543
Views
1
CrossRef citations to date
0
Altmetric
Review

Hyperspectral microscopy- applications of hyperspectral imaging techniques in different fields of science: a review of recent advances

, , &

References

  • Light Microscopy. In Materials Characterization; 2013; pp 1–45. doi:10.1002/9783527670772.ch1
  • More, S. S.; Vince, R. Hyperspectral Imaging Signatures Detect Amyloidopathy in Alzheimer’s Mouse Retina Well before Onset of Cognitive Decline. ACS Chem. Neurosci. 2015, 6, 306–315. doi:10.1021/cn500242z.
  • Wan, X.; Chen, S. Hyperspectral Image Classification Using Improved Multi-Scale Block Local Binary Pattern and Bi-Exponential Edge-Preserving Smoother. Eur J Remote Sens 2023, 56, 2237654. doi:10.1080/22797254.2023.2237654.
  • Al-Kubaisi, M. A.; Shafri, H. Z. M.; Ismail, M. H.; Yusof, M. J. M.; Jahari bin Hashim, S. Attention-Based Multiscale Deep Learning with Unsampled Pixel Utilization for Hyperspectral Image Classification. Geocarto Int 2023, 38, 2231428. doi:10.1080/10106049.2023.2231428.
  • Vibrational Spectroscopy for Molecular Analysis. In Materials Characterization; 2013; pp 283–332. doi:10.1002/9783527670772.ch9
  • Paterova, A. V.; Maniam, S. M.; Yang, H.; Grenci, G.; Krivitsky, L. A. Hyperspectral Infrared Microscopy with Visible Light 2020.
  • Wang, Y.; Li, K.; Xu, L.; Wei, Q.; Wang, F.; Chen, Y. A Depthwise Separable Fully Convolutional ResNet with ConvCRF for Semisupervised Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 2021, 14, 4621–4632. doi:10.1109/JSTARS.2021.3073661
  • Mehta, N.; Sahu, S.; Shaik, S.; Devireddy, R.; Gartia, M. R. Dark-Field Hyperspectral Imaging (DF-HSI) Modalities for Characterization of Single Molecule and Cellular Processes. In Nanophotonics in Biomedical Engineering; Zhao, X., Lu, M., Eds.; Springer Singapore: Singapore, 2021; pp 231–262. doi:10.1007/978-981-15-6137-5_8.
  • Gehm, M. E.; Brady, D. J. High-Throughput Hyperspectral Microscopy. Proc.SPIE 2006, 6090, p 609007. doi:10.1117/12.644828.
  • Gehm, M. E.; Kim, M. S.; Fernandez, C.; Brady, D. J. High-Throughput, Multiplexed Pushbroom Hyperspectral Microscopy. Opt. Express. 2008, 16, 11032–11043. doi:10.1364/OE.16.011032.
  • Conti, M.; Scanferlato, R.; Louka, M.; Sansone, A.; Marzetti, C.; Ferreri, C. Building up Spectral Libraries for Mapping Erythrocytes by Hyperspectral Dark Field Microscopy. Bsi. 2016, 5, 175–184. doi:10.3233/BSI-160133.
  • Zhou, B.; Zhang, X.; Chen, X.; Ren, M.; Feng, Z. HyperRefiner: A Refined Hyperspectral Pansharpening Network Based on the Autoencoder and Self-Attention. Int J Digit Earth 2023, 16, 3268–3294. doi:10.1080/17538947.2023.2246944.
  • Ahmad, M.; Shabbir, S.; Roy, S. K.; Hong, D.; Wu, X.; Yao, J.; Khan, A. M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 2022, 15, 968–999. doi:10.1109/JSTARS.2021.3133021.
  • Fang, J.; Yan, X. Classification of Multi-Modal Remote Sensing Images Based on Knowledge Graph. Int J Remote Sens 2023, 44, 4815–4835. doi:10.1080/01431161.2023.2240032.
  • Lu, G.; Fei, B. Medical Hyperspectral Imaging: A Review. J. Biomed. Opt. 2014, 19, 10901. doi:10.1117/1.jbo.19.1.010901.
  • Stuart, M. B.; McGonigle, A. J. S.; Willmott, J. R. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. Sensors (Basel) 2019, 19, 3071. doi:10.3390/s19143071.
  • Fakhrullin, R.; Nigamatzyanova, L.; Fakhrullina, G. Dark-Field/Hyperspectral Microscopy for Detecting Nanoscale Particles in Environmental Nanotoxicology Research. Sci. Total Environ. 2021, 772, 145478. doi:10.1016/j.scitotenv.2021.145478.
  • Mehta, N.; Mahigir, A.; Veronis, G.; Gartia, M. R. Hyperspectral Dark Field Optical Microscopy for Orientational Imaging of a Single Plasmonic Nanocube Using a Physics-Based Learning Method. Nanoscale Adv. 2022, 4, 4094–4101. doi:10.1039/d2na00469k.
  • Wang, H.; Xiong, W. Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems. Annu. Rev. Phys. Chem. 2021, 72, 279–306. doi:10.1146/annurev-physchem-090519-050510.
