169
Views
0
CrossRef citations to date
0
Altmetric
Review

Integration of infrared spectroscopy and forensic entomology: a review of three research directions

&

References

  • Carmo, A.; Carneiro, L.; Azevedo, W.; Alencar, J.; Aguiar, V. Biological Response of Chrysomya Putoria (Wiedemann, 1818) (Diptera: Calliphoridae) Pupae after Submersion in Freshwater. J. Med. Entomol. 2022, 59, 1177–1181. DOI: 10.1093/jme/tjac013.
  • Catts, E. P., and Goff, M. L. Forensic Entomology in Criminal Investigations. Annu. Rev. Entomol. 1992, 37, 253–272. DOI: 10.1146/annurev.en.37.010192.001345.
  • Greenberg, B. Flies as Forensic Indicators. J. Med. Entomol. 1991, 28, 565–577. DOI: 10.1093/jmedent/28.5.565.
  • Amendt, J.; Campobasso, C. P.; Gaudry, E.; Reiter, C.; LeBlanc, H. N.; J. R. Hall, M.; European Association for Forensic Entomology. Best Practice in Forensic Entomology—Standards and Guidelines. Int. J. Legal Med. 2007, 121, 90–104. DOI: 10.1007/s00414-006-0086-x.
  • Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.; Marini, F. Determination of Insect Infestation on Stored Rice by near Infrared (NIR) Spectroscopy. Microchem. J. 2019, 145, 252–258. DOI: 10.1016/j.microc.2018.10.049.
  • Benecke, M. A Brief History of Forensic Entomology. Forensic Sci. Int. 2001, 120, 2–14. DOI: 10.1016/S0379-0738(01)00409-1.
  • Hodecek, J.; Jakubec, P. Spatio-Temporal Distribution and Habitat Preference of Necrophagous Calliphoridae Based on 160 Real Cases from Switzerland. Int. J. Legal Med. 2022, 136, 923–934. DOI: 10.1007/s00414-021-02769-8.
  • Moore, H.; Butcher, J.; Day, C.; Drijfhout, F. Adult Fly Age Estimations Using Cuticular Hydrocarbons and Artificial Neural Networks in Forensically Important Calliphoridae Species. Forensic Sci. Int. 2017, 280, 233–244. DOI: 10.1016/j.forsciint.2017.10.001.
  • Fischnaller, S.; Dowell, F. E.; Lusser, A.; Schlick-Steiner, B. C.; Steiner, F. M. Non-Destructive Species Identification of Drosophila Obscura and D. subobscura (Diptera) Using near-Infrared Spectroscopy. Fly (Austin). 2012, 6, 284–289. DOI: 10.4161/fly.21535.
  • Chen, X.; Li, J.; Li, T.; Liu, H.; Wang, Y. Application of Infrared Spectroscopy Combined with Chemometrics in Mushroom. Appl. Spectrosc. Rev. 2023, 58, 318–345. DOI: 10.1080/05704928.2021.1994415.
  • Silva, H. K. T. D. A.; Barbosa, T. M.; Santos, M. C. D.; Jales, J. T.; De Araújo, A. M. U.; Morais, C. L. M.; De Lima, L. A. S.; Bicudo, T. C.; Gama, R. A.; Marinho, P. A.; et al. Detection of Terbufos in cases of Intoxication by Means of Entomotoxicological Analysis Using ATR-FTIR Spectroscopy Combined with Chemometrics. Acta Trop. 2023, 238, 106779. DOI: 10.1016/j.actatropica.2022.106779.
  • Fakayode, S.; Baker, G.; Bwambok, D.; Bhawawet, N.; Elzey, B.; Siraj, N.; Macchi, S.; Pollard, D.; Perez, R.; Duncan, A.; et al. Molecular (Raman, NIR, and FTIR) Spectroscopy and Multivariate Analysis in Consumable Products Analysis. Appl. Spectrosc. Rev. 2020, 55, 647–723. DOI: 10.1080/05704928.2019.1631176.
  • Ozaki, Y. Near-Infrared Spectroscopy – Its Versatility in Analytical Chemistry. Anal. Sci. 2012, 28, 545–563. DOI: 10.2116/analsci.28.545.
  • Coppey, F.; Bécue, A.; Sacré, P.-Y.; Ziemons, E. M.; Hubert, P.; Esseiva, P. Providing Illicit Drugs Results in Five Seconds Using Ultra-Portable NIR Technology: An Opportunity for Forensic Laboratories to Cope with the Trend toward the Decentralization of Forensic Capabilities. Forensic Sci. Int. 2020, 317, 110498. DOI: 10.1016/j.forsciint.2020.110498.
  • Pu, Y.; Pérez-Marín, D.; O'Shea, N.; Garrido-Varo, A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods. 2021, 10, 2377. DOI: 10.3390/foods10102377.
  • Kranenburg, R. F.; Ramaker, H.-J.; van Asten, A. C. On-Site Forensic Analysis of Colored Seized Materials: Detection of Brown Heroin and MDMA-Tablets by a Portable NIR Spectrometer. Drug Test. Anal. 2022, 14, 1762–1772. DOI: 10.1002/dta.3356.
  • Roychoudhury, P.; Harvey, L.; McNeil, B. The Potential of Mid Infrared Spectroscopy (MIRS) for Real Time Bioprocess Monitoring. Anal. Chim. Acta. 2006, 571, 159–166. DOI: 10.1016/j.aca.2006.04.086.
  • Acha, V.; Meurens, M.; Naveau, H.; Agathos, S. N. ATR-FTIR Sensor Development for Continuous on-Line Monitoring of Chlorinated Aliphatic Hydrocarbons in a Fixed-Bed Bioreactor. Biotechnol. Bioeng. 2000, 68, 473–487. DOI: 10.1002/(sici)1097-0290(20000605)68:5<473::aid-bit1>3.0.co;2-8.
  • Rhiel, M. H.; Amrhein, M. I.; Marison, I. W.; von Stockar, U. The Influence of Correlated Calibration Samples on the Prediction Performance of Multivariate Models Based on Mid-Infrared Spectra of Animal Cell Cultures. Anal. Chem. 2002, 74, 5227–5236. DOI: 10.1021/ac020165l.
  • Bel’skaya, L. Use of IR Spectroscopy in Cancer Diagnosis. A Review. J. Appl. Spectrosc. 2019, 86, 187–205. DOI: 10.1007/s10812-019-00800-w.
  • Manzoor, M.; Hussain, A.; Naumovski, N.; Ranjha, M.; Ahmad, N.; Karrar, E.; Xu, B.; Ibrahim, S. A. Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products. Front. Nutr. 2022, 9, 901342. DOI: 10.3389/fnut.2022.901342.
  • Hashimoto, A.; Kameoka, T. Applications of Infrared Spectroscopy to Biochemical, Food, and Agricultural Processes. Appl. Spectrosc. Rev. 2008, 43, 416–451. DOI: 10.1080/05704920802108131.
  • Du, C.; Zhou, J. Application of Infrared Photoacoustic Spectroscopy in Soil Analysis. Appl. Spectrosc. Rev. 2011, 46, 405–422. DOI: 10.1080/05704928.2011.570837.
