323
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Technical guidelines for future intensity–duration–frequency curve estimation in Canada

ORCID Icon, ORCID Icon & ORCID Icon
Pages 87-104 | Received 16 Feb 2020, Accepted 18 Mar 2021, Published online: 24 Apr 2021

References

  • Alila, Y. 1999. “A Hierarchical Approach for the Regionalization of Precipitation Annual Maxima in Canada.” Journal of Geophysical Research: Atmospheres 104 (D24): 31645–31655. doi:10.1029/1999JD900764.
  • Asong, Z., M. Khaliq, and H. Wheater. 2015. “Regionalization of Precipitation Characteristics in the Canadian Prairie Provinces Using Large–Scale Atmospheric Covariates and Geophysical Attributes.” Stochastic Environmental Research and Risk Assessment 29 (3): 875–892. doi:10.1007/s00477-014-0918-z.
  • Ball, J., M. Babister, R. Nathan, W. Weeks, E. Weinmann, M. Retallick, and I. Testoni, eds. 2019. Australian Rainfall and Runoff: A Guide to Flood Estimation. Commonwealth of Australia. http://arr.ga.gov.au/arr-guideline
  • Beck, H. E., E. F. Wood, M. Pan, C. K. Fisher, D. G. Miralles, A. I. J. M. Van Dijk, T. R. McVicar, and R. F. Adler. 2019. “MSWEP V2 Global 3–Hourly 0.1° Precipitation: Methodology and Quantitative Assessment.” Bulletin of the American Meteorological Society 100 (3): 473–500. doi:10.1175/BAMS-D-17-0138.1.
  • Berg, P., O. B. Christensen, K. Klehmet, G. Lenderink, J. Olsson, C. Teichmann, and W. Yang. 2019. “Summertime Precipitation Extremes in a EURO–CORDEX 0.11 Degrees Ensemble at an Hourly Resolution.” Natural Hazards and Earth System Sciences 19 (4): 957–971. doi:10.5194/nhess-19-957-2019.
  • Burn, D. H. 1990. “Evaluation of Regional Flood Frequency Analysis with a Region of Influence Approach.” Water Resources Research 26 (10): 2257–2265. doi:10.1029/WR026i010p02257.
  • Burn, D. H. 2003. “The Use of Resampling for Estimating Confidence Intervals for Single Site and Pooled Frequency Analysis/Utilisation D'un Rééchantillonnage Pour L'Estimation Des Intervalles de Confiance Lors D'Analyses Fréquentielles Mono et Multi–Site.” Hydrological Sciences Journal 48 (1): 25–38. doi:10.1623/hysj.48.1.25.43485.
  • Burn, D. H. 2014. “A Framework for Regional Estimation of Intensity–Duration–Frequency (IDF) Curves.” Hydrological Processes 28 (14): 4209–4218. doi:10.1002/hyp.10231.
  • Burn, D. H., and A. Taleghani. 2013. “Estimates of Changes in Design Rainfall Values for Canada.” Hydrological Processes 27 (11): 1590–1599. doi:10.1002/hyp.9238.
  • Cannon, A. J. 2018. “Multivariate Quantile Mapping Bias Correction: An N–Dimensional Probability Density Function Transform for Climate Model Simulations of Multiple Variables.” Climate Dynamics 50 (12): 31–49. doi:10.1007/s00382-017-3580-6.
  • Charron, I. 2014. A Guidebook on Climate Scenarios: Using Climate Information to Guide Adaptation Research and Decisions, 86. Canada: Ouranos.
  • Cheng, L., A. AghaKouchak, E. Gilleland, and R. W. Katz. 2014. “Non-Stationary Extreme Value Analysis in a Changing Climate.” Climatic Change 127 (2): 353–369. doi:10.1007/s10584-014-1254-5.
  • CSA. 2019. CSA plus 4013:19. Technical Guide: Development, Interpretation and Use of Rainfall Intensity-Duration-Frequency (IDF) Information: Guideline for Canadian Water Resources Practitioners, 126. Toronto, Ontario, Canada: Canadian Standards Association.
  • Dalrymple, T. 1960. “Flood Frequency Analyses.” U.S. Geological Survey Water-Supply Paper 1543A: 11–51.
  • DeGaetano, A. T., and C. M. Castellano. 2017. “Future Projections of Extreme Precipitation Intensity–Duration–Frequency Curves for Climate Adaptation Planning in New York State.” Climate Services 5: 23–35. doi:10.1016/j.cliser.2017.03.003.
