391
Views
1
CrossRef citations to date
0
Altmetric
Articles

Regional groundwater flow dynamics and residence times in Chaudière-Appalaches, Québec, Canada: Insights from numerical simulations

, &
Pages 214-239 | Received 15 Sep 2017, Accepted 02 Feb 2018, Published online: 15 Apr 2018

References

  • Anderson, M. P., W. W. Woessner, and R. J. Hunt. 2015. Applied groundwater modeling, 2nd ed. Elsevier.
  • Benoît, N., D. Blanchette, M. Nastev, V. Cloutier, M. Parent, D. Marcotte, M. Brun Koné, and J. W. Molson. 2011. Groundwater geochemistry of the lower Chaudière river Watershed, Québec, Canada. In Proc. Geohydro2011, Joint IAH-CNC, CANQUA and AHQ conference, Quebec City, Canada, August 28-31, 2011, Paper DOC-2209, 8pp.
  • Benoît, N., J. W. Molson, M. Y. Brun Koné, and M. Nastev. 2015. Modèle hydrogéologique 3D du bassin versant de la rivière Chaudière : Open File 7734. Quebec: Geological Survey of Canada, 32 pp. doi:10.4095/295674.
  • Benoît, N., M. Nastev, D. Blanchette, and J. Molson. 2014. Hydrogeology and hydrogeochemistry of the Chaudière River watershed aquifers, Québec, Canada. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques 39 (1): 32–48. doi:10.1080/07011784.2014.881589.
  • Bense, V. F., T. Gleeson, S. E. Loveless, O. Bour, and J. Scibek. 2013. Fault zone hydrogeology. Earth-Science Reviews 127: 171–192. doi:10.1016/j.earscirev.2013.09.008.
  • Bethke, C. M., and T. M. Johnson. 2008. Groundwater age and groundwater age dating (review-article). http://www.annualreviews.org.acces.bibl.ulaval.ca/doi/10.1146/annurev.earth.36.031207.124210 (accessed April 7 2017).
  • Birdsell, D. T., H. Rajaram, D. Dempsey, and H. S. Viswanathan. 2015. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resources Research 51 (9): 7159–7188. doi:10.1002/2015WR017810.
  • Bordeleau, G., C. Rivard, D. Lavoie, A. Mort, J. Ahad, X. Malet, and X. Xu. 2015. Identifying the source of methane in groundwater in a ‘virgin’ area with regards to shale gas exploitation: A multi-isotope approach. Procedia Earth and Planetary Science 13: 219–222. doi:10.1016/j.proeps.2015.07.052.
  • Bordeleau, G., C. Rivard, D. Lavoie, R. Lefebvre, X. Malet, and P. Ladevèze. 2018. Geochemistry of groundwater in the Saint-Édouard area, Quebec, Canada, and its influence on the distribution of methane in shallow aquifers. Applied Geochemistry 89 : 92–108. doi:10.1016/j.apgeochem.2017.11.012.
  • Brun Koné, M. Y. 2013. Développement d’un modèle numérique d’écoulement 3D des eaux souterraines du bassin versant de la Rivière Chaudière, Québec. M.Sc. thesis, Université Laval. http://theses.ulaval.ca/archimede/meta/29257
  • Caine, J. S., J. P. Evans, and C. B. Forster. 1996. Fault zone architecture and permeability structure. Geology 24 (11): 1025–1028.
  • Canadian Council of Academies (CCA). 2014. Environmental impacts of Shale Gas extraction in Canada, eds J. Cherry, et al., May. http://www.scienceadvice.ca/en/assessments/completed/shale-gas.aspx.
  • Caron, O. 2012. Synthèse et modèle cartographique 3D des Dépôts Quaternaires pour les Bassins-Versants des Rivières Chaudière et Saint-François: Géochronologie, Sédimentologie et Paléogéographie Wisconsinienne du sud du Québec. PhD diss., Université du Québec à Montréal.
  • Carrier, A., N. Benoît, M. Nastev, N. Roy, E. Beaudoin, P. Giguère, and P. Bouffard. 2014. Atlas des Eaux Souterraines du Bassin Versant de la Rivière Chaudière: Secteur de la Basse-Chaudière et de la Moyenne-Chaudière: Dossier Public No. DP7284. Sainte-Marie: Commission Géologique du Canada, 199 pp.
  • Castonguay, S., J. Dietrich, D. Lavoie, and J. Y. Laliberté. 2010. Structure and petroleum plays of the St. Lawrence platform and Appalachians in southern Quebec: Insights from interpretation of MRNQ seismic reflection data. Bulletin of Canadian Petroleum Geology 58 (3): 219–234.