  • Johnson, J. B.; Walsh, K. B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules. 2023, 28, 3215. DOI: 10.3390/molecules28073215.
  • Liu, D.; Zeng, X.-A.; Sun, D.-W. NIR Spectroscopy and Imaging Techniques for Evaluation of Fish Quality—A Review. Appl. Spectrosc. Rev. 2013, 48, 609–628. DOI: 10.1080/05704928.2013.775579.
  • Calero, A. M.; Muñoz, E.; Pérez-Marin, D.; Riccioli, C.; Pérez, L.; Garrido-Varo, A. Evolution of Frying Oil Quality Using Fourier Transform near-Infrared (FT-NIR) Spectroscopy. Appl. Spectrosc. 2018, 72, 1001–1013. DOI: 10.1177/0003702818764125.
  • Fang, S.; Cui, R.; Wang, Y.; Zhao, Y.; Yu, K.; Jiang, A. Application of Multiple Spectral Systems for the Tree Disease Detection: A Review. Appl. Spectrosc. Rev. 2023, 58, 83–109. DOI: 10.1080/05704928.2021.1930552.
  • Jansson, M.; Kogler, M.; Horkko, S.; Ala-Kokko, T.; Rieppo, L. Vibrational Spectroscopy and Its Future Applications in Microbiology. Appl. Spectrosc. Rev. 2023, 58, 132–158. DOI: 10.1080/05704928.2021.1942894.
  • Wang, Y.; Xiang, J.; Tang, Y.; Chen, W.; Xu, Y. A Review of the Application of Near-Infrared Spectroscopy (NIRS) in Forestry. Appl. Spectrosc. Rev. 2022, 57, 300–317. DOI: 10.1080/05704928.2021.1875481.
  • Refaat, A.; Kamel, G. Synchrotron Radiation Infrared Microspectroscopy: Insights on Biomedicine. Appl. Spectrosc. Rev. 2023, 58, 525–544. DOI: 10.1080/05704928.2022.2052308.
  • Dyrby, M.; Engelsen, S. B.; Nørgaard, L.; Bruhn, M.; Lundsberg-Nielsen, L. Chemometric Quantitation of the Active Substance (Containing C≡N) in a Pharmaceutical Tablet Using Near-Infrared (NIR) Transmittance and NIR FT-Raman Spectra. Appl Spectrosc. 2002, 56, 579–585. DOI: 10.1366/0003702021955358.
  • Sparén, A.; Hartman, M.; Fransson, M.; Johansson, J.; Svensson, O. Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets Using Transmission Raman and Near-Infrared (NIR) Spectroscopy. Appl. Spectrosc. 2015, 69, 580–589. DOI: 10.1366/14-07645.
  • Fakayode, S. O.; Lisse, C.; Medawala, W.; Brady, P. N.; Bwambok, D. K.; Anum, D.; Alonge, T.; Taylor, M. E.; Baker, G. A.; Mehari, T. F.; et al. Fluorescent Chemical Sensors: Applications in Analytical, Environmental, Forensic, Pharmaceutical, Biological, and Biomedical Sample Measurement, and Clinical Diagnosis. Appl. Spectrosc. Rev. 2023, 58, 1–89. DOI: 10.1080/05704928.2023.2177666.
  • Ten-Domenech, I.; Rienda, I.; Perez-Rojas, J.; Pareja, E.; Moreno-Torres, M.; Castell, J.; Lendl, B.; Schwaighofer, A.; Perez-Guaita, D.; Kuligowski, J.; et al. Progress and Challenges of Mid-Infrared Spectroscopy for Liver Characterization Focusing on Steatosis, Fibrosis and Cancer. Appl. Spectrosc. Rev. 2023, 58, 1–22. DOI: 10.1080/05704928.2023.2215858.
  • Lazaro-Pacheco, D.; Shaaban, A.; Baldwin, G.; Titiloye, N.; Rehman, S.; Rehman, I. Deciphering the Structural and Chemical Composition of Breast Cancer Using FTIR Spectroscopy. Appl. Spectrosc. Rev. 2022, 57, 234–248. DOI: 10.1080/05704928.2020.1843471.
  • Shakya, B.; Shrestha, P.; Teppo, H.; Rieppo, L. The Use of Fourier Transform Infrared (FTIR) Spectroscopy in Skin Cancer Research: A Systematic Review. Appl. Spectrosc. Rev. 2021, 56, 347–379. DOI: 10.1080/05704928.2020.1791152.
  • Paraskevaidi, M.; Matthew, B.; Holly, B.; Hugh, B.; Thulya, C.; Loren, C.; StJohn, C.; Peter, G.; Callum, G.; Kazarian, S.; et al. Clinical Applications of Infrared and Raman Spectroscopy in the Fields of Cancer and Infectious Diseases. Appl. Spectrosc. Rev. 2021, 56, 804–868. DOI: 10.1080/05704928.2021.1946076.
  • Inagaki, T.; Shinozuka, Y.; Yamada, K.; Yonenobu, H.; Hayashida, A.; Tsuchikawa, S.; Yoshida, A.; Hoshino, Y.; Gotanda, K.; Yasuda, Y. Rapid Prediction of past Climate Condition from Lake Sediments by Near-Infrared (NIR) Spectroscopy. Appl Spectrosc. 2012, 66, 673–679. DOI: 10.1366/11-06418.
  • Gao, Y.; Cui, L.; Lei, B.; Zhai, Y.; Shi, T.; Wang, J.; Chen, Y.; He, H.; Wu, G. Estimating Soil Organic Carbon Content with Visible–Near-Infrared (Vis-NIR) Spectroscopy. Appl. Spectrosc. 2014, 68, 712–722. DOI: 10.1366/13-07031.
  • Maeaba, W.; Kumari, R.; Prasad, S. Spectroscopic Assessment of Heavy Metals Pollution in Roadside Soil and Road Dust: A Review. Appl. Spectrosc. Rev. 2021, 56, 588–611. DOI: 10.1080/05704928.2020.1835940.
  • Nawar, S.; Cipullo, S.; Douglas, R.; Coulon, F.; Mouazen, A. The Applicability of Spectroscopy Methods for Estimating Potentially Toxic Elements in Soils: State-of-the-Art and Future Trends. Appl. Spectrosc. Rev. 2020, 55, 525–557. DOI: 10.1080/05704928.2019.1608110.
  • Johnson, J. B.; Naiker, M. Seeing Red: A Review of the Use of near-Infrared Spectroscopy (NIRS) in Entomology. Appl. Spectrosc. Rev. 2020, 55, 810–839. DOI: 10.1080/05704928.2019.1685532.
  • Dowell, F. E.; Broce, A. B.; Xie, F.; Throne, J. E.; Baker, J. E. Detection of Parasitised Fly Puparia Using near Infrared Spectroscopy. J. Infrared Spectrosc. 2000, 8, 259–265. DOI: 10.1255/jnirs.286.
  • Aw, W. C.; Dowell, F. E.; Ballard, J. W. O. Using near-Infrared Spectroscopy to Resolve the Species, Gender, Age, and the Presence of Wolbachia Infection in Laboratory-Reared Drosophila. G3 (Bethesda). 2012, 2, 1057–1065. DOI: 10.1534/g3.112.003103.