  • Piccoli, I.; Torreggiani, A.; Pituello, C.; Pisi, A.; Morari, F.; Francioso, O. Automated Image Analysis and Hyperspectral Imagery with Enhanced Dark Field Microscopy Applied to Biochars Produced at Different Temperatures. Waste Manag. 2020, 105, 457–466. doi:10.1016/j.wasman.2020.02.037.
  • Nakashima, Y.; Hashimoto, D. Proton Transverse Relaxation Times Depending on the Unsaturated Fatty Acids: A Magnetic Resonance Relaxometric Study on Beef Fat Samples. Int J Food Prop 2023, 26, 2201–2211. doi:10.1080/10942912.2023.2244691.
  • Jumper, J.; Hassabis, D. Protein Structure Predictions to Atomic Accuracy with AlphaFold. Nat. Methods. 2022, 19, 11–12. doi:10.1038/s41592-021-01362-6.
  • Xu, M.; Yang, Q.; Xu, L.; Rao, Z.; Cao, D.; Gao, M.; Liu, S. Protein Target Identification and Toxicological Mechanism Investigation of Silver Nanoparticles-Induced Hepatotoxicity by Integrating Proteomic and Metallomic Strategies. Part. Fibre Toxicol. 2019, 16, 46. doi:10.1186/s12989-019-0322-4.
  • Schultz, R. A.; Nielsen, T.; Zavaleta, J. R.; Ruch, R.; Wyatt, R.; Garner, H. R. Hyperspectral Imaging: A Novel Approach for Microscopic Analysis. Cytometry 2001, 43, 239–247. doi:10.1002/1097-0320(20010401)43:4<239::AID-CYTO1056>3.0.CO;2-Z.
  • Zhang, W.; Ji, Z.; Zeng, Z.; Jayapalan, A.; Bagra, B.; Sheardy, A.; He, P.; Lajeunesse, D. R.; Wei, J. Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules 2022, 27, 2437. doi:10.3390/molecules27082437.
  • Oh, E. S.; Heo, C.; Kim, J. S.; Suh, M.; Lee, Y. H.; Kim, J.-M. Hyperspectral Fluorescence Imaging for Cellular Iron Mapping in the in Vitro Model of Parkinson’s Disease. J. Biomed. Opt. 2014, 19, 051207. doi:10.1117/1.JBO.19.5.051207.
  • DeBrosse, M. C.; Comfort, K. K.; Untener, E. A.; Comfort, D. A.; Hussain, S. M. High Aspect Ratio Gold Nanorods Displayed Augmented Cellular Internalization and Surface Chemistry Mediated Cytotoxicity. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4094–4100. doi:10.1016/j.msec.2013.05.056.
  • Jalaber, V.; Del Frari, D.; De Winter, J.; Mehennaoui, K.; Planchon, S.; Choquet, P.; Detrembleur, C.; Moreno-Couranjou, M. Atmospheric Aerosol Assisted Pulsed Plasma Polymerization: An Environmentally Friendly Technique for Tunable Catechol-Bearing Thin Films. Front. Chem. 2019, 7, 183. doi:10.3389/fchem.2019.00183.
  • Cai, H.; Chen, M.; Du, F.; Matthews, S.; Shi, H. Separation and Enrichment of Nanoplastics in Environmental Water Samples via Ultracentrifugation. Water Res. 2021, 203, 117509. doi:10.1016/j.watres.2021.117509.
  • Khan, A.; Vibhute, A. D.; Mali, S.; Patil, C. H. A Systematic Review on Hyperspectral Imaging Technology with a Machine and Deep Learning Methodology for Agricultural Applications. Ecol Inform 2022, 69, 101678. doi:10.1016/j.ecoinf.2022.101678.
  • Liu, S.; Hu, Z.; Zhang, Z.; Zhang, C.; Lu, L. Estimating Canopy Parameters of Winter Wheat at Different Stages Using Hyperspectral Data Combined with Soil Variables. Int J Remote Sens 2023, 44, 4684–4703. doi:10.1080/01431161.2023.2235455.
  • Mafuratidze, P.; Chibarabada, T. P.; Shekede, M. D.; Masocha, M. A New Four-Stage Approach Based on Normalized Vegetation Indices for Detecting and Mapping Sugarcane Hail Damage Using Multispectral Remotely Sensed Data. Geocarto Int 2023, 38, 2245788. doi:10.1080/10106049.2023.2245788.
  • Cheng, M.; Yin, D.; Wu, W.; Cui, N.; Nie, C.; Shi, L.; Liu, S.; Yu, X.; Bai, Y.; Liu, Y.; et al. A Review of Remote Sensing Estimation of Crop Water Productivity: Definition, Methodology, Scale, and Evaluation. Int J Remote Sens 2023, 44, 5033–5068. doi:10.1080/01431161.2023.2240523.
  • Allouni, Z. E.; Høl, P. J.; Cauqui, M. A.; Gjerdet, N. R.; Cimpan, M. R. Role of Physicochemical Characteristics in the Uptake of TiO2 Nanoparticles by Fibroblasts. Toxicol. In Vitro 2012, 26, 469–479. doi:10.1016/j.tiv.2012.01.019.
