176
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Photosensitizing properties of dissolved organic carbon in Canadian prairie pothole wetland ponds change in response to sunlight

, & ORCID Icon
Pages 184-201 | Received 24 Mar 2022, Accepted 29 Jul 2022, Published online: 22 Aug 2022

References

  • Amon, R. M. W, and R. Benner. 1996. “Photochemical and Microbial Consumption of Dissolved Organic Carbon and Dissolved Oxygen in the Amazon River System.” Geochimica et Cosmochimica Acta 60 (10): 1783–1792. doi:10.1016/0016-7037(96)00055-5.
  • Amyot, M., D. J. McQueen, G. Mierle, and D. R. Lean. 1994. “Sunlight-Induced Formation of Dissolved Gaseous Mercury in Lake Waters.” Environmental Science & Technology 28 (13): 2366–2371. doi:10.1021/es00062a022.
  • Arts, Michael T., Richard D. Robarts, Fumie Kasai, Marley J. Waiser, Vijay P. Tumber, Amanda J. Plante, Hakumat Rai, et al. 2000. “The Attenuation of Ultraviolet Radiation in High Dissolved Organic Carbon Waters of Wetlands and Lakes on the Northern Great Plains.” Limnology and Oceanography 45 (2): 292–299. doi:10.4319/lo.2000.45.2.0292.
  • Baker, A., E. Tipping, S. A. Thacker, and D. Gondar. 2008. “Relating Dissolved Organic Matter Fluorescence and Functional Properties.” Chemosphere 73 (11): 1765–1772. doi:10.1016/j.chemosphere.2008.09.018.
  • Bro, R, and H. A. L. Kiers. 2003. “A New Efficient Method for Determining the Number of Components in PARAFAC Models.” Journal of Chemometrics 17 (5): 274–286. doi:10.1002/cem.801.
  • Chowdhury, S. 2013. “Trihalomethanes in Drinking Water: Effect of Natural Organic Matter Distribution.” Water SA 39 (1): 1–8. doi:10.4314/wsa.v39i1.1.
  • Coble, P. G., C. E. D. Castillo, and B. Avril. 1998. “Distribution and Optical Properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon.” Deep Sea Research Part II: Topical Studies in Oceanography 45 (10–11): 2195–2223. doi:10.1016/