  • Sikulu-Lord, M. T.; Maia, M. F.; Milali, M. P.; Henry, M.; Mkandawile, G.; Kho, E. A.; Wirtz, R. A.; Hugo, L. E.; Dowell, F. E.; Devine, G. J. Rapid and Non-Destructive Detection and Identification of Two Strains of Wolbachia in Aedes aegypti by near-Infrared Spectroscopy. PLoS Negl. Trop. Dis. 2016, 10, e0004759. DOI: 10.1371/journal.pntd.0004759.
  • Sikulu, M. T.; Majambere, S.; Khatib, B. O.; Ali, A. S.; Hugo, L. E.; Dowell, F. E. Using a Near-Infrared Spectrometer to Estimate the Age of Anopheles Mosquitoes Exposed to Pyrethroids. PLoS One. 2014, 9, e90657. DOI: 10.1371/journal.pone.0090657.
  • Kumar, R.; Kumar, V.; Sharma, V. Discrimination of Various Paper Types Using Diffuse Reflectance Ultraviolet–Visible Near-Infrared (UV-Vis-NIR) Spectroscopy: Forensic Application to Questioned Documents. Appl. Spectrosc. 2015, 69, 714–720. DOI: 10.1366/14-07663.
  • Causin, V.; Casamassima, R.; Marruncheddu, G.; Lenzoni, G.; Peluso, G.; Ripani, L. The Discrimination Potential of Diffuse-Reflectance Ultraviolet–Visible–near Infrared Spectrophotometry for the Forensic Analysis of Paper. Forensic Sci Int 2012, 216, 163–167. DOI: 10.1016/j.forsciint.2011.09.015.
  • Xia, J.; Xiong, Y.; Min, S.; Li, J. A Review of Recent Infrared Spectroscopy Research for Paper. Appl. Spectrosc. Rev. 2022, 57, 1–17. DOI: 10.1080/05704928.2022.2142939.
  • Gál, L.; Oravec, M.; Gemeiner, P.; Čeppan, M. Principal Component Analysis for the Forensic Discrimination of Black Inkjet Inks Based on the Vis–NIR Fibre Optics Reflection Spectra. Forensic Sci. Int. 2015, 257, 285–292. DOI: 10.1016/j.forsciint.2015.09.011.
  • Ristova, M.; Skenderovska, M.; Jovkovski, T. Nondestructive Vis-Nir Reflectance Spectroscopy as a Forensic Tool for Ink Discrimination: A Preliminary Study. J. Appl. Spectrosc. 2022, 89, 967–973. DOI: 10.1007/s10812-022-01455-w.
  • Nogueira, R. G.; Alves, V. D.; Matias, E. V. S.; Veras, G. Applications of NIR Spectroscopy and Chemometrics to Illicit Drug Analysis: An Example from Inhalant Drug Screening Tests. Forensic Sci. Int. 2021, 328, 111043. DOI: 10.1016/j.forsciint.2021.111043.
  • Rodionova, O. Y.; Balyklova, K. S.; Titova, A. V.; Pomerantsev, A. L. Application of NIR Spectroscopy and Chemometrics for Revealing of the ‘High Quality Fakes’ among the Medicines. Forensic Chem. 2018, 8, 82–89. DOI: 10.1016/j.forc.2018.02.004.
  • Risoluti, R.; Materazzi, S.; Gregori, A.; Ripani, L. Early Detection of Emerging Street Drugs by near Infrared Spectroscopy and Chemometrics. Talanta. 2016, 153, 407–413. DOI: 10.1016/j.talanta.2016.02.044.
  • Schmidt, V. M.; Zelger, P.; Wöss, C.; Huck, C. W.; Arora, R.; Bechtel, E.; Stahl, A.; Brunner, A.; Zelger, B.; Schirmer, M.; et al. Post-Mortem Interval of Human Skeletal Remains Estimated with Handheld NIR Spectrometry. Biology (Basel). 2022, 11, 1020. DOI: 10.3390/biology11071020.
  • Cascant, M. M.; Rubio, S.; Gallello, G.; Pastor, A.; Garrigues, S.; Guardia, M. D. L. Burned Bones Forensic Investigations Employing near Infrared Spectroscopy. Vib. Spectros.c 2017, 90, 21–30. DOI: 10.1016/j.vibspec.2017.02.005.
  • Virkler, K.; Lednev, I. K. Raman Spectroscopic Signature of Semen and Its Potential Application to Forensic Body Fluid Identification. Forensic Sci. Int. 2009, 193, 56–62. DOI: 10.1016/j.forsciint.2009.09.005.
  • Virkler, K.; Lednev, I. K. Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Statistical Analysis. Anal. Chem. 2009, 81, 7773–7777. DOI: 10.1021/ac901350a.
  • King, R. S. P.; Hallett, P. M.; Foster, D. NIR − NIR Fluorescence: A New Genre of Fingermark Visualisation Techniques. Forensic Sci. Int. 2016, 262, e28–e33. DOI: 10.1016/j.forsciint.2016.03.037.
  • Cappiello, P.; Zampa, F.; Siciliano, M.; Amata, B.; Di Palma, R.; Modica, M.; Lazzaro, A. P. Visualization of Fingermarks Deposits on Untreated Thermal Paper Exploiting the near Infrared Luminescence. J. Forensic Sci. 2020, 65, 238–247. DOI: 10.1111/1556-4029.14071.
  • Shang, Y.; Yang, F.; Ngando, F. J.; Zhang, X.; Feng, Y.; Ren, L.; Guo, Y. Development of Forensically Important Sarcophaga Peregrina (Diptera: Sarcophagidae) and Intra-Puparial Age Estimation Utilizing Multiple Methods at Constant and Fluctuating Temperatures. Animals (Basel.) 2023, 13, 1607. DOI: 10.3390/ani13101607.
  • Shang, Y.; Feng, Y.; Ren, L.; Zhang, X.; Yang, F.; Zhang, C.; Guo, Y. Pupal Age Estimation of Sarcophaga Peregrina (Diptera: Sarcophagidae) at Different Constant Temperatures Utilizing ATR-FTIR Spectroscopy and Cuticular Hydrocarbons. Insect.s 2023, 14, 143. DOI: 10.3390/insects14020143.
  • Li, L.; Wu, H.; Xu, W.; Wang, Y.; Wang, J.; Wang, Y. New Application of ATR-FTIR Spectroscopy for Postmortem Interval Estimation Based on Puparia of the Sarcosaprophagous Fly Chrysomya Megacephala (Diptera: Calliphoridae). Forensic Chem 2023, 33, 100484. DOI: 10.1016/j.forc.2023.100484.
  • De Lima, L. A. S.; Baia, T. C.; Gama, R. A.; Da Silva Gasparotto, L. H.; Lima, K. M. G. Near Infrared Spectroscopy as an Emerging Tool for Forensic Entomotoxicology. NIR News. 2014, 25, 5–7. DOI: 10.1255/nirn.1489.
  • Villet, M.; Amendt, J. Advances in Entomological Methods for Death Time Estimation. Forensic Pathol. Rev. 2011, 6, pp 213–237. DOI: 10.1007/978-1-61779-249-6_11.
  • Bambaradeniya, T.; Magni, P.; Dadour, I. A Summary of Concepts, Procedures and Techniques Used by Forensic Entomologists and Proxies. Insects. 2023, 14, 536. DOI: 10.3390/insects14060536.