  • Boyadzhiev, A.; Trevithick-Sutton, C.; Wu, D.; Decan, N.; Bazin, M.; Shah, G. M.; Halappanavar, S. Enhanced Dark-Field Hyperspectral Imaging and Spectral Angle Mapping for Nanomaterial Detection in Consumer Care Products and in Skin following Dermal Exposure. Chem. Res. Toxicol. 2020, 33, 1266–1278. doi:10.1021/acs.chemrestox.0c00090.
  • Ishmukhametov, I.; Batasheva, S.; Fakhrullin, R. Identification of Micro- and Nanoplastics Released from Medical Masks Using Hyperspectral Imaging and Deep Learning. Analyst 2022, 147, 4616–4628. doi:10.1039/d2an01139e.
  • Ilieș, A.; Hodor, N.; Pantea, E.; Ilieș, D. C.; Indrie, L.; Zdrîncă, M.; Iancu, S.; Caciora, T.; Chiriac, A.; Ghergheles, C.; et al. Antibacterial Effect of Eco-Friendly Silver Nanoparticles and Traditional Techniques on Aged Heritage Textile, Investigated by Dark-Field Microscopy. Coatings 2022, 12, 1688. doi:10.3390/coatings12111688.
  • Riggs, R. D.; Chen, I.-H.; Barbaree, J.; Zinner, B.; Sorokulova, I.; Vodyanoy, V. Characterization of Three Foodborne Bacteria Using Hyperspectral Microscopy. FASEB j. 2019, 33, lb299–lb299. doi:10.1096/fasebj.2019.33.1_supplement.lb299.
  • Michael, M.; Phebus, R. K.; Amamcharla, J. Hyperspectral Imaging of Common Foodborne Pathogens for Rapid Identification and Differentiation. Food Sci. Nutr. 2019, 7, 2716–2725. doi:10.1002/fsn3.1131.
  • Pu, H.; Lin, L.; Sun, D.-W. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 853–866. doi:10.1111/1541-4337.12432.
  • Karimi-Shahri, M.; Abbas, A.; and Hashemian, P.; andAlireza, H.; Javid, H. Dr. and The Applications of Epigallocatechin Gallate (EGCG)-Nanogold Conjugate in Cancer Therapy. Nanotechnology 2023, 34, doi:10.1088/1361-6528/acaca3
  • Oladipo, A. O.; Unuofin, J. O.; Iku, S. I. I.; Nkambule, T. T. I.; Mamba, B. B.; Msagati, T. A. M. Nuclear Targeted Multimodal 3D-Bimetallic Au@Pd Nanodendrites Promote Doxorubicin Efficiency in Breast Cancer Therapy. Arabian J. Chem. 2021, 14, 103344. doi:10.1016/j.arabjc.2021.103344.
  • Uhr, J. W.; Huebschman, M. L.; Frenkel, E. P.; Lane, N. L.; Ashfaq, R.; Liu, H.; Rana, D. R.; Cheng, L.; Lin, A. T.; Hughes, G. A.; et al. Molecular Profiling of Individual Tumor Cells by Hyperspectral Microscopic Imaging. Transl. Res. 2012, 159, 366–375. doi:10.1016/j.trsl.2011.08.003.
  • Martin, M. E.; Wabuyele, M. B.; Chen, K.; Kasili, P.; Panjehpour, M.; Phan, M.; Overholt, B.; Cunningham, G.; Wilson, D.; Denovo, R. C.; et al. Development of an Advanced Hyperspectral Imaging (HSI) System with Applications for Cancer Detection. Ann. Biomed. Eng. 2006, 34, 1061–1068. doi:10.1007/s10439-006-9121-9.
  • Akbari, H.; Uto, K.; Kosugi, Y.; Kojima, K.; Tanaka, N. Cancer Detection Using Infrared Hyperspectral Imaging. Cancer Sci. 2011, 102, 852–857. doi:10.1111/j.1349-7006.2011.01849.x.
  • Akbari, H.; Halig, L. V.; Schuster, D. M.; Osunkoya, A.; Master, V.; Nieh, P. T.; Chen, G. Z.; Fei, B. Hyperspectral Imaging and Quantitative Analysis for Prostate Cancer Detection. J. Biomed. Opt. 2012, 17, 076005. doi:10.1117/1.jbo.17.7.076005.
  • Benavides, J.; Chang, S.; Park, S.; Richards-Kortum, R.; Mackinnon, N.; MacAulay, C.; Milbourne, A.; Malpica, A.; Follen, M. Multispectral Digital Colposcopy for in Vivo Detection of Cervical Cancer. Opt. Express. 2003, 11, 1223–1236. doi:10.1364/OE.11.001223.
  • Panasyuk, S. V.; Yang, S.; Faller, D. V.; Ngo, D.; Lew, R. A.; Freeman, J. E.; Rogers, A. E. Medical Hyperspectral Imaging to Facilitate Residual Tumor Identification during Surgery. Cancer Biol. Ther. 2007, 6, 439–446. doi:10.4161/cbt.6.3.4018.
  • Wen, Y.; Liu, W.; David, B.; Ren, W.; Irudayaraj, J. Multifunctional Oxygenated Particles for Targeted Cancer Drug Delivery and Evaluation with Darkfield Hyperspectral Imaging. ACS Omega. 2022, 7, 41275–41283. doi:10.1021/acsomega.2c04953.
