, L.; Lin, L. Applications of Raman Spectroscopic Techniques for Quality and Safety Evaluation of Milk: A Review of Recent Developments. Crit. Rev. Food Sci. Nutr. 2019, 59, 770–793. doi:10.1080/10408398.2018.1528436.
  • Lv, H.; Zhang, Y.; Sun, Y.; Duan, Y. Elemental Characteristics of Sanqi (Panax notoginseng) in Yunnan Province of China: Multielement Determination by ICP-AES and ICP-MS and Statistical Analysis. Microchem. J. 2019, 146, 931–939. doi:10.1016/j.microc.2019.02.035.
  • Litjens, G.; Kooi, T.; Bejnordi, B. E.; Setio, A. A. A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sanchez, C. I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. doi:10.1016/j.media.2017.07.005.
  • Dong, J. E.; Zuo, Z. T.; Zhang, J.; Wang, Y. Z. Geographical Discrimination of Boletus Edulis Using Two Dimensional Correlation Spectral or Integrative Two Dimensional Correlation Spectral Image with ResNet. Food Control 2021, 129, 108132. doi:10.1016/j.foodcont.2021.108132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.