460
Views
1
CrossRef citations to date
0
Altmetric
Articles

Benefits and limitations of using isotope-derived groundwater travel times and major ion chemistry to validate a regional groundwater flow model: example from the Centre-du-Québec region, Canada

, , , , &
Pages 195-213 | Received 19 Jan 2017, Accepted 17 Oct 2017, Published online: 13 Nov 2017

References

  • Aravena, R., W. Leonard, and P. Niel. 1995. Estimating 14C groundwater ages in a methanogenic aquifer. Water Resources Research 31 (9): 2307–2317.
  • Arnold, J. G., and P. M. Allen. 1995. Automated methods for estimating baseflow and ground water recharge from streamflow records. Journal of the American Water Resources Association 35 (2): 411–424.
  • Beckers, J., and E. O. Frind. 2001. Simulating groundwater flow and runoff for the Oro Moraine aquifer system. Part II. Automated calibration and mass balance calculations. Journal of hydrology 243: 73–90.
  • Benoit, N., D. Blanchette, M. Nastev, V. Cloutier, D. Marcotte, M. Brun Kone, and J. Molson. 2011. Groundwater geochemistry of the lower Chaudière River watershed, Québec. In: GeoHydro2011, Joint IAH-CNC, CANQUA and AHQ Conference, Québec City, Canada, August 28-31, 2011, Paper DOC-2209, 8 pp.
  • Blanchette, D., R. Lefebvre, M. Nastev, and V. Cloutier. 2013. Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Canadian Water Resources Journal 35 (4): 503–526.
  • Bolduc, A. M., and M. Ross. 2001. Surficial geology, Lachute-Oka, Québec. Geological Survey Canada. Open File 3520. https://doi.org/10.4095/212599.
  • Brunner, P., C. T. Simmons, P. G. Cook, and R. Therrien. 2010. Modeling surface water-groundwater interaction with MODFLOW: Some considerations. Ground Water 48 (2): 174–180.
  • Castro, M. C., and P. Goblet. 2003. Calibration of regional flow models: Working toward a better understanding of site-specific systems. Water Resources Research 39 (6): 1–25. doi:10.1029/2002WR001653.
  • Chapman, T. G. 1991. Comment on «Evaluation of automated techniques for baseflow and recession analysis» by RJ Nathan and TA McMahon. Water Resources Research 27: 1783–1784.
  • Cloutier, V., R. Lefebvre, M. M. Savard, É. Bourque, and R. Therrien. 2006. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeology Journal 14: 573–590.
  • Collin, M. L., and A. J. Melloul. 2003. Assessing groundwater quality to pollution to promote sustainable urban and rural development. Journal of Cleaner Production 11: 727–736.
  • Croteau, A., M. Nastev, and R. Lefebvre. 2010. Groundwater recharge assessment in the Châteauguay River watershed. Canadian Water Resources Journal 35: 451–468.
  • Doherty, J. 2016. PEST. Model-Independent Parameter Estimation. User manual Part 1 and 2. Watermark Numerical Computing. 6th Edition, 390. Brisbane: Watermark Numerical Computing.
  • Eckhardt, K. 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes 19 (2): 507–515.
  • El-Kadi, A. I., L. N. Plummer, and P. Aggarwal. 2011. NETPATH-WIN: An interactive user version of the mass-balance model, NETPATH. Ground Water 49: 593–599.
  • Environment Canada. 2016. 1981-2010 historical means for stations number 7028441, 7020305, 7022160 and 7025440. http://climate.weather.gc.ca/climate_normals/index_e.html.
  • ESRI (Environmental System Research Institute), 2016. ArcGIS Desktop. Release 10.3.1. Analysis Tools.
  • Fontes, C. H. 1992. Chemical and isotopic constraints on 14C dating of groundwater. In Radiocarbon dating after four decades: An interdisciplinary perspective, eds. R. E. Taylor, A. Long, and R. S. Kra, 242–326. New York, NY: Springer.