  • Cloutier, V., R. Lefebvre, M. M. Savard, É. Bourque, and R. Therrien. 2006. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeology Journal 14 (4): 573–590. doi:10.1007/s10040-005-0002-3.
  • Cochand, F. 2014. Impact des changements climatiques et du développement urbain sur les ressources en eaux du bassin versant de la rivière Saint-Charles. PhD diss., Université Laval.
  • Croteau, A., M. Nastev, and R. Lefebvre. 2010. Groundwater recharge assessment in the Chateauguay River watershed. Canadian Water Resources Journal 35 (4): 451–468.
  • Crow, H. L., and P. Ladevèze. 2015. Downhole geophysical data collected in 11 boreholes near St-Édouard-de-Lotbinière: Open file 7768. Québec: Geological Survey of Canada, 48pp.
  • Doherty, J. 2015. Calibration and uncertainty analysis for complex environmental models. Brisbane, Australia: Watermark Numerical Computing.
  • Domenico, P. A., and F. W. Schwartz. 1998. Physical and chemical hydrogeology. vol. 506. New York, NY: Wiley.
  • Flewelling, S. A., and M. Sharma. 2014. Constraints on upward migration of hydraulic fracturing fluid and brine. Groundwater 52 (1): 9–19. doi:10.1111/gwat.12095.
  • Freeze, R. A., and J. A. Cherry. 1979. Groundwater, 604 pp. Englewood Cliffs, NJ: Prentice-Hall Inc.
  • Gassiat, C., T. Gleeson, R. Lefebvre, and J. McKenzie. 2013. Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resources Research 49 (12): 8310–8327. doi:10.1002/2013WR014287.
  • Gleeson, T., L. Smith, N. Moosdorf, J. Hartmann, H. H. Dürr, A. H. Manning, L. P. H. van Beek, and A. M. Jellinek. 2011. Mapping permeability over the surface of the Earth. Geophysical Research Letters 38: L02401. doi:10.1029/2010GL045565.
  • Globensky, Y. 1987. Geology of the St. Lawrence Lowlands MM, 85-02. Quebec: Quebec Ministry of Energy and Resources.
  • Goderniaux, P., P. Davy, E. Bresciani, J.-R. de Dreuzy, and T. Le Borgne. 2013. Partitioning a regional groundwater flow system into shallow, local and deep regional flow compartments. Water Resources Research 49: 2274–2286.
  • Goode, D. J. 1996. Direct simulation of groundwater age. Water Resources Research 32 (2): 289–296. doi:10.1029/95WR03401.
  • Graf, T. 2015. Physically-based assessment of intrinsic groundwater resource vulnerability. PhD diss., Université Laval.
  • Grasby, S. E., D. M. Allen, S. Bell, Z. Chen, G. Ferguson, A. Jessop, M. Kelman, et al. 2011. Geothermal energy resource potential of Canada: Open file 6914. Ottawa: Geological Survey of Canada.
  • Hayley, K., J. Schumacher, G. J. MacMillan, and L. C. Boutin. 2014. Highly parameterized model calibration with cloud computing: An example of regional flow model calibration in northeast Alberta, Canada. Hydrogeology Journal 22 (3): 729–737. doi:10.1007/s10040-014-1110-8.
  • Hiscock, K. M., and V. F. Bense. 2014. Hydrogeology: Principles and practice. Chichester: John Wiley and Sons.
  • Janos, D., 2017. Regional groundwater flow dynamics and residence times in Chaudière-Appalaches, Québec, Canada: Insights from numerical simulations. MSc. Thesis, Université Laval.
  • Kazemi, G. A., J. H. Lehr, and P. Perrochet. 2006. Groundwater age. Hoboken: John Wiley and Sons, 325pp.
  • Kissinger, A., R. Helmig, A. Ebigbo, H. Class, T. Lange, M. Sauter, M. Heitfeld, J. Klünker, and W. Jahnke. 2013. Hydraulic fracturing in unconventional gas reservoirs: Risks in the geological system, part 2. Environmental Earth Sciences 70 (8): 3855–3873. doi:10.1007/s12665-013-2578-6.
  • Ladevèze, P. 2017. Aquifères superficiels et ressources profondes : le rôle des failles et des réseaux de fractures naturelles sur la circulation des fluides. Ph.D. diss., Université du Québec, Institut national de la recherche scientifique, Centre Eau Terre Environnement.