  • Mayagaya, V. S.; Michel, K.; Benedict, M. Q.; Killeen, G. F.; Wirtz, R. A.; Ferguson, H. M.; Dowell, F. E. Non-Destructive Determination of Age and Species of Anopheles gambiae s.l. using near-Infrared Spectroscopy. Am. J. Trop. Med. Hyg. 2009, 81, 622–630. DOI: 10.4269/ajtmh.2009.09-0192.
  • Johnson, J. Near‐Infrared Spectroscopy (NIRS) for Taxonomic Entomology: A Brief Review. J Appl. Entomol. 2020, 144, 241–250. DOI: 10.1111/jen.12732.
  • Amendt, J.; Bugelli, V.; Bernhardt, V. Time Flies—Age Grading of Adult Flies for the Estimation of the Post-Mortem Interval. Diagnostics. 2021, 11, 152. DOI: 10.3390/diagnostics11020152.
  • Jales, J. T.; Barbosa, T. M.; De Medeiros, J. R.; De Lima, L. A. S.; De Lima, K. M. G.; Gama, R. A. Infrared Spectroscopy and Forensic Entomology: Can This Union Work? A Literature Review. J. Forensic Sci. 2021, 66, 2080–2091. DOI: 10.1111/1556-4029.14800.
  • Johnson, J. B. An Overview of near-Infrared Spectroscopy (NIRS) for the Detection of Insect Pests in Stored Grains. J. Stored Prod. Res. 2020, 86, 101558. DOI: 10.1016/j.jspr.2019.101558.
  • Meng, F.; Han, H.; Wang, M.; Jiang, Y.; Pi, Z.; Qu, Y.; Liu, Z.; Cai, J. Characterized Gene Repertoires and Functional Gene Reference for Forensic Entomology: Genomic and Developmental Transcriptomic Analysis of Aldrichina Grahami (Diptera: Calliphoridae). J. Med. Entomol. 2022, 59, 810–819. DOI: 10.1093/jme/tjac004.
  • Corrêa, R. C.; Almeida, L. M.; Moura, M. O. Coleoptera Associated with Buried Carrion: Potential Forensic Importance and Seasonal Composition. J. Med. Entomol. 2014, 51, 1057–1066. DOI: 10.1603/ME13166.
  • de Souza, A. M.; Linhares, A. X. Diptera and Coleoptera of Potential Forensic Importance in Southeastern Brazil: Relative Abundance and Seasonality. Med. Vet. Entomol. 1997, 11, 8–12. DOI: 10.1111/j.1365-2915.1997.tb00284.x.
  • Adetimehin, A.; Mole, C.; Finaughty, D.; Heyns, M. Caught in the Act: Impact of Crematogaster cf. liengmei (Hymenoptera: Formicidae) Necrophagous Behavior on Neonate Pigs (Sus scrofa Domesticus L.) in the Western Cape Province of South Africa. Int. J. Legal Med. 2022, 136. DOI: 10.1007/s00414-022-02835-9.
  • Amendt, J.; Krettek, R.; Zehner, R. Forensic Entomology. Naturwissenschaften. 2004, 91, 51–65. DOI: 10.1007/s00114-003-0493-5.
  • Bugelli, V.; Forni, D.; Bassi, L. A.; Di Paolo, M.; Marra, D.; Lenzi, S.; Toni, C.; Giusiani, M.; Domenici, R.; Gherardi, M.; et al. Forensic Entomology and the Estimation of the Minimum Time since Death in Indoor Cases. J. Forensic Sci. 2015, 60, 525–531. DOI: 10.1111/1556-4029.12647.
  • Dadour, I. R.; Cook, D. F.; Fissioli, J. N.; Bailey, W. J. Forensic Entomology: Application, Education and Research in Western Australia. Forensic Sci. Int. 2001, 120, 48–52. DOI: 10.1016/S0379-0738(01)00420-0.
  • Tomberlin, J. K.; Mohr, R.; Benbow, M. E.; Tarone, A. M.; VanLaerhoven, S. A Roadmap for Bridging Basic and Applied Research in Forensic Entomology. Annu. Rev. Entomol. 2011, 56, 401–421. DOI: 10.1146/annurev-ento-051710-103143.
  • Anderson, G. Minimum and Maximum Development Rates of Some Forensically Important Calliphoridae (Diptera). J. Forensic Sci. 2000, 45, 824–832. DOI: 10.1520/JFS14778J.
  • Martín-Vega, D.; Hall, M. J. R.; Simonsen, T. J. Resolving Confusion in the Use of Concepts and Terminology in Intrapuparial Development Studies of Cyclorrhaphous Diptera. J. Med. Entomol. 2016, 53, 1249–1251. DOI: 10.1093/jme/tjw081.
  • Fraenkel, G.; Bhaskaran, G. Pupariation and Pupation in Cyclorrhaphous Flies (Diptera): Terminology and Interpretation. Ann. Entomol. Soc. Am. 1973, 66, 418–422. DOI: 10.1093/aesa/66.2.418.
  • Matuszewski, S.; Mądra-Bielewicz, A. Post-Mortem Interval Estimation Based on Insect Evidence in a Quasi-Indoor Habitat. Sci. Justice. 2019, 59, 109–115. DOI: 10.1016/j.scijus.2018.06.004.
  • Bajerlein, D.; Taberski, D.; Matuszewski, S. Estimation of Postmortem Interval (PMI) Based on Empty Puparia of Phormia Regina (Meigen) (Diptera: Calliphoridae) and Third Larval Stage of Necrodes Littoralis (L.) (Coleoptera: Silphidae) – Advantages of Using Different PMI Indicators. J. Forensic Leg. Med. 2018, 55, 95–98. DOI: 10.1016/j.jflm.2018.02.008.
  • Mazzanti, M.; Alessandrini, F.; Tagliabracci, A.; Wells, J. D.; Campobasso, C. P. DNA Degradation and Genetic Analysis of Empty Puparia: Genetic Identification Limits in Forensic Entomology. Forensic Sci. Int. 2010, 195, 99–102. DOI: 10.1016/j.forsciint.2009.11.022.
  • Bainbridge, S.; Bownes, M. Staging the Metamorphosis of Drosophila-Melanogaster. J. Embryol. Exp. Morphol. 1981, 66, 57–80.
  • Wang, Y.; Hou, Y.; Wang, M.; Wang, Y.; Xu, W.; Zhang, Y.; Wang, J. Intrapuparial Development and Age Estimation of Calliphora Grahami (Diptera: Calliphoridae) for Postmortem Interval Estimation. J. Med. Entomol. 2022, 59, 454–466. DOI: 10.1093/jme/tjab224.
  • Boehme, P.; Spahn, P.; Amendt, J.; Zehner, R. Differential Gene Expression during Metamorphosis: A Promising Approach for Age Estimation of Forensically Important Calliphora Vicina Pupae (Diptera: Calliphoridae). Int. J. Legal Med. 2013, 127, 243–249. DOI: 10.1007/s00414-012-0699-1.