  • Fortin, V., and R. Turcotte. 2007. Le modèle hydrologique MOHYSE. Research report. Environnement Canada. Montréal.
  • Gleeson, T., W. M. Alley, D. M. Allen, M. A. Sophocleous, Y. Zhou, M. Taniguchi, and J. VanderSteen. 2012. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Ground Water 50 (1): 19–26.
  • Gleeson, T., L. Marklund, L. Smith, and A. H. Manning. 2011. Classifying the water table at regional to continental scales. Geophysical Research Letters 38: L05401.
  • Gleeson, T., J. VanderSteen, M. A. Sophocleous, M. Taniguchi, W. M. Alley, D. M. Allen, and Y. Zhou. 2010. Ground water sustainability strategies. Nature Geoscience 3: 378–379.
  • Globensky, Y. 1987. Géologie des basses-terres du Saint-Laurent. Ministère des Richesses naturelles du Québec 63 (v. MM 85-02) (in French).
  • Godbout, P. M., M. Lamothe, V. Horoi, and O. Caron. 2011. Synthèse stratigraphique, cartographie des dépôts quaternaires et modèle hydrostratigraphique régional, secteur de Bécancour, Québec. Rapport final. Université du Québec à Montréal, à l’intention du ministère des Ressources naturelles et de la Faune (MRNF), 37 pp ( in French).
  • Gusyev, M. A., M. Toews, U. Morgenstern, M. Stewart, P. White, C. Daughney, and J. Hadfield. 2013. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand. Hydrology and Earth System Sciences 17 (3): 1217–1227.
  • Haitjema, H., V. Kelson, and W. de Lange. 2001. Selecting MODFlOW cell sizes for accurate flow fields. Ground Water 39 (6): 931–938.
  • Harbaugh, A. W. 2005. MODFLOW-2005, the U.S. Geological Survey modular ground-water model – The ground-water flow process: U.S. Geological Survey techniques and methods 6-A16. Various pp. http://pubs.usgs.gov/tm/2005/tm6A16/.
  • Huntley, D., R. Nommensen, and D. Steffey. 1992. The use of specific capacity to assess transmissivity in fractured-rock aquifers. Ground Water 30 (3): 396–402.
  • Izbicki, J. A., C. L. Stamos, T. Nishikawa, and P. Martin. 2004. Comparison of ground-water flow model particle-tracking results and isotopic data in the Mojave River ground-water basin, southern California, USA. Journal of Hydrology 292 (1–4): 30–47.
  • Juckem, P. F., R. J. Hunt, and M. P. Anderson. 2006. Scale effects of hydrostratigraphy and recharge zonation on base flow. Ground Water 44 (3): 362–370.
  • Lamothe, M. 1989. A new framework for the Pleistocene stratigraphy of the Central St. Lawrence Lowland. Géographie physique et Quaternaire 43 (2): 119–129.
  • Lamothe, M., and G. St-Jacques. 2014. Géologie du Quaternaire des bassins versants des rivières Nicolet et Saint-François, Québec. Rapport présenté au ministère des Ressources Naturelles et de la Faune, Montréal, 31 pp. (in French).
  • Larocque, M., P. G. Cook, K. Haaken, and C. T. Simmons. 2009. Estimating flow using tracers and hydraulics in synthetic heterogenous aquifers. Ground Water 47 (6): 786–796.
  • Larocque, M., S. Gagné, D. Barnetche, G. Meyzonnat, M. H. Graveline, and M. A. Ouellet. 2015. Projet de connaissance des eaux souterraines du bassin versant de la zone Nicolet et de la partie basse de la zone Saint-François - Rapport final. Rapport déposé au Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, 258 pp. (in French)
  • Larocque, M., S. Gagné, L. Tremblay, and G. Meyzonnat. 2013. Projet de connaissance des eaux souterraines du bassin versant de la rivière Bécancour et de la MRC de Bécancour - Rapport final. Rapport déposé au Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, 219 pp. (in French)
  • Lavigne, M. A., M. Nastev, and R. Lefebvre. 2010. Regional sustainability of the Châteauguay River aquifers. Canadian Water Resources Journal 35 (4): 487–502.