  • ECCC. 2014. “Engineering Climate Datasets, Intensity–Duration–Frequency (IDF) Files.” v2.30 2014‐12‐21. Accessed January 2018. http://climate.weather.gc.ca/prods_servs/engineering_e.html
  • ECCC. 2020. “Engineering Climate Datasets, Intensity–Duration–Frequency (IDF) Files.” v3.10 2020-03-27. Accessed September 2020. https://climate.weather.gc.ca/prods_servs/engineering_e.html
  • Ganguli, P., and P. Coulibaly. 2017. “Does Nonstationarity in Rainfall Require Nonstationary Intensity–Duration–Frequency Curves?” Hydrology and Earth System Sciences 21 (12): 6461–6483. doi:10.5194/hess-21-6461-2017.
  • Ganguli, P., and P. Coulibaly. 2019. “Assessment of Future Changes in Intensity–Duration–Frequency Curves for Southern Ontario Using North American (NA)–CORDEX Models with Nonstationary Methods.” Journal of Hydrology: Regional Studies 22: 100587.
  • Hassanzadeh, E., A. Nazemi, J. Adamowski, T. H. Nguyen, and V. T. V. Nguyen. 2019. “Quantile–Based Downscaling of Rainfall Extremes: Notes on Methodological Functionality, Associated Uncertainty and Application in Practice.” Advances in Water Resources. 131: 103371. doi:10.1016/j.advwatres.2019.07.001.
  • Hogg, W. D., D. A. Carr, and B. Routledge. 1989. Rainfall Intensity–Duration–Frequency Values for Canadian Locations. Ontario: Environment Canada, Atmospheric Environment Service, Downsview.
  • Hosking, J. R. M., and J. R. Wallis. 1997. Regional Frequency Analysis: An Approach Based on L–Moments, 240. New York: Cambridge University Press.
  • Innocenti, S., A. Mailhot, and A. Frigon. 2017. “Simple Scaling of Extreme Precipitation in North America.” Hydrology and Earth System Sciences 21 (11): 5823–5846. doi:10.5194/hess-21-5823-2017.
  • Innocenti, S., A. Mailhot, A. Frigon, A. J. Cannon, and M. Leduc. 2019. “Observed and Simulated Precipitation over Northeastern North America: How Do Daily and Sub–Daily Extremes Scale in Space and Time?” Journal of Climate 32 (24): 8563–8582.
  • Institute of Hydrology. 1999. Flood Estimation Handbook (five volumes). Center for Ecology & Hydrology.
  • Khalili, M., and V. T. V. Nguyen. 2018. “A Perfect Prognosis Approach for Daily Precipitation Series in Consideration of Space–Time Correlation Structure.” Stochastic Environmental Research and Risk Assessment 32 (12): 3333–3364. doi:10.1007/s00477-018-1625-y.
  • Kotamarthi, R., L. Mearns, K. Hayhoe, C. L. Castro, and D. Wuebble. 2016. Use of Climate Information for Decision–Making and Impacts Research: State of Our Understanding, 55. Prepared for the Department of Defense, Strategic Environmental Research and Development Program.
  • Kuo, C., T. Y. Gan, and M. Gizaw. 2015. “Potential Impact of Climate Change on Intensity Duration Frequency Curves of Central Alberta.” Climatic Change 130 (2): 115–129. doi:10.1007/s10584-015-1347-9.
  • Li, J., A. Sharma, F. Johnson, and J. Evans. 2015. “Evaluating the Effect of Climate Change on Areal Reduction Factors Using Regional Climate Model Projections.” Journal of Hydrology 528: 419–434. doi:10.1016/j.jhydrol.2015.06.067.
  • Li, J., J. Evans, F. Johnson, and A. Sharma. 2017. “A Comparison of Methods for Estimating Climate Change Impact on Design Rainfall Using a High–Resolution RCM.” Journal of Hydrology 547: 413–427. doi:10.1016/j.jhydrol.2017.02.019.
  • Mailhot, A., I. Beauregard, G. Talbot, D. Caya, and S. Biner. 2012. “Future Changes in Intense Precipitation over Canada Assessed from Multi‐Model NARCCAP Ensemble Simulations.” International Journal of Climatology 32 (8): 1151–1163. doi:10.1002/joc.2343.
  • Mailhot, A., S. Lachance–Cloutier, G. Talbot, and A. Favre. 2013. “Regional Estimates of Intense Rainfall Based on the Peak–over–Threshold (POT) Approach.” Journal of Hydrology 476: 188–199. doi:10.1016/j.jhydrol.2012.10.036.
  • Maraun, D. 2013. “Bias Correction, Quantile Mapping, and Downscaling: Revisiting the Inflation Issue.” Journal of Climate 26 (6): 2137–2143. doi:10.1175/JCLI-D-12-00821.1.