  • Alotaibi, F.; Alkuriji, M.; AlReshaidan, S.; Alajmi, R.; Metwally, D. M.; Almutairi, B.; Alorf, M.; Haddadi, R.; Ahmed, A. Body Size and Cuticular Hydrocarbons as Larval Age Indicators in the Forensic Blow Fly, Chrysomya Albiceps (Diptera: Calliphoridae). J. Med. Entomol. 2021, 58, 1048–1055. DOI: 10.1093/jme/tjaa256.
  • Roux, O.; Gers, C.; Legal, L. Ontogenetic Study of Three Calliphoridae of Forensic Importance through Cuticular Hydrocarbon Analysis. Med. Vet. Entomol. 2008, 22, 309–317. DOI: 10.1111/j.1365-2915.2008.00752.x.
  • Cammack, J. A.; Reiskind, M. H.; Guisewite, L. M.; Denning, S. S.; Watson, D. W. Quantifying Pteridines in the Heads of Blow Flies (Diptera: Calliphoridae): Application for Forensic Entomology. Forensic Sci. Int. 2017, 280, 44–48. DOI: 10.1016/j.forsciint.2017.09.006.
  • Bernhardt, V.; Hannig, L.; Kinast, R.; Verhoff, M. A.; Rothweiler, F.; Zehner, R.; Amendt, J. Quantitative Pteridine Fluorescence Analysis: A Possible Age-Grading Technique for the Adult Stages of the Blow Fly Calliphora Vicina (Diptera: Calliphoridae). J. Insect Physiol. 2017, 98, 356–359. DOI: 10.1016/j.jinsphys.2017.03.002.
  • Hayes, E. J.; Wall, R.; Smith, K. E. Measurement of Age and Population Age Structure in the Blowfly, Lucilia sericata (Meigen) (Diptera: Calliphoridae). J. Insect Physiol. 1998, 44, 895–901. DOI: 10.1016/S0022-1910(98)00067-5.
  • Davies, L. Delayed Egg Production and a Possible Group Effect in the Blowfly Calliphora vicina. Med. Vet. Entomol. 1998, 12, 339–344. DOI: 10.1046/j.1365-2915.1998.00124.x.
  • Adams, T. S.; Hintz, A. M. Relationship of Age, Ovarian Development, and the Corpus Allatum to Mating in the House-Fly, Musca domestica. J. Insect Physiol. 1969, 15, 201–215. DOI: 10.1016/0022-1910(69)90269-8.
  • Sontigun, N.; Sukontason, K. L.; Klong-Klaew, T.; Sanit, S.; Samerjai, C.; Somboon, P.; Thanapornpoonpong, S.; Amendt, J.; Sukontason, K. Bionomics of the Oriental Latrine Fly Chrysomya Megacephala (Fabricius) (Diptera: Calliphoridae): Temporal Fluctuation and Reproductive Potential. Parasit. Vectors. 2018, 11, 415. DOI: 10.1186/s13071-018-2986-2.
  • Butler, S. M.; Moon, R. D.; Hinkle, N. C.; Millar, J. G.; McElfresh, J. S.; Mullens, B. A. Gonotrophic Development and Survival in Field Populations of Musca domestica (Diptera: Muscidae) at Dairies in California, Minnesota, and Georgia, and the Relationship of Fly Age to Relative Abundance of (Z)-9-Tricosene (Muscalure). J. Med. Entomol. 2013, 50, 748–757. DOI: 10.1603/ME13015.
  • Schoborg, T.; Smith, S.; Smith, L.; Morris, H.; Rusan, N. Micro-Computed Tomography as a Platform for Exploring Drosophila Development. Development. 2019, 146, dev176685. DOI: 10.1242/dev.176685.
  • Perez-Mendoza, J.; Dowell, F. E.; Broce, A. B.; Throne, J. E.; Wirtz, R. A.; Xie, F.; Fabrick, J. A.; Baker, J. E. Chronological Age-Grading of House Flies by Using near-Infrared Spectroscopy. J. Med. Entomol. 2002, 39, 499–508. DOI: 10.1603/0022-2585-39.3.499.
  • Baia, T. C.; Gama, R. A.; Silva De Lima, L. A.; Lima, K. M. G. FTIR Microspectroscopy Coupled with Variable Selection Methods for the Identification of Flunitrazepam in Necrophagous Flies. Anal. Methods. 2016, 8, 968–972. DOI: 10.1039/C5AY02342D.
  • Perez-Mendoza, J.; Throne, J.; Dowell, F.; Baker, J. Chronological Age-Grading of Three Species of Stored-Product Beetles by Using near-Infrared Spectroscopy. J. Econ. Entomol. 2004, 97, 1159–1167. DOI: 10.1603/0022-0493(2004)097[1159:CAOTSO]2.0.CO;2. 10.1093/jee/97.3.1159
  • Sikulu, M.; Killeen, G. F.; Hugo, L. E.; Ryan, P. A.; Dowell, K. M.; Wirtz, R. A.; Moore, S. J.; Dowell, F. E. Near-Infrared Spectroscopy as a Complementary Age Grading and Species Identification Tool for African Malaria Vectors. Parasit. Vectors. 2010, 3, 49. DOI: 10.1186/1756-3305-3-49.
  • Dowell, F. E.; Noutcha, A. E. M.; Michel, K. Short Report: The Effect of Preservation Methods on Predicting Mosquito Age by near Infrared Spectroscopy. Am. J. Trop. Med. Hyg. 2011, 85, 1093–1096. DOI: 10.4269/ajtmh.2011.11-0438.
  • Sikulu, M.; Dowell, K. M.; Hugo, L. E.; Wirtz, R. A.; Michel, K.; Peiris, K. H.; Moore, S.; Killeen, G. F.; Dowell, F. E. Evaluating RNAlater® as a Preservative for Using near-Infrared Spectroscopy to Predict Anopheles gambiae Age and Species. Malar. J. 2011, 10, 186. DOI: 10.1186/1475-2875-10-186.
  • Mayagaya, V. S.; Ntamatungiro, A. J.; Moore, S. J.; Wirtz, R. A.; Dowell, F. E.; Maia, M. F. Evaluating Preservation Methods for Identifying Anopheles gambiae s.s. and Anopheles Arabiensis Complex Mosquitoes Species Using near Infra-Red Spectroscopy. Parasit. Vectors. 2015, 8, 60. DOI: 10.1186/s13071-015-0661-4.
  • Liebman, K.; Swamidoss, I.; Vizcaino, L.; Lenhart, A.; Dowell, F.; Wirtz, R. The Influence of Diet on the Use of near-Infrared Spectroscopy to Determine the Age of Female Aedes aegypti Mosquitoes. Am. J. Trop. Med. Hyg. 2015, 92, 1070–1075. DOI: 10.4269/ajtmh.14-0790.
  • Sikulu-Lord, M. T.; Devine, G. J.; Hugo, L. E.; Dowell, F. E. First Report on the Application of Near-Infrared Spectroscopy to Predict the Age of Aedes albopictus Skuse. Sci. Rep. 2018, 8, 9590. DOI: 10.1038/s41598-018-27998-7.