  • Levison, J. K., M. Larocque, V. Fournier, S. Gagné, S. Pellerin, and M. A. Ouellet. 2014a. Dynamics of a headwater system and peatland under current condition and with climate change. Hydrological Processes 28: 4808–4822.
  • Levison, J. K., M. Larocque, and M. A. Ouellet. 2014b. Modeling low-flow bedrock springs providing ecological habitats with climate change scenarios. Journal of Hydrology 515: 16–28.
  • Malgrange, J., and T. Gleeson. 2014. Shallow, old, and hydrologically insignificant fault zones in the Appalachian orogen. Journal of Geophysical Research – Solid Earth 119: 346–359. doi:10.1002/2013JB010351.
  • de Marsily, G., F. Delay, J. Gonçalvès, Ph. Renard, V. Teles, and S. Violette. 2005. Dealing with spatial heterogeneity. Hydrogeology Journal 13: 161–183.
  • MDDELCC (Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques). 2013. www.mddelcc.gouv.qc.ca/eau/souterraines/sih/index.htm.
  • Méjean, P., D. Pinti, M. Larocque, G. Bassam, G. Meyzonnat, and S. Gagné. 2017. Processes controlling 234U and 238U isotope fractionation and helium in the groundwater of the St. Lawrence Lowlands, Quebec: The potential role of natural rock fracturing. Applied Geochemistry 66: 198–209.
  • Meriano, M., and N. Eyles. 2003. Groundwater flow through Pleistocene glacial deposit in the rapidly urbanizing Rouge River-Highland Creek watershed, City of Scarborough, southern Ontario, Canada. Hydrogeology Journal 11: 288–303.
  • MERN (Ministry of Energy and Natural Resources). 2013. Digital elevation model. Scale 1:20 000. 10 m resolution. SNRC Sheets: 31I, 21L, 31H, 21E. http://geoboutique.mrnf.gouv.qc.ca.
  • Meyzonnat, G., M. Larocque, F. Barbecot, D. Pinti, and S. Gagné. 2016. The potential of major ion chemistry to assess groundwater vulnerability of a regional aquifer in southern Quebec (Canada). Environmental Earth Sciences 75 (68): 1–12. doi:10.1007/s12665-015-4793-9.
  • Moritz, A., J.-F. Hélie, D. L. Pinti, M. Larocque, D. Barnetche, S. Retailleau, R. Lefebvre, and Y. Gélinas. 2015. Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada). Environmental Science and Technology 49: 4765–4771.
  • Morris, B. L., A. R. L. Lawrence, P. J. C. Chilton, B. Adams, R. C. Calow, and B. A. Klink. 2003. Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management. Early Warning and Assessment Report Series. RS. 03-3. United Nations Environment Programme, Nairobi, Kenya, 126 pp.
  • Niswonger, R. G., S. Panday, and M. Ibaraki. 2011. MODFLOW-NWT, a Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6-A37, 44 p.
  • Occhietti, S., and P. J. H. Richard. 2003. Effet réservoir sur les âges 14C de la Mer de Champlain à la transition Pléistocène-Holocène : révision de la chronologie de la déglaciation au Québec méridional. Géographie Physique et Quaternaire 57: 115–138.
  • Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andreassian, F. Anctil, and C. Loumagne. 2005. Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2 – towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. Journal of Hydrology 303: 290–306.
  • Pandey, V. P., S. Shrestha, S. K. Chapagain, and F. Kazama. 2011. A framework for measuring groundwater sustainability. Environmental Science & Policy 14: 396–407.
  • Person, M., J. McIntosh, V. Bense, and V. H. Remenda. 2007. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems. Reviews of Geophysics 45 (3): RG3007. doi:10.1029/2006RG000206.