  • Patskovsky, S.; Bergeron, E.; Rioux, D.; Simard, M.; Meunier, M. Hyperspectral Reflected Light Microscopy of Plasmonic Au/Ag Alloy Nanoparticles Incubated as Multiplex Chromatic Biomarkers with Cancer Cells. Analyst 2014, 139, 5247–5253. doi:10.1039/c4an01063a.
  • Guo, W.; Niu, M.; Chen, Z.; Wu, Q.; Tan, L.; Ren, X.; Fu, C.; Ren, J.; Gu, D.; Meng, X. Programmed Upregulation of HSP70 by Metal-Organic Frameworks Nanoamplifier for Enhanced Microwave Thermal-Immunotherapy. Adv. Healthcare Materials 2022, 11, 2201441. doi:10.1002/adhm.202201441.
  • Yajan, P.; Yulianto, N.; Saba, M.; Dharmawan, A. B.; Sousa de Almeida, M.; Taladriz-Blanco, P.; Wasisto, H. S.; Rothen-Rutishauser, B.; Petri-Fink, A.; Septiadi, D. Intracellular Gold Nanoparticles Influence Light Scattering and Facilitate Amplified Spontaneous Emission Generation. J. Colloid Interface Sci. 2022, 622, 914–923. doi:10.1016/j.jcis.2022.04.149.
  • Shin, C. S.; Veettil, R. A.; Sakthivel, T. S.; Adumbumkulath, A.; Lee, R.; Zaheer, M.; Kolanthai, E.; Seal, S.; Acharya, G. Noninvasive Delivery of Self-Regenerating Cerium Oxide Nanoparticles to Modulate Oxidative Stress in the Retina. ACS Appl. Bio Mater. 2022, 5, 5816–5825. doi:10.1021/acsabm.2c00809.
  • Zheng, L.; Wen, Y.; Ren, W.; Duan, H.; Lin, J.; Irudayaraj, J. Hyperspectral Dark-Field Microscopy for Pathogen Detection Based on Spectral Angle Mapping. Sens Actuators B Chem 2022, 367, 132042. doi:10.1016/j.snb.2022.132042.
  • Sanpui, P.; Zheng, X.; Loeb, J. C.; Bisesi, J. H.; Khan, I. A.; Afrooz, N. R. M. N.; Liu, K.; Badireddy, R. R.; Wiesner, M. R.; Ferguson, P. L.; et al. Single-Walled Carbon Nanotubes Increase Pandemic Influenza a H1N1 Virus Infectivity of Lung Epithelial Cells. Part. Fibre Toxicol. 2014, 11, 66. doi:10.1186/s12989-014-0066-0.
  • Ilves, M.; Palomäki, J.; Vippola, M.; Lehto, M.; Savolainen, K.; Savinko, T.; Alenius, H. Topically Applied ZnO Nanoparticles Suppress Allergen Induced Skin Inflammation but Induce Vigorous IgE Production in the Atopic Dermatitis Mouse Model. Part. Fibre Toxicol. 2014, 11, 38. doi:10.1186/s12989-014-0038-4.
  • Silva, R. N.; Botas, A. M. P.; Brandão, D.; Bastos, V.; Oliveira, H.; Debasu, M. L.; Ferreira, R. A. S.; Brites, C. D. S.; Carlos, L. D. 3D Sub-Cellular Localization of Upconverting Nanoparticles through Hyperspectral Microscopy. Physica B Condens Matter 2022, 626, 413470. doi:10.1016/j.physb.2021.413470.
  • Diehn, S.; Schlaad, H.; Kneipp, J. Multivariate Imaging for Fast Evaluation of in Situ Dark Field Microscopy Hyperspectral Data. Molecules 2022, 27, 5146. doi:10.3390/molecules27165146.
  • Wang, X.; Cui, Y.; Irudayaraj, J. Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging. ACS Nano. 2015, 9, 11924–11932. doi:10.1021/acsnano.5b04451
  • Cheng, Z.; Liang, X.; Liang, S.; Yin, N.; Faiola, F. A Human Embryonic Stem Cell-Based in Vitro Model Revealed That Ultrafine Carbon Particles May Cause Skin Inflammation and Psoriasis. J. Environ. Sci. 2020, 87, 194–204. doi:10.1016/j.jes.2019.06.016.
  • Smith, D.; Neu-Baker, N. M.; Eastlake, A. C.; Zurbenko, I. G.; Brenner, S. A. Evaluation of Classification Methods for Identifying Multiwalled Carbon Nanotubes Collected on Mixed Cellulose Ester Filter Media. J. Microsc. 2021, 283, 102–116. doi:10.1111/jmi.13012.
  • Gosavi, D.; Cheatham, B.; Sztuba-Solinska, J. Label-Free Detection of Human Coronaviruses in Infected Cells Using Enhanced Darkfield Hyperspectral Microscopy (EDHM). J Imaging 2022, 8, 24. doi:10.3390/jimaging8020024.
  • Wonner, K.; Rurainsky, C.; Tschulik, K. Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed with Hyperspectral Dark-Field Microscopy. Front. Chem. 2019, 7, 912. doi:10.3389/fchem.2019.00912.