  • Milali, M. P.; Sikulu-Lord, M. T.; Kiware, S. S.; Dowell, F. E.; Corliss, G. F.; Povinelli, R. J. Age Grading an. gambiae and an. arabiensis Using near Infrared Spectra and Artificial Neural Networks. PLoS One. 2019, 14, e0209451. DOI: 10.1371/journal.pone.0209451
  • Aw, W. C.; Ballard, J. W. O. The Effects of Temperature and Diet on Age Grading and Population Age Structure Determination in Drosophila. J. Insect Physiol. 2013, 59, 994–1000. DOI: 10.1016/j.jinsphys.2013.07.005.
  • Ntamatungiro, A. J.; Mayagaya, V. S.; Rieben, S.; Moore, S. J.; Dowell, F. E.; Maia, M. F. The Influence of Physiological Status on Age Prediction of Anopheles Arabiensis Using Near Infra-Red Spectroscopy. Parasit. Vectors. 2013, 6, 298–298. DOI: 10.1186/1756-3305-6-298.
  • Amendt, J.; Richards, C. S.; Campobasso, C. P.; Zehner, R.; Hall, M. J. R. Forensic Entomology: Applications and Limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. DOI: 10.1007/s12024-010-9209-2.
  • Guimaraes, S.; Steindorff, G.; Bicho, C.; Farias, R.; Vasconcelos, S. Forensic Entomology in Research and Practice: An Overview of Forensic Experts’ Perceptions and Scientific Output in Brazil. Int. J. Legal Med. 2022, 136, 1149–1161. DOI: 10.1007/s00414-022-02836-8.
  • Beyer, J. C.; Enos, W. F.; Stajić, M. Drug Identification through Analysis of Maggots. J. Forensic Sci. 1980, 25, 411–412. DOI: 10.1520/JFS12147J.
  • Gunatilake, K.; Goff, M. L. Detection of Organophosphate Poisoning in a Putrefying Body by Analyzing Arthropod Larvae. J. Forensic Sci. 1989, 34, 12698J. DOI: 10.1016/0273-2300(89)90068-8. 10.1520/JFS12698J
  • De Lima, L.; Morais, C.; Jales, J.; Gama, R.; Lemos, S.; Lima, K. Identification Using Classification Analysis of Flunitrazepam in Necrophagous Larvae via Differential Pulse Voltammetry and Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy. J. Braz. Chem. Soc. 2018, 29, 2595–2604. DOI: 10.21577/0103-5053.20180139.
  • Bugelli, V.; Papi, L.; Fornaro, S.; Stefanelli, F.; Chericoni, S.; Giusiani, M.; Vanin, S.; Campobasso, C. P. Entomotoxicology in Burnt Bodies: A Case of Maternal Filicide-Suicide by Fire. Int. J. Legal Med. 2017, 131, 1299–1306. DOI: 10.1007/s00414-017-1628-0.
  • Bourel, B.; Tournel, G.; Hedouin, V.; Deveaux, M.; Goff, M. L.; Gosset, D. Morphine Extraction in Necrophagous Insects Remains for Determining Ante-Mortem Opiate Intoxication. Forensic Sci. Int. 2001, 120, 127–131. DOI: 10.1016/S0379-0738(01)00428-5.
  • Miller, M.; Lord, W.; Goff, M.; Donnelly, B.; Mcdonough, E.; Alexis, J. Isolation of Amitriptyline and Nortriptyline from Fly Puparia (Phoridae) and Beetle Exuviae (Dermestidae) Associated with Mummified Human Remains. J. Forensic Sci. 1994, 39, 13717J. 10.1520/JFS13717J
  • Gosselin, M.; Wille, S. M. R.; Fernandez, M. D. M. R.; Di Fazio, V.; Samyn, N.; De Boeck, G.; Bourel, B. Entomotoxicology, Experimental Set-Up and Interpretation for Forensic Toxicologists. Forensic Sci Int 2011, 208, 1–9. DOI: 10.1016/j.forsciint.2010.12.015.
  • Chophi, R.; Sharma, S.; Sharma, S.; Singh, R. Forensic Entomotoxicology: Current Concepts, Trends and Challenges. J. Forensic Leg. Med. 2019, 67, 28–36. DOI: 10.1016/j.jflm.2019.07.010.
  • Introna, F.; Campobasso, C. P.; Goff, M. L. Entomotoxicology. Forensic Sci. Int. 2001, 120, 42–47. DOI: 10.1016/S0379-0738(01)00418-2.
  • Groth, O.; Franz, S.; Fels, H.; Krueger, J.; Roider, G.; Dame, T.; Musshoff, F.; Graw, M. Unexpected Results Found in Larvae Samples from Two Postmortem Forensic Cases. Forensic Toxicol. 2022, 40, 144–155. DOI: 10.1007/s11419-021-00601-x.
  • Oliveira, J. S.; Baia, T. C.; Gama, R. A.; Lima, K. M. G. Development of a Novel Non-Destructive Method Based on Spectral Fingerprint for Determination of Abused Drug in Insects: An Alternative Entomotoxicology Approach. Microchem. J. 2014, 115, 39–46. DOI: 10.1016/j.microc.2014.02.009.
  • Goff, M. L.; Brown, W. A.; Omori, A. I.; LaPointe, D. A. Preliminary Observations of the Effects of Amitriptyline in Decomposing Tissues on the Development of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and Implications of This Effect to Estimation of Postmortem Interval. J. Forensic Sci. 1993, 38, 316–322.
  • Goff, M. L.; Brown, W. A.; Hewadikaram, K. A.; Omori, A. I. Effect of Heroin in Decomposing Tissues on the Development Rate of Boettcherisca peregrina (Diptera, Sarcophagidae) and Implications of This Effect on Estimation of Postmortem Intervals Using Arthropod Development Patterns. J. Forensic Sci. 1991, 36, 537–542.
  • Bourel, B.; Hédouin, V.; Martin-Bouyer, L.; Bécart, A.; Tournel, G.; Deveaux, M.; Gosset, D. Effects of Morphine in Decomposing Bodies on the Development of Lucilia sericata (Diptera: Calliphoridae). J. Forensic Sci. 1999, 44, 354–358.
  • Goff, M. L.; Brown, W. A.; Omori, A. I. Preliminary Observations of the Effect of Methamphetamine in Decomposing Tissues on the Development Rate of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and Implications of This Effect on the Estimations of Postmortem Intervals. J. Forensic Sci. 1992, 37, 867–872.
  • Mantinieks, D.; Gerostamoulos, D.; Glowacki, L.; Di Rago, M.; Schumann, J.; Woodford, N. W.; Drummer, O. H. Postmortem Drug Redistribution: A Compilation of Postmortem/Antemortem Drug Concentration Ratios. J. Anal. Toxicol. 2021, 45, 368–377. DOI: 10.1093/jat/bkaa107.
  • Gerostamoulos, D.; Beyer, J.; Staikos, V.; Tayler, P.; Woodford, N.; Drummer, O. H. The Effect of the Postmortem Interval on the Redistribution of Drugs: A Comparison of Mortuary Admission and Autopsy Blood Specimens. Forensic Sci. Med. Pathol. 2012, 8, 373–379. DOI: 10.1007/s12024-012-9341-2.
  • Shapiro, B. H.; Agrawal, A. K.; Pampori, N. A. Gender Differences in Drug Metabolism Regulated by Growth Hormone. Int. J. Biochem. Cell Biol. 1995, 27, 9–20. DOI: 10.1016/1357-2725(94)00056-5.