  • Ladevèze, P., C. Rivard, R. Lefebvre, D. Lavoie, M. Parent, X. Malet, G. Bordeleau, and J.S. Gosselin. 2016. Travaux de caractérisation hydrogéologique dans la plateforme sédimentaire du Saint-Laurent, région de Saint-Édouard-de-Lotbinière, Québec: Dossier public 8036. Québec: Commission géologique du Canada, 112 pp. doi:10.4095/297891
  • Lange, T., M. Sauter, M. Heitfeld, K. Schetelig, K. Brosig, W. Jahnke, A. Kissinger, R. Helmig, A. Ebigbo, and H. Class. 2013. Hydraulic fracturing in unconventional gas reservoirs: Risks in the geological system part 1. Environmental Earth Sciences 70 (8): 3839–3853. doi:10.1007/s12665-013-2803-3.
  • Laurencelle, M., R. Lefebvre, C. Rivard, M. Parent, P. Ladevèze, N. Benoît, and M.-A. Carrier. 2013. Modeling the evolution of the regional fractured-rock aquifer system in the Northern Lake Champlain watershed following last deglaciation. GéoMontréal2013, 66th Canadian Geotechnical Conference and the 11th Joint CGS/IAH-CNC Groundwater Conference, Montreal, Quebec, Canada, September 29 to October 3.
  • Lavigne, M.-A., M. Nastev, and R. Lefebvre. 2010. Numerical simulation of groundwater flow in the Chateauguay River aquifers. Canadian Water Resources Journal 35 (4): 469–486.
  • Lavoie, D., N. Pinet, G. Bordeleau, O. H. Ardakani, P. Ladevèze, M. J. Duchesne, C. Rivard, et al. 2016. The Upper Ordovician black shales of southern Quebec (Canada) and their significance for naturally occurring hydrocarbons in shallow groundwater. International Journal of Coal Geology 158: 44–64. doi:10.1016/j.coal.2016.02.008.
  • Lavoie, D., C. Rivard, R. Lefebvre, S. Séjourné, R. Thériault, M.J. Duchesne, J. Ahad, B. Wang, N. Benoît, and C. Lamontagne. 2014 The Utica Shale and gas play in southern Quebec: Geological and hydrogeological synthesis and methodological approaches to groundwater risk evaluation. International Journal of Coal Geology (IJCG) 126: 77–91. Special issue on potential environmental impacts of unconventional fossil energy development, D.J. Soeder and M.A. Engle, Ed. doi: 10.1016/j.coal.2013.10.011.
  • Lefebvre, R. 2017. Mechanisms leading to potential impacts of shale gas development on groundwater quality. Wiley Interdisciplinary Reviews: Water 4(1): January/February 2017, 15 p. doi: 10.1002/wat2.1188.
  • Lefebvre, R., J. M. Ballard, M.-A. Carrier, H. Vigneault, C. Beaudry, L. Berthot, G. Légaré-Couture, et al. 2015. Portrait des ressources en eau souterraine en Chaudière-Appalaches, Québec, Canada (No. Rapport final INRS R-1508). Projet réalisé conjointement par l’Institut national de la recherche scientifique (INRS), l’Institut de recherche et développement en agroenvironnement (IRDA) et le Regroupement des organismes de bassins versants de la Chaudière-Appalaches (OBV-CA) dans le cadre du Programme d’acquisition de connaissances sur les eaux souterraines (PACES).
  • L’Heureux, J. 2005. Développement d’une Procédure d’Evaluation de la Recharge pour le Modèle Hydrogéologique MODFLOW à Partir du Modèle Hydrologique HYDROTEL. MSc thesis, Institut National de la Recherche Scientifique (INRS-ETE), Québec.
  • Lichtner, P. C., S. Kelkar, and B. Robinson. 2002. New form of dispersion tensor for axisymmetric porous media with implementation in particle tracking. Water Resources Research 38: 8.
  • McCormack, R. 1982. Étude hydrogéologique du bassin de la Chaudière (Programme de connaissance intégrées No. EI-1). Québec: Ministère de l’Environnement du Québec, Direction générale des inventaires et de la recherche.
  • Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques, MDDELCC. 2017. Programme d’acquisition de connaissances sur les eaux souterraines. http://www.mddelcc.gouv.qc.ca/eau/souterraines/programmes/acquisition-connaissance.htm (accessed May, 2017).
  • Molson, J. W., and E. O. Frind. 2012. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. Journal of Contaminant Hydrology 127 (1-4): 76–87. doi:10.1016/j.jconhyd.2011.06.001.