  • Maysinger, D.; Sanader Maršić, Ž.; Gran, E. R.; Shobo, A.; MacAiran, J. R.; Zhang, I.; Perić Bakulić, M.; Antoine, R.; Multhaup, G.; Bonačić-Kouteckỳ, V. Insights into the Impact of Gold Nanoclusters Au10SG10on Human Microglia. ACS Chem. Neurosci. 2022, 13, 464–476. doi:10.1021/acschemneuro.1c00621.
  • Mahdieh, Z.; Postma, B.; Herritt, L. A.; Hamilton, R. F.; Harkema, J. R.; Holian, A. Hyperspectral Microscopy of Subcutaneously Released Silver Nanoparticles Reveals Sex Differences in Drug Distribution. Micron 2022, 153, 103193. doi:10.1016/j.micron.2021.103193.
  • Ishmukhametov, I.; Fakhrullin, R. Dark-Field Hyperspectral Microscopy for Carbon Nanotubes Bioimaging. Applied Sciences 2021, 11, 12132. doi:10.3390/app112412132.
  • Liu, Y.; Naumenko, E.; Akhatova, F.; Zou, Q.; Fakhrullin, R.; Yan, X. Self-Assembled Peptide Nanoparticles for Enhanced Dark-Field Hyperspectral Imaging at the Cellular and Invertebrate Level. Chemical Engineering Journal 2021, 424, 130348. doi:10.1016/j.cej.2021.130348.
  • Miclea, L. C.; Mihailescu, M.; Tarba, N.; Brezoiu, A. M.; Sandu, A. M.; Mitran, R. A.; Berger, D.; Matei, C.; Moisescu, M. G.; Savopol, T. Evaluation of Intracellular Distribution of Folate Functionalized Silica Nanoparticles Using Fluorescence and Hyperspectral Enhanced Dark Field Microscopy. Nanoscale 2022, 14, 12744–12756. doi:10.1039/d2nr01821g.
  • Oddo, A.; Morozesk, M.; Lombi, E.; Schmidt, T. B.; Tong, Z.; Voelcker, N. H. Risk Assessment on-a-Chip: A Cell-Based Microfluidic Device for Immunotoxicity Screening. Nanoscale Adv. 2021, 3, 682–691. doi:10.1039/d0na00857e.
  • Nazir, A.; AlDhaheri, M.; Mudgil, P.; Marpu, P.; Kamal-Eldin, A. Hyperspectral Imaging Based Kinetic Approach to Assess Quality Deterioration in Fresh Mushrooms (Agaricus Bisporus) during Postharvest Storage. Food Control 2022, 131, 108298. doi:10.1016/j.foodcont.2021.108298.
  • Faltynkova, A.; Johnsen, G.; Wagner, M. Hyperspectral Imaging as an Emerging Tool to Analyze Microplastics: A Systematic Review and Recommendations for Future Development. Micropl&Nanopl. 2021, 1, 13. doi:10.1186/s43591-021-00014-y.
  • Mehennaoui, K.; Cambier, S.; Minguez, L.; Serchi, T.; Guérold, F.; Gutleb, A. C.; Giamberini, L. Sub-Chronic Effects of AgNPs and AuNPs on Gammarus Fossarum (Crustacea Amphipoda): from Molecular to Behavioural Responses. Ecotoxicol. Environ. Saf. 2021, 210, 111775. doi:10.1016/j.ecoenv.2020.111775.
  • Théoret, T.; Wilkinson, K. J. Evaluation of Enhanced Darkfield Microscopy and Hyperspectral Analysis to Analyse the Fate of Silver Nanoparticles in Wastewaters. Anal. Methods 2017, 9, 3920–3928. doi:10.1039/c7ay00615b.
  • Mattsson, K.; Johnson, E. V.; Malmendal, A.; Linse, S.; Hansson, L. A.; Cedervall, T. Brain Damage and Behavioural Disorders in Fish Induced by Plastic Nanoparticles Delivered through the Food Chain. Sci. Rep. 2017, 7, 11452. doi:10.1038/s41598-017-10813-0.
  • Botha, T. L.; Boodhia, K.; Wepener, V. Adsorption, Uptake and Distribution of Gold Nanoparticles in Daphnia Magna following Long Term Exposure. Aquat. Toxicol. 2016, 170, 104–111. doi:10.1016/j.aquatox.2015.11.022.
  • Liu, Z.; Cai, C.; Wu, W.; Cai, X.; Qi, Z. M. Spatially Resolved Spectroscopic Characterization of Nanostructured Films by Hyperspectral Dark-Field Microscopy. ACS Appl. Mater. Interfaces. 2021, 13, 43186–43196. doi:10.1021/acsami.1c07840.
  • Tahiliani, S. Hyperspectral Imaging System as Rapid Characterization Tool for Nanomaterials Used in Semiconductor Manufacturing.
  • Roxbury, D.; Jena, P. V.; Williams, R. M.; Enyedi, B.; Niethammer, P.; Marcet, S.; Verhaegen, M.; Blais-Ouellette, S.; Heller, D. A. Hyperspectral Microscopy of near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging. Sci. Rep. 2015, 5, 14167. doi:10.1038/srep14167.
  • Rahman, L.; Mallach, G.; Kulka, R.; Halappanavar, S. Microplastics and Nanoplastics Science: Collecting and Characterizing Airborne Microplastics in Fine Particulate Matter. Nanotoxicology 2021, 15, 1253–1278. doi:10.1080/17435390.2021.2018065.