  • Kinirons, M. T.; O'Mahony, M. S. Drug Metabolism and Ageing. Br. J. Clin. Pharmacol. 2004, 57, 540–544. DOI: 10.1111/j.1365-2125.2004.02096.x.
  • Kang, M. J.; Kim, H. G.; Kim, J. S.; Oh, D. G.; Um, Y. J.; Seo, C. S.; Han, J. W.; Cho, H. J.; Kim, G. H.; Jeong, T. C.; Jeong, H. G. The Effect of Gut Microbiota on Drug Metabolism. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1295–1308. DOI: 10.1517/17425255.2013.807798.
  • Jeong, H. Altered Drug Metabolism during Pregnancy: Hormonal Regulation of Drug-Metabolizing Enzymes. Expert Opin. Drug Metab. Toxicol. 2010, 6, 689–699. DOI: 10.1517/17425251003677755.
  • Sonne, J. Drug Metabolism in Liver Disease: Implications for Therapeutic Drug Monitoring. Ther. Drug Monit. 1996, 18, 397–401. DOI: 10.1097/00007691-199608000-00015.
  • Zgheib, N. K.; Branch, R. A. Drug Metabolism and Liver Disease: A Drug–Gene–Environment Interaction. Drug Metab. Rev. 2017, 49, 35–55. DOI: 10.1080/03602532.2016.1271807.
  • Zhou, X.; Nian, Y.; Qiao, Y.; Yang, M.; Xin, Y.; Li, X. Hypoxia Plays a Key Role in the Pharmacokinetic Changes of Drugs at High Altitude. Curr. Drug Metab. 2018, 19, 960–969. DOI: 10.2174/1389200219666180529112913.
  • Lammers, L. A.; Achterbergh, R.; Mathôt, R. A. A.; Romijn, J. A. The Effects of Fasting on Drug Metabolism. Expert Opin. Drug Metab. Toxicol. 2020, 16, 79–85. DOI: 10.1080/17425255.2020.1706728.
  • Payne, J. A.; King, E. W. Insect Succession and Decomposition of Pig Carcasses in Water. J. Ga. Entomol. Soc. 1972, 7, 153–162.
  • Dalal, J.; Sharma, S.; Bhardwaj, T.; Dhattarwal, S. K.; Verma, K. Seasonal Study of the Decomposition Pattern and Insects on a Submerged Pig Cadaver. J. Forensic Leg. Med. 2020, 74, 102023. DOI: 10.1016/j.jflm.2020.102023.
  • Kula, C.; Amendt, J.; Drijfhout, F.; Moore, H. Geographical Variation of Cuticular Hydrocarbon Profiles of Adult Flies and Empty Puparia Amongst Three Populations of Calliphora vicina (Diptera: Calliphoridae). J. Med. Entomol. 2023, 60, 14–23. DOI: 10.1093/jme/tjac167.
  • Byrne, A.; Camann, M.; Cyr, T.; Catts, E.; Espelie, K. Forensic Implications of Biochemical Differences among Geographic Populations of the Black Blow Fly, Phormia-regina (Meigen). J. Forensic Sci. 1995, 40, 372–377.
  • Paula, M. C.; Antonialli-Junior, W. F.; Mendonça, A.; Michelutti, K. B.; Eulalio, A. D. M. M.; Cardoso, C. A. L.; de Lima, T.; Von Zuben, C. J. Chemotaxonomic Profile and Intraspecific Variation in the Blow Fly of Forensic Interest Chrysomya megacephala (Diptera: Calliphoridae). J. Med. Entomol. 2017, 54, 14–23. DOI: 10.1093/jme/tjw142.
  • Paula, M. C.; Michelutti, K. B.; Eulalio, A. D. M. M.; Piva, R. C.; Cardoso, C. A. L.; Antonialli-Junior, W. F. New Method for Estimating the Post-Mortem Interval Using the Chemical Composition of Different Generations of Empty Puparia: Indoor Cases. PLoS One. 2018, 13, e0209776. DOI: 10.1371/journal.pone.0209776.
  • Moore, H.; Lutz, L.; Bernhardt, V.; Drijfhout, F.; Cody, R.; Amendt, J. Cuticular Hydrocarbons for the Identification and Geographic Assignment of Empty Puparia of Forensically Important Flies. Int. J. Legal Med. 2022, 136, 1791–1800. DOI: 10.1007/s00414-022-02786-1.
  • Limsopatham, K.; Hall, M.; Zehner, R.; Zajac, B.; Verhoff, M.; Sontigun, N.; Sukontason, K.; Sukontason, K.; Amendt, J. A Molecular, Morphological, and Physiological Comparison of English and German Populations of Calliphora vicina (Diptera: Calliphoridae). PLoS One. 2018, 13, e0207188. DOI: 10.1371/journal.pone.0207188.
  • Newey, P. S.; Robson, S. K. A.; Crozier, R. H. Near-Infrared Spectroscopy Identifies the Colony and Nest of Origin of Weaver Ants, Oecophylla smaragdina. Insect. Soc. 2008, 55, 171–175. DOI: 10.1007/s00040-008-0985-6.
  • De Paula, M. C.; Michelutti, K. B.; Eulalio, A. D. M. M.; Mendonça, A.; Cardoso, C. A. L.; Andrade, L. H. C.; Lima, S. M.; Antonialli-Junior, W. F. New Approach to Application of Mid-Infrared Photoacoustic Spectroscopy in Forensic Analysis: Study with the Necrophagous Blow Fly Chrysomya megacephala (Diptera: Calliphoridae). J. Photochem. Photobiol. B. 2020, 209, 111934. DOI: 10.1016/j.jphotobiol.2020.111934.
  • Barbosa, T. M.; De Lima, L. A. S.; Dos Santos, M. C. D.; Vasconcelos, S. D.; Gama, R. A.; Lima, K. M. G. A Novel Use of Infra-Red Spectroscopy (NIRS and ATR-FTIR) Coupled with Variable Selection Algorithms for the Identification of Insect Species (Diptera: Sarcophagidae) of Medico-Legal Relevance. Acta Trop. 2018, 185, 1–12. DOI: 10.1016/j.actatropica.2018.04.025.
  • Tanajitaree, C.; Sanit, S.; Sukontason, K.; Sukontason, K.; Somboon, K.; Anakkamatee, P.; Amendt, W.; Limsopatham, K. Identification of Medically and Forensically Relevant Flies Using a Decision Tree-Learning Method. Trop. Biomed. 2023, 40, 80–87. DOI: 10.47665/tb.40.1.019.
  • Silva, H.; Barbosa, T.; Santos, M.; Silva, L.; de Lima, L.; Morais, C.; Bicudo, T.; Gama, R.; Lima, K. Near Infrared Spectroscopy (NIRS) Coupled with Chemometric Methods to Identify and Estimate Taxonomic Relationships of Flies with Forensic Potential (Diptera: Calliphoridae and Sarcophagidae). Acta Trop. 2022, 235, 106672. DOI: 10.1016/j.actatropica.2022.106672.