  • Phillips, F., and M. C. Castro. 2003. Groundwater dating and residence-time measurements. Treatise of Geochemistry 5: 451–497.
  • Pinti, D. L., Y. Gélinas, M. Larocque, D. Barnetche, S. Retailleau, A. Moritz, J.-F. Hélie, and R. Lefebvre 2013. Concentrations, sources et mécanismes de migration préférentielle des gaz d’origine naturelle (méthane, hélium, radon) dans les eaux souterraines des Basses-Terres du Saint-Laurent. FQRNT ISI n° 171083. Study no. E3-9, 94 pp. (in French).
  • Plummer, L., and P. Glynn. 2013. Radiocarbon dating in groundwater systems. In Isotope methods for dating old groundwater, 33–90. Vienna: International Atomic Energy Agency.
  • Poirier, C. 2012. Estimation préliminaire des débits de base à des sites de stations hydrométriques du Centre d’expertise hydrique du Québec (CEHQ). Contribution au Programme d’acquisition des connaissances sur les eaux souterraines (PACES). MDDELCC, Direction de l’expertise hydrique, Québec.
  • Pollock, D. W. 2016. User Guide for MODPATH Version 7 – A particle tracking model for MODFLOW: U.S. Geological Survey Open-File Report 2016-1086, 35 pp.
  • Portniaguine, O., and D. K. Solomon. 1998. Parameter estimation using groundwater age and head data, Cape Cod. Massachusetts. Water Resources Research 34 (4): 637–645.
  • Przemyslaw, W., A. J. Zurek, C. Stumpp, A. Gemitzi, A. Gargini, M. Filippini, K. Rozanski, J. Meeks, J. Kvaerner, and S. Witczak. 2016. Toward operational methods for the assessment of intrinsic groundwater vulnerability: A review. Critical Reviews in Environmental Science and Technology 46 (9): 827–884.
  • Reilly, T. E., K. F. Dennehy, W. M. Alley, and W. L. Cunningham. 2008. Groundwater availability in the United-States: U.S. Geological Survey Circular 1323, 70 pp.
  • Richard, S. K., R. Chesnaux, A. Rouleau, and R. H. Coupe. 2016. Estimating the reliability of aquifer transmissivity values obtained from specific capacity tests: Example from the Saguenay-Lac-Saint-Jean aquifers, Canada. Hydrological sciences journal 61 (1): 173–185.
  • Rivard, C., R. Lefebvre, and D. Paradis. 2014. Regional recharge estimation using multiple methods: An application in the Annapolis Valley, Nova-Scotia (Canada). Environmental Earth Sciences 71 (3): 1389–1408.
  • Saby, M., M. Larocque, D. L. Pinti, F. Barbecot, Y. Sano, and M. C. Castro. 2016. Linking groundwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec, Canada. Applied Geochemistry 65: 1–13.
  • Saby, M., M. Larocque, D. L. Pinti, F. Barbecot, S. Gagné, D. Barnetche, and H. Cabana. 2017. Regional assessment of concentrations and sources of pharmaceutically active compounds, pesticides, nitrate, and E. coli in post-glacial aquifer environments (Canada). Science of the Total Environment 579: 557–568.
  • Sanford, W. E. 1997. Correcting for diffusion in Carbon-14 dating of groundwater. Groundwater 35 (2): 357–361.
  • Sanford, W. E. 2011. Calibration of models using groundwater age. Hydrogeology Journal 19: 13–16.
  • Sanford, W. E. 2017. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration. Hydrogeology Journal 25: 405–419.
  • Sanford, W. E., L. N. Plummer, D. P. McAda, L. M. Bexfield, and S. K. Anderholm. 2004. Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model. Hydrogeology Journal 12: 389–407.
  • SAS Institute Inc. 2012. JMP® software, Version 12. SAS Institute Inc., Cary, NC., 1997–2016 pp.