  • Maraun, D. 2016. “Bias Correcting Climate Change Simulations – A Critical Review.” Current Climate Change Reports 2 (4): 211–220. doi:10.1007/s40641-016-0050-x.
  • Martel, J. L., A. Mailhot, F. Brissette, and D. Caya. 2018. “Role of Natural Climate Variability in the Detection of Anthropogenic Climate Change Signal for Mean and Extreme Precipitation at Local and Regional Scales.” Journal of Climate 31 (11): 4241–4263. doi:10.1175/JCLI-D-17-0282.1.
  • McKenney, D. W., M. F. Hutchinson, P. Papadopol, K. Lawrence, J. Pedlar, K. Campbell, E. Milewska, R. Hopkinson, D. Price, and T. Owen. 2011. “Customized Spatial Climate Models for North America.” Bulletin of American Meteorological Society 92 (12): 1612–1622.
  • Mearns, L. O, et al. 2017. The NA–CORDEX Dataset, Version 1.0. Boulder, CO: NCAR Climate Data Gateway. Accessed December 2018. doi: doi:10.5065/D6SJ1JCH.
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. “Climate Change. Stationarity Is Dead: Whither Water Management?” Science (New York, N.Y.) 319 (5863): 573–574. doi:10.1126/science.1151915.
  • Mladjic, B., L. Sushama, M. Khaliq, R. Laprise, D. Caya, and R. Roy. 2011. “Canadian RCM Projected Changes to Extreme Precipitation Characteristics over Canada.” Journal of Climate 24 (10): 2565–2584. doi:10.1175/2010JCLI3937.1.
  • Monette, A., L. Sushama, M. Khaliq, R. Laprise, and R. Roy. 2012. “Projected Changes to Precipitation Extremes for Northeast Canadian Watersheds Using a Multi‐RCM Ensemble.” Journal of Geophysical Research: Atmospheres 117: D13106.
  • Nguyen, T. H., and V. T. V. Nguyen. 2018. “A Novel Scale–Invariance Generalized Extreme Value Model Based on Probability Weighted Moments for Estimating Extreme Design Rainfalls in the Context of Climate Change.” In World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro–Climate/Climate Change, 251–261. Reston, VA: American Society of Civil Engineers.
  • Nguyen, T. H., and V. T. V. Nguyen. 2019. “Decision–Support Tool for Constructing Robust Rainfall IDF Relations in Consideration of Model Uncertainty.” Journal of Hydrologic Engineering 24 (7): 06019004. doi:10.1061/(ASCE)HE.1943-5584.0001802.
  • Nguyen, V. T. V., T. D. Nguyen, and A. Cung. 2007. “A Statistical Approach to Downscaling of Sub–Daily Extreme Rainfall Processes for Climate–Related Impact Studies in Urban Areas.” Water Supply 7 (2): 183–192. doi:10.2166/ws.2007.053.
  • O’Brien, N. L., and D. H. Burn. 2018. “A Nonstationary Peaks–over–Threshold Approach for Modelling Daily Precipitation with Covariate–Dependent Thresholds.” Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques 43 (3): 281–304. doi:10.1080/07011784.2018.1455538.
  • Ouarda, T. B. M. J., L. A. Yousef, and C. Charron. 2019. “Non‐Stationary Intensity–Duration–Frequency Curves Integrating Information Concerning Teleconnections and Climate Change.” International Journal of Climatology 39 (4): 2306–2323. doi:10.1002/joc.5953.
  • Prein, Andreas F., Wolfgang Langhans, Giorgia Fosser, Andrew Ferrone, Nikolina Ban, Klaus Goergen, Michael Keller, et al. 2015. “A Review on Regional Convection‐Permitting Climate Modeling: Demonstrations, Prospects, and Challenges.” Reviews of Geophysics 53 (2): 323–361. doi:10.1002/2014RG000475.
  • Requena, A. I., D. H. Burn, and P. Coulibaly. 2019a. “Pooled Frequency Analysis for Intensity–Duration–Frequency Curve Estimation.” Hydrological Processes 33 (15): 2080–2094. doi:10.1002/hyp.13456.
  • Requena, A. I., D. H. Burn, and P. Coulibaly. 2019b. “Estimates of Gridded Relative Changes in 24–h Extreme Rainfall Intensities Based on Pooled Frequency Analysis.” Journal of Hydrology 577: 123940. doi:10.1016/j.jhydrol.2019.123940.