  • Chimeno, C.; Morinière, J.; Podhorna, J.; Hardulak, L.; Hausmann, A.; Reckel, F.; Grunwald, J. E.; Penning, R.; Haszprunar, G. DNA Barcoding in Forensic Entomology Establishing a DNA Reference Library of Potentially Forensic Relevant Arthropod Species. J. Forensic Sci. 2019, 64, 593–601. DOI: 10.1111/1556-4029.13869.
  • Rolo, E. A.; Oliveira, A. R.; Dourado, C. G.; Farinha, A.; Rebelo, M. T.; Dias, D. Identification of Sarcosaprophagous Diptera Species through DNA Barcoding in Wildlife Forensics. Forensic Sci. Int. 2013, 228, 160–164. DOI: 10.1016/j.forsciint.2013.02.038.
  • Raupach, M.; Amann, R.; Wheeler, Q.; Roos, C. The Application of “-Omics” Technologies for the Classification and Identification of Animals. Org. Divers. Evol. 2016, 16, 1–12. DOI: 10.1007/s13127-015-0234-6.
  • Wang, Y.; Nansen, C.; Zhang, Y. Integrative Insect Taxonomy Based on Morphology, Mitochondrial DNA, and Hyperspectral Reflectance Profiling: Integrative Insect Taxonomy of Bundera. Zool. J. Linn. Soc. 2016, 177, 378–394. DOI: 10.1111/zoj.12367.
  • Schlick-Steiner, B.; Steiner, F.; Seifert, B.; Stauffer, C.; Christian, E.; Crozier, R. Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annu. Rev. Entomol. 2010, 55, 421–438. DOI: 10.1146/annurev-ento-112408-085432.
  • Lazzari, S. M. N.; Ceruti, F. C.; Rodriguez-Fernandez, J. I.; Opit, G.; Lazzari, F. A. Intra and Interspecific Variation Assessment in Psocoptera Using Near Spectoscopy. International Working Conference on Stored Product Protection. Julius-Kühn-Archiv. 2010, 425, pp 139–144. DOI: 10.5073/jka.2010.425.250.
  • Rodríguez-Fernández, J. I.; DE Carvalho, C. J. B.; Pasquini, C.; DE Lima, K. M. G.; Moura, M. O.; Arízaga, G. G. C. Barcoding without DNA? Species Identification Using Near Infrared Spectroscopy. Zootaxa. 2011, 2933, 46–54. DOI: 10.11646/zootaxa.2933.1.3.
  • Aldrich, B. T.; Maghirang, E. B.; Dowell, F. E.; Kambhampati, S. Identification of Termite Species and Subspecies of the Genus Zootermopsis Using Near-Infrared Reflectance Spectroscopy. J. Insect Sci. 2007, 7, 18–17. DOI: 10.1673/031.007.1801.
  • Nansen, C.; Coelho, A.; Vieira, J. M.; Parra, J. R. P. Reflectance-Based Identification of Parasitized Host Eggs and Adult Trichogramma Specimens. J. Exp. Biol. 2014, 217, 1187–1192. DOI: 10.1242/jeb.095661.
  • Pickering, C. L.; Hands, J. R.; Fullwood, L. M.; Smith, J. A.; Baker, M. J. Rapid Discrimination of Maggots Utilising ATR-FTIR Spectroscopy. Forensic Sci. Int. 2015, 249, 189–196. DOI: 10.1016/j.forsciint.2015.01.036.
  • Durak, R.; Ciak, B.; Durak, T. Highly Efficient Use of Infrared Spectroscopy (ATR-FTIR) to Identify Aphid Species. Biology (Basel). 2022, 11, 1232. DOI: 10.3390/biology11081232.
  • Kinzner, M.-C.; Wagner, H. C.; Peskoller, A.; Moder, K.; Dowell, F. E.; Arthofer, W.; Schlick-Steiner, B. C.; Steiner, F. M. A near-Infrared Spectroscopy Routine for Unambiguous Identification of Cryptic Ant Species. PeerJ. 2015, 3, e991. DOI: 10.7717/peerj.991.
  • Krajacich, B. J.; Meyers, J. I.; Alout, H.; Dabiré, R. K.; Dowell, F. E.; Foy, B. D. Analysis of near Infrared Spectra for Age-Grading of Wild Populations of Anopheles gambiae. Parasit. Vectors. 2017, 10, 552. DOI: 10.1186/s13071-017-2501-1.
  • Dowell, F. E.; Throne, J. E.; Baker, J. E. Automated Nondestructive Detection of Internal Insect Infestation of Wheat Kernels by Using Near-Infrared Reflectance Spectroscopy. J. Econ. Entomol. 1998, 91, 899–904. DOI: 10.1093/jee/91.4.899.
  • Baker, J. E.; Dowell, F. E.; Throne, J. E. Detection of Parasitized Rice Weevils in Wheat Kernels with near-Infrared Spectroscopy. Biol. Control. 1999, 16, 88–90. DOI: 10.1006/bcon.1999.0733.
  • Dowell, F. E.; Throne, J. E.; Wang, D.; Baker, J. E. Identifying Stored-Grain Insects Using near-Infrared Spectroscopy. J. Econ. Entomol. 1999, 92, 165–169. DOI: 10.1093/jee/92.1.165.
  • Maghirang, E. B.; Dowell, F. E.; Baker, J. E.; Throne, J. E. Detecting Single Wheat Kernels Containing Live or Dead Insects Using near-Infrared Reflectance Spectroscopy. 2002 ASAE Annual International Meeting / CIGR XVth World Congress. ASABE. 2002, DOI: 10.13031/2013.10449.
  • Maghirang; F, E. B.; Dowell, E.; Baker, J. E.; Throne, J. E. Automated Detection of Single Wheat Kernels Containing Live or Dead Insects Using near-Infrared Reflectance Spectroscopy. Trans. ASAE. 2003, 46, 1277–1282. DOI: 10.13031/2013.13947.
  • Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G. Detection of Insect-Damaged Wheat Kernels Using near-Infrared Hyperspectral Imaging. J. Stored Prod. Res. 2009, 45, 151–158. DOI: 10.1016/j.jspr.2008.12.002.
  • Saranwong, S.; Thanapase, W.; Suttiwijitpukdee, N.; Rittiron, R.; Kasemsumran, S.; Kawano, S. Applying near Infrared Spectroscopy to the Detection of Fruit Fly Eggs and Larvae in Intact Fruit. J. Infrared Spectrosc. 2010, 18, 271–280. DOI: 10.1255/jnirs.886.
  • Mishra, G.; Srivastava, S.; Panda, B. K.; Mishra, H. N. Rapid Assessment of Quality Change and Insect Infestation in Stored Wheat Grain Using FT-NIR Spectroscopy and Chemometrics. Food Anal. Methods. 2018, 11, 1189–1198. DOI: 10.1007/s12161-017-1094-9.
  • Stuhr, S.; Truong, V. K.; Vongsvivut, J.; Senkbeil, T.; Yang, Y.; Al Kobaisi, M.; Baulin, V. A.; Werner, M.; Rubanov, S.; Tobin, M. J.; et al. Structure and Chemical Organization in Damselfly Calopteryx Haemorrhoidalis Wings: A Spatially Resolved FTIR and XRF Analysis with Synchrotron Radiation. Sci. Rep. 2018, 8, 8413. DOI: 10.1038/s41598-018-26563-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.