  • Molson, J.W. and E.O. Frind. 2017. FLONET/TR2 User Guide, A two-dimensional simulator for groundwater flownets, contaminant transport and residence time, Version 5. Université Laval and University of Waterloo, 57 pp.
  • Montcoudiol, N., J. Molson, and J.-M. Lemieux. 2017. Numerical modelling in support of a conceptual model for groundwater flow and geochemical evolution in the southern Outaouais Region, Quebec, Canada. Canadian Water Resources Journal. Special Issue on Quebec PACES Projects. http://www.tandfonline.com/doi/full/10.1080/07011784.2017.1323560
  • Montgomery, S., D. Jarvie, K. Bowker, and R. Pollastro. 2005. Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential. AAPG Bull 89 (2): 155–175.
  • Moritz, A., J. F. Hélie, D. L. Pinti, M. Larocque, D. Barnetche, S. Retailleau, R. Lefebvre, and Y. Gélinas. 2015. Methane baseline concentrations and sources in shallow aquifers from the shale gas-prone region of the St. Lawrence Lowlands (Quebec, Canada). Environmental Science and Technology 49 (7): 4765–4771. doi:10.1021/acs.est.5b00443.
  • Nastev, M., M. M. Savard, P. Lapcevic, R. Lefebvre, and R. Martel. 2004. Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada. Hydrogeology Journal 12 (3): 257–269. doi:10.1007/s10040-004-0340-6.
  • Nastev, M., A. Rivera, R. Lefebvre, R. Martel, and M. Savard. 2005. Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada. Hydrogeology Journal 13 (5-6): 835–848.
  • Neuzil, C. E. 1994. How permeable are clays and shales? Water Resources Research 30 (2): 145–150.
  • Nowamooz, A., J.-M. Lemieux, J. Molson, and R. Therrien. 2015. Numerical investigation of methane and formation fluid leakage along the casing of a decommissioned shale gas well. Water Resources Research 51 (6): 4592–4622. doi:10.1002/2014WR016146.
  • Parent, M., and S. Occhietti. 1988. Late Wisconsinan deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie physique et Quaternaire 42 (3): 215–246. doi:10.7202/032734ar.
  • Pinti, D. L., Y. Gélinas, M. Larocque, D. Barnetche, S. Retailleau, A. Moritz, J. Hélie, and R. Lefebvre. 2013. Concentrations, sources et mécanismes de migration préférentielle des gaz d’origine naturelle (méthane, hélium, radon) dans les eaux souterraines des Basses-Terres du Saint-Laurent. Volet Géochimie. Étude E3–9, FQRNT ISI n° 171083. UQAM, U. Concordia, INRS-ETE, 94pp.
  • Révész, K. M., K. J. Breen, A. J. Baldassare, and R. C. Burruss. 2010. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. Applied Geochemistry 25 (12): 1845–1859. doi:10.1016/j.apgeochem.2010.09.011.
  • Rivard, C., D. Lavoie, R. Lefebvre, S. Séjourné, C. Lamontagne, E.G. Johnson, and M.J. Duchesne. 2014. An overview of Canadian shale gas production and environmental concerns. Online December 18, 2013, International Journal of Coal Geology (IJCG) 126: 64–76. doi: 10.1016/j.coal.2013.12.004.
  • Rousseau, A. N., A. Mailhot, M. Slivitzky, J.-P. Villeneuve, M. J. Rodriguez, and A. Bourque. 2004. Usages et approvisionnement en eau dans le sud du Québec Niveau des connaissances et axes de recherche à privilégier dans une perspective de changements climatiques. Canadian Water Resources Journal / Revue canadienne des ressources hydriques 29 (2): 121–134. doi:10.4296/cwrj121.
  • Roy, N., J. Molson, J.-M. Lemieux, D. Van Stempvoort, and A. Nowamooz. 2016. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers. Water Resources Research 52 (7): 5598–5618. doi:10.1002/2016WR018686.
  • Saby, M., M. Larocque, D. L. Pinti, F. Barbecot, Y. Sano, and M. C. Castro. 2016. Linking groundwater quality to residence times and regional geology in the St. Lawrence Lowlands, southern Quebec, Canada. Applied Geochemistry 65: 1–13. doi:10.1016/j.apgeochem.2015.10.011.
  • Schulze-Makuch, D. 2005. Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43 (3): 443–456. doi:10.1111/j.1745-6584.2005.0051.x.
  • Schulze-Makuch, D., D. A. Carlson, D. S. Cherkauer, and P. Malik. 1999. Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37 (6): 904–919. doi:10.1111/j.1745-6584.1999.tb01190.x.