  • Requena, A. I., T. H. Nguyen, D. Burn, P. Coulibaly, and V. T. V. Nguyen. 2021. “A Temporal Downscaling Approach for Sub–Daily Gridded Extreme Rainfall Intensity Estimation under Climate Change.” Journal of Hydrology Regional Studies 35: 100811. doi:10.1016/j.ejrh.2021.100811.
  • Schardong, A., A. Gaur, S. P. Simonovic, and D. Sandink. 2018. Computerized Tool for the Development of Intensity–Duration–Frequency Curves under a Changing Climate. User’s Manual v.3, “Water Resources Research Report”, 62. Ontario, Canada: The University of Western Ontario, Department of Civil and Environmental Engineering. https://www.idf-cc-uwo.ca.
  • Schardong, A., and S. P. Simonovic. 2019. “Application of Regional Climate Models for Updating Intensity–Duration–Frequency Curves under Climate Change.” International Journal of Environment and Climate Change 9 (5): 311–330. doi:10.9734/ijecc/2019/v9i530117.
  • Shephard, M. W., E. Mekis, R. J. Morris, Y. Feng, X. Zhang, K. Kilcup, and R. Fleetwood. 2014. “Trends in Canadian Short‐Duration Extreme Rainfall: Including an Intensity–Duration–Frequency Perspective.” Atmosphere-Ocean 52 (5): 398–417. doi:10.1080/07055900.2014.969677.
  • Simonovic, S. P., A. Schardong, D. Sandink, and R. Srivastav. 2016. “A Web–Based Tool for the Development of Intensity Duration Frequency Curves under Changing Climate.” Environmental Modelling & Software 81: 136–153. doi:10.1016/j.envsoft.2016.03.016.
  • Sunyer, M. A., I. B. Gregersen, D. Rosbjerg, H. Madsen, J. Luchner, and K. Arnbjerg‐Nielsen. 2015. “Comparison of Different Statistical Downscaling Methods to Estimate Changes in Hourly Extreme Precipitation Using RCM Projections from ENSEMBLES.” International Journal of Climatology 35 (9): 2528–2539. doi:10.1002/joc.4138.
  • Switzman, H., T. Razavi, S. Traore, P. Coulibaly, D. H. Burn, J. Henderson, E. Fausto, and R. Ness. 2017. “Variability of Future Extreme Rainfall Statistics: Comparison of Multiple IDF Projections.” Journal of Hydrologic Engineering 22 (10): 04017046. doi:10.1061/(ASCE)HE.1943-5584.0001561.
  • Tan, X., and T. Y. Gan. 2017. “Non–Stationary Analysis of the Frequency and Intensity of Heavy Precipitation over Canada and Their Relations to Large–Scale Climate Patterns.” Climate Dynamics 48 (910): 2983–3001. doi:10.1007/s00382-016-3246-9.
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook. 2016. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. Oak Ridge, Tennessee: ORNL DAAC. doi: doi:.10.3334/ORNLDAAC/1328.
  • Wang, G., D. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr. 2017. “The Peak Structure and Future Changes of the Relationships between Extreme Precipitation and Temperature.” Nature Climate Change 7 (4): 268–274. doi:10.1038/nclimate3239.
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo. 2014. “The WFDEI Meteorological Forcing Data Set: WATCH Forcing Data Methodology Applied to ERA–Interim Reanalysis Data.” Water Resources Research 50 (9): 7505–7514. doi:10.1002/2014WR015638.
  • Westra, S., H. Fowler, J. Evans, L. Alexander, P. Berg, F. Johnson, E. Kendon, G. Lenderink, and N. Roberts. 2014. “Future Changes to the Intensity and Frequency of Short‐Duration Extreme Rainfall.” Reviews of Geophysics 52 (3): 522–555. doi:10.1002/2014RG000464.
  • Willems, P., K. Arnbjerg-Nielsen, J. Olsson, and V. T. V. Nguyen. 2012. “Climate Change Impact Assessment on Urban Rainfall Extremes and Urban Drainage: Methods and Shortcomings.” Atmospheric Research 103: 106–118. doi:10.1016/j.atmosres.2011.04.003.
  • WMO. 1966. Climatic Change: Report of a working group of the Commission for Climatology. “Technical Note No. 79: World Meteorological Organization.” WMO-No. 195.TP.100.
  • WMO. 2009. Manual on Estimation of Probable Maximum Precipitation (PMP). World Meteorological Organization.
  • Wong, J. S., S. Razavi, B. R. Bonsal, H. S. Wheater, and Z. E. Asong. 2017. “Inter–Comparison of Daily Precipitation Products for Large–Scale Hydro–Climatic Applications over Canada.” Hydrology and Earth System Sciences 21 (4): 2163–2185. doi:10.5194/hess-21-2163-2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.