  • Roth, G. A.; Tahiliani, S.; Neu-Baker, N. M.; Brenner, S. A. Hyperspectral Microscopy as an Analytical Tool for Nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. Wiley-Blackwell, 2015, pp 565–579. doi:10.1002/wnan.1330.
  • Gillois, K.; Stoffels, C.; Leveque, M.; Fourquaux, I.; Blesson, J.; Mils, V.; Cambier, S.; Vignard, J.; Terrisse, H.; Mirey, G.; et al. Repeated Exposure of Caco-2 versus Caco-2/HT29-MTX Intestinal Cell Models to (Nano)Silver in Vitro: Comparison of Two Commercially Available Colloidal Silver Products. Sci. Total Environ. 2021, 754, 142324. doi:10.1016/j.scitotenv.2020.142324.
  • Bromma, K.; Cicon, L.; Bannister, A.; Rieck, K.; Beckham, W.; Chithrani, D. 2019 Optimization of Uptake and Transport of Gold Nanoparticles in Two-Dimensional and Three-Dimensional in-Vitro Cell Models. In SPIE-Intl Soc Optical Eng, p 29. doi:10.1117/12.2508934.
  • Martínez, E. D.; Brites, C. D. S.; Urbano, R. R.; Rettori, C.; Carlos, L. D. Hyperspectral Imaging Thermometry Assisted by Upconverting Nanoparticles: Experimental Artifacts and Accuracy. Physica B Condens Matter 2022, 629, 413639. doi:10.1016/j.physb.2021.413639.
  • Trovatello, C.; Genco, A.; Cruciano, C.; Ardini, B.; Li, Q.; Zhu, X.; Valentini, G.; Cerullo, G.; Manzoni, C. Hyperspectral Microscopy of Two-Dimensional Semiconductors. Optical Materials: X 2022, 14, 100145. doi:10.1016/j.omx.2022.100145.
  • Idelchik, M.; del, P. S.; Neu-Baker, N. M.; Chandrasekaran, A.; Friedman, A. J.; Frame, M. D.; Brenner, S. A. Relative Quantitation of Metal Oxide Nanoparticles in a Cutaneous Exposure Model Using Enhanced Darkfield Microscopy and Hyperspectral Mapping. NanoImpact 2016, 3-4, 12–21. doi:10.1016/j.impact.2016.09.006.
  • Austin, C. A.; Hinkley, G. K.; Mishra, A. R.; Zhang, Q.; Umbreit, T. H.; Betz, M. W. E.; Wildt, B.; Casey, B. J.; Francke-Carroll, S.; Hussain, S. M.; et al. Distribution and Accumulation of 10 Nm Silver Nanoparticles in Maternal Tissues and Visceral Yolk Sac of Pregnant Mice, and a Potential Effect on Embryo Growth. Nanotoxicology 2016, 10, 654–661. doi:10.3109/17435390.2015.1107143.
  • Avellan, A.; Yun, J.; Zhang, Y.; Spielman-Sun, E.; Unrine, J. M.; Thieme, J.; Li, J.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano. 2019, 13, 5291–5305. doi:10.1021/acsnano.8b09781.
  • Zhang, Y.; Fu, L.; Jeon, S. J.; Yan, J.; Giraldo, J. P.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V. Star Polymers with Designed Reactive Oxygen Species Scavenging and Agent Delivery Functionality Promote Plant Stress Tolerance. ACS Nano. 2022, 16, 4467–4478. doi:10.1021/acsnano.1c10828.
  • Badireddy, A. R.; Wiesner, M. R.; Liu, J. Detection, Characterization, and Abundance of Engineered Nanoparticles in Complex Waters by Hyperspectral Imagery with Enhanced Darkfield Microscopy. Environ. Sci. Technol. 2012, 46, 10081–10088. doi:10.1021/es204140s.
  • Wu, T.; Brant, J. A. Enhancing the Dissolution of Nano-Silver Using a Multidirectional Magnetic Field in Water Systems. Environ Eng Sci 2021, 38, 936–943. doi:10.1089/ees.2021.0100.
  • Chen, L.; Pan, J.; Zhang, Z. A Novel Cloud Detection Method Based on Segmentation Prior and Multiple Features for Sentinel-2 Images. Int J Remote Sens 2023, 44, 5101–5120. doi:10.1080/01431161.2023.2243022.
  • Pilorget, C.; Bibring, J.-P. NIR Reflectance Hyperspectral Microscopy for Planetary Science: Application to the MicrOmega Instrument. Planet Space Sci 2013, 76, 42–52. doi:10.1016/j.pss.2012.11.004.
  • Gomez, R. B.; Del Re, N. 2005 Hyperspectral Imaging: Gem Identification and Authentication. SPIE-Intl Soc Optical Eng,; p 43. doi:10.1117/12.579302.
  • Kong, S. G.; Martin, M. E.; Vo-Dinh, T. Hyperspectral Fluorescence Imaging for Mouse Skin Tumor Detection. ETRI Journal 2006, 28, 770–776. doi:10.4218/etrij.06.0106.0061.