  • Scibek, J., T. Gleeson, and J. M. McKenzie. 2016. The biases and trends in fault zone hydrogeology conceptual models: Global compilation and categorical data analysis. Geofluids 16 (4): 782–798. doi:10.1111/gfl.12188.
  • Séjourné, S., R. Lefebvre, X. Malet, and D. Lavoie. 2013. Synthèse géologique et hydrogéologique du Shale d’Utica et des unités sus-jacentes (Lorraine, Queenston et dépôts meubles), Basses-Terres du Saint-Laurent, Québec (No. 7338). Québec: Commission géologique du Canada. http://geoscan.ess.nrcan.gc.ca/cgi-bin/starfinder/0?path=geoscan.flandid=fastlinkandpass=andsearch=R%3D292430andformat=FLFULL
  • Siade, A., T. Nishikawa, and P. Martin. 2015. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA). Hydrogeology Journal 23 (6): 1267–1291. doi:10.1007/s10040-015-1281-y.
  • Slivitzky, A., and P. St-Julien. 1987. Compilation géologique de la région de l’Estrie-Beauce. Québec: Ministère de l’énergie et des ressources, Direction générale de l’exploration géologique et minérale, Direction de la recherche géologique, Service de la géologie.
  • Soeder, D. 1988. Porosity and permeability of eastern Devonian gas shale. SPE Formation Evaluation 3 (1): 116–124. doi:10.2118/15213-PA.
  • Tecsult. 2008. Cartographie hydrogéologique du bassin versant de la rivière Chaudière - Secteurs de la Basse-Chaudière et de la Moyenne-Chaudière . Étude réalisée dans le cadre du Projet eaux souterraines de la Chaudière, financé par le Programme d’approvisionnement en eau Canada, Québec (PAECQ) et géré par le Conseil pour le développement de l’agriculture du Québec (CDAQ), 142 pp.
  • Thériault, R. 2012. Caractérisation du Shale d’Utica et du Groupe de Lorraine, Basses-Terres du Saint-Laurent-Partie 1: Compilation des données DV 2012–3. Québec: Ministère des Ressources naturelles et de la Faune, SIGEOM, 212pp.
  • Tóth, J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal 7 (1): 1–14. doi:10.1007/s100400050176.
  • Tóth, J. 2009. Gravitational systems of groundwater flow: Theory, evaluation, utilization. New York: Cambridge University Press. doi:10.1017/CBO9780511576546.
  • Tran Ngoc, T. D., R. Lefebvre, E. Konstantinovskaya, and M. Malo. 2014. Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: Implications for CO2 geological storage. Environmental Earth Sciences 72 (1): 119–146. doi:10.1007/s12665-013-2941-7.
  • Vautour, G., D. L. Pinti, P. Méjean, M. Saby, G. Meyzonnat, M. Larocque, M. C. Castro, et al. 2015. 3H/3He, 14C and (U–Th)/He groundwater ages in the St. Lawrence Lowlands, Quebec, Eastern Canada. Chemical Geology 413: 94–106. doi:10.1016/j.chemgeo.2015.08.003.
  • Vengosh, A., R. B. Jackson, N. Warner, T. H. Darrah, and A. Kondash. 2014. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science and Technology 48 (15): 8334–8348. doi:10.1021/es405118y.
  • Vogel, J. C. 1967. Investigation of groundwater flow with radiocarbon, Isotopes in Hydrology, International Atomic Energy Agency, Vienna, Austria; International Union of Geodesy and Geophysics, University of Colorado, Boulder, CO, USA; 355–369 (accessed May 1967); Symposium on isotopes in hydrology; Vienna, Austria (accessed November 14–18, 1966).
  • Warner, N. R., R. B. Jackson, T. H. Darrah, S. G. Osborn, A. Down, K. Zhao, A. White, and A. Vengosh. 2012. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences 109 (30): 11961–11966.
  • Xu, M., and Y. Eckstein. 1995. Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33 (6): 905–908. doi:10.1111/j.1745-6584.1995.tb00035.x.
  • Zhang, Y., C. W. Gable, and M. Person. 2006. Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale flow simulations. Water Resources Research 42 (5): W05404. doi:10.1029/2005WR004720.
  • Zhu, J., C. L. Winter, and Z. Wang. 2015. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream–aquifer exchanges. Hydrology and Earth System Sciences 19 (11): 4531–4545. doi:10.5194/hess-19-4531-2015.
  • Zijl, W. 1999. Scale aspects of groundwater flow and transport systems. Hydrogeology Journal 7 (1): 139–150. doi:10.1007/s100400050185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.