  • Scanlon, B. R., R. W. Healy, and P. G. Cook. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10: 18–39.
  • Schlosser, P., M. Stute, C. Sonntag, and K. O. Munnich. 1989. Tritiogenic 3He in shallow groundwaters. Earth Planetary Science Letters 94: 245–256.
  • Sheets, R. A., E. S. Bair, and G. L. Rowe. 1998. Use of3H/3He Ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Ressources Research. 34 (5): 1077–1089.
  • Slivitzky, A., and P. St-Julien. 1987. Compilation géologique de la région de l’Estrie-Beauce. Rapport géologique MM-85-04. Ministère de l’Énergie et des Ressources, Québec ( in French).
  • Suckow, A. 2014. The age of groundwater – Definition, models and why we do not need this term. Applied Geochemistry 50: 222–230.
  • Sulis, M., C. Paniconi, C. Rivard, R. Harvey, and D. Chaumont. 2011. Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model. Water Resources Research 47: W01513. doi:10.1029/2010WR009167.
  • Szabo, Z., D. H. Rice, L. N. Plummer, E. Busenberg, S. Drenkard, and P. Schlosser. 1996. Ages dating of shallow groundwater with chlorofluorocarbons, tritium/helium3, and flow path analysis, southern New Jersey. Water Resources Research 32 (4): 1023–1038.
  • Tamers, M. A. 1975. Validity of radiocarbon dates on groundwater. Geophysical Surveys 2 (2): 217–239.
  • Tolstikhin, I. N., and I. L. Kamenskiy. 1969. Determination of ground-water ages by T-He-3 method. Geochemistry International 6: 810–811.
  • Tran Ngoc, T. D., R. Lefebvre, E. Konstantinovskaya, and M. Malo. 2014. Characterization of deep saline aquifers in the B_ecancour area, St. Lawrence Lowlands, Quebec, Canada: implications for CO2 geological storage. Environmental Earth Sciences 72: 119–146. doi:10.1007/s12665-013-2941-7.
  • Troldborg, L., K. H. Jensen, P. Engesgaard, J. C. Refsgaard, and K. Hinsby. 2008. Using environmental tracers in modelling Flow in a complex shallow aquifer system. Journal of Hydrologic Engineering 13 (11): 1037–1048.
  • Turnadge, C., and B. D. Smerdon. 2014. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. Journal of Hydrology 519: 3674–3689.
  • United-States Department of Agriculture (USDA), Natural Resources Conservation Service. 2004. National Engineering Handbook. Part 630: Hydrology. Chapter 10: Estimation of Direct Runoff From Rainfall, 79. 210-VI-NEH, July 2004.
  • Vautour, G., D. L. Pinti, P. Méjean, M. Saby, G. Meyzonnat, M. Larocque, M. C. Castro, C. M. Hall, M. C. Boucher, E. Rouleau, F. Barbecot, N. Takahata, and Y. Sano. 2015. 3H/3He, 14C and (U-Th)/He groundwater ages in the St. Lawrence Lowlands, Quebec, Eastern Canada. Chemical Geology 413: 94–106.
  • Voss, C. I. 2011. Editor’s message: Groundwater modelling fantasies – Part 1, adrift in the details. Hydrogeology Journal 19: 1281–1284.
  • Wassenaar, L. I., and M. J. Hendry. 2000. Mechanisms controlling the distribution and transport of 14C in a clay-rich till aquitard. Ground Water 38 (3): 343–349.
  • Weise, S., and H. Moser. 1987. Groundwater dating with helium isotopes. Techniques in water resource development, 105–126. Wien: IAEA.
  • Wen, T., M. C. Castro, C. M. Hall, D. L. Pinti, and K. C. Lohmann. 2016. Constraining groundwater flow in the glacial drift and Saginaw aquifers in the Michigan basin through helium concentrations and isotopic ratios. Geofluids 16: 3–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.