  • Rahman, L.; Williams, A.; Gelda, K.; Nikota, J.; Wu, D.; Vogel, U.; Halappanavar, S. 21st Century Tools for Nanotoxicology: Transcriptomic Biomarker Panel and Precision-Cut Lung Slice Organ Mimic System for the Assessment of Nanomaterial-Induced Lung Fibrosis. Small 2020, 16, e2000272. doi:10.1002/smll.202000272.
  • Rzigalinski, B. A.; Giovinco, H. M.; Cheatham, B. J. Cerium Oxide Nanoparticles Improve Lifespan of Stored Blood. Mil. Med. 2020, 185, 103–109. doi:10.1093/milmed/usz210.
  • Avci, C.; De Marco, M. L.; Byun, C.; Perrin, J.; Scheel, M.; Boissière, C.; Faustini, M. Metal–Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. Adv. Mater. 2021, 33, 2104450. doi:10.1002/adma.202104450.
  • Peña, M. D. P. S.; Gottipati, A.; Tahiliani, S.; Neu-Baker, N. M.; Frame, M. D.; Friedman, A. J.; Brenner, S. A. Hyperspectral Imaging of Nanoparticles in Biological Samples: Simultaneous Visualization and Elemental Identification. Microsc. Res. Tech. 2016, 79, 349–358. doi:10.1002/jemt.22637.
  • ]. Kim, S.; Gates, B. L.; Leonard, B. C.; Gragg, M. M.; Pinkerton, K. E.; Van Winkle, L. S.; Murphy, C. J.; Pyrgiotakis, G.; Zhang, Z.; Demokritou, P.; et al. Engineered Metal Oxide Nanomaterials Inhibit Corneal Epithelial Wound Healing in Vitro and in Vivo. NanoImpact 2020, 17, 100198. doi:10.1016/j.impact.2019.100198.
  • Vo-Dinh, T. A Hyperspectral Imaging System for in Vivo Optical Diagnostics. IEEE Eng. Med. Biol. Mag. 2004, 23, 40–49. doi:10.1109/MEMB.2004.1360407.
  • Riggs, R.; Chen, I.-H.; Sorokulova, I.; Vodyanoy, V.; Riggs, R. D.; Pustovyy, O.; Zinner, B. Hyperspectral Imaging of a Single Bacterial Cell Primo Vascular System View Project Biological Sample Preservation without Refrigeration View Project Hyperspectral Imaging of a Single Bacterial Cell. Food Public Health 2020, 2020, 19–25. doi:10.5923/j.fph.20201001.03.
  • Arnold, M. C.; Badireddy, A. R.; Wiesner, M. R.; Di Giulio, R. T.; Meyer, J. N. Cerium Oxide Nanoparticles Are More Toxic than Equimolar Bulk Cerium Oxide in Caenorhabditis Elegans. Arch. Environ. Contam. Toxicol. 2013, 65, 224–233. doi:10.1007/s00244-013-9905-5.
  • Rai, P. K.; Kumar, V.; Sonne, C.; Lee, S. S.; Brown, R. J. C.; Kim, K.-H. Progress, Prospects, and Challenges in Standardization of Sampling and Analysis of Micro- and Nano-Plastics in the Environment. J Clean Prod 2021, 325, 129321. doi:10.1016/j.jclepro.2021.129321.
  • Vales, G.; Suhonen, S.; Siivola, K. M.; Savolainen, K. M.; Catalán, J.; Norppa, H. Size, Surface Functionalization, and Genotoxicity of Gold Nanoparticles in Vitro. Nanomaterials (Basel) 2020, 10, 271. doi:10.3390/nano10020271.
  • Ye, H.; Shi, H.; Wang, X.; Sun, E.; Li, C.; An, Y.; Wu, S.; Xiong, W.; Li, Z.; Landgraf, J. Improving Atmospheric CO2 Retrieval Based on the Collaborative Use of Greenhouse Gases Monitoring Instrument and Directional Polarimetric Camera Sensors on Chinese Hyperspectral Satellite GF5-02. Geo-Spatial Information Science 2023, 1–13. doi:10.1080/10095020.2023.2238773.
  • Gao, L.; Kester, R. T.; Hagen, N.; Tkaczyk, T. S. Snapshot Image Mapping Spectrometer (IMS) with High Sampling Density for Hyperspectral Microscopy. Opt. Express. 2010, 18, 14330–14344. doi:10.1364/OE.18.014330.
  • Wilcox, A. M. Silver Nanoparticles: An Effective Antibacterial Agent against Gram-Negative Bacteria, 2019.
  • Xu, Z.; Jiang, Y.; Ji, J.; Forsberg, E.; Li, Y.; He, S. Classification, Identification, and Growth Stage Estimation of Microalgae Based on Transmission Hyperspectral Microscopic Imaging and Machine Learning. Opt. Express. 2020, 28, 30686–30700. doi:10.1364/OE.406036.
  • Chong, J. W. R.; Tang, D. Y. Y.; Leong, H. Y.; Khoo, K. S.; Show, P. L.; Chew, K. W. Bridging Artificial Intelligence and Fucoxanthin for the Recovery and Quantification from Microalgae. Bioengineered 2023, 14, 2244232. doi:10.1080/21655979.2023.2244232.
  • Annamdevula, N. S.; Sweat, B.; Favreau, P.; Lindsey, A. S.; Alvarez, D. F.; Rich, T. C.; Leavesley, S. J. An Approach for Characterizing and Comparing Hyperspectral Microscopy Systems. Sensors (Basel) 2013, 13, 9267–9293. doi:10.3390/s130709267.
  • Sopaj, L. Fabrication and Characterization of Novel AgNPs Functionalized Fabrication and Characterization of Novel AgNPs Functionalized with Chlorothymol (C@AgNPs) with Chlorothymol (C@AgNPs).
  • Caballero, D.; Calvini, R.; Amigo, J. M. Chapter 3.3 - Hyperspectral Imaging in Crop Fields: Precision Agriculture. In Data Handling in Science and Technology; Amigo, J. M., Ed.; Elsevier, 2019; Vol. 32, pp 453–473. doi:10.1016/B978-0-444-63977-6.00018-3.
  • Muñoz-Gómez, S. A.; Kreutz, M.; Hess, S. A Microbial Eukaryote with a Unique Combination of Purple Bacteria and Green Algae as Endosymbionts. Sci Adv 2021, 7, eabg4102. doi:10.1126/sciadv.abg4102.
  • Ye, Y.; Landa, E. N.; Cantu, J. M.; Hernandez-Viezcas, J. A.; Nair, A. N.; Lee, W. Y.; Sreenivasan, S. T.; Gardea-Torresdey, J. L. A Double-Edged Effect of Manganese-Doped Graphene Quantum Dots on Salt-Stressed Capsicum Annuum L. Sci. Total Environ. 2022, 844, 157160. doi:10.1016/J.SCITOTENV.2022.157160.
  • Mehta, N. S.; Sahu, S.; Shaik, S.; Hasan, S. M.; Devireddy, R.; Gartia, M. R. 2019 Dark-Field Hyperspectral Imaging of Single Plasmonic Gold Nanorods and Their Scattering Characteristics in Complex Biological Environments. In SPIE-Intl Soc Optical Eng, p 44. doi:10.1117/12.2510836.
  • Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline Extraction Using Remote Sensing: A Review. GIsci Remote Sens 2023, 60, 2243671. doi:10.1080/15481603.2023.2243671.
  • Lankone, R. S.; Ruggiero, E.; Goodwin, D. G.; Vilsmeier, K.; Mueller, P.; Pulbere, S.; Challis, K.; Bi, Y.; Westerhoff, P.; Ranville, J.; et al. Evaluating Performance, Degradation, and Release Behavior of a Nanoform Pigmented Coating after Natural and Accelerated Weathering. NanoImpact 2020, 17, 100199. doi:10.1016/j.impact.2019.100199.
  • Neu-Baker, N. M.; Dozier, A. K.; Eastlake, A. C.; Brenner, S. A. Evaluation of Enhanced Darkfield Microscopy and Hyperspectral Imaging for Rapid Screening of TiO2 and SiO2 Nanoscale Particles Captured on Filter Media. Microsc. Res. Tech. 2021, 84, 2968–2976. doi:10.1002/jemt.23856.
  • Wang, Y.; Fu, W.; Shen, Y.; Badireddy, A. R.; Zhang, W.; Huang, H. Hyperspectral Imaging Microscopy of Acetaminophen Adsorbed on Multiwalled Carbon Nanotubes. Langmuir 2018, 34, 13210–13218. doi:10.1021/acs.langmuir.8b02939.
  • Digigow, R. G.; Vanhecke, D.; Rothen-Rutishauser, B.; Clift, M. J. D.; Petri-Fink, A. Uptake and Intracellular Fate of Peptide Surface-Functionalized Silica Hybrid Magnetic Nanoparticles in Vitro. Part. Part. Syst. Charact. 2015, 32, 188–196. doi:10.1002/ppsc.201400152.
  • Yao, Z.; Sánchez-Lengeling, B.; Bobbitt, N. S.; Bucior, B. J.; Kumar, S. G. H.; Collins, S. P.; Burns, T.; Woo, T. K.; Farha, O. K.; Snurr, R. Q.; et al. Inverse Design of Nanoporous Crystalline Reticular Materials with Deep Generative Models. Nat. Mach. Intell. 2021, 3, 76–86. doi:10.1038/s42256-020-00271-1.
  • Xu, J.; Liang, S.; He, T.; Ma, H.; Zhang, Y.; Zhang, G.; Liang, H. Variability and Trends in Land Surface Longwave Radiation Fluxes from Six Satellite and Reanalysis Products. Int J Digit Earth 2023, 16, 2912–2940. doi:10.1080/17538947.2023.2239795.
  • Tu, Z.; Yang, X.; Fu, Z.; Gao, S.; Yang, G.; Jiang, L.; Wu, M.; Wang, S. Concatenating Wide-Parallax Satellite Orthoimages for Simplified Regional Mapping via Utilizing Line-Point Consistency. Int J Remote Sens 2023, 44, 4857–4882. doi:10.1080/01431161.2023.2240033.
  • Ayling, B.; Huntington, J.; Smith, B.; Edwards, D. Hyperspectral Logging of Middle Cambrian Marine Sediments with Hydrocarbon Prospectivity: A Case Study from the Southern Georgina Basin, Northern Australia. Aust. J. Earth Sci. 2016, 63, 1–17. doi:10.1080/08120099.2016.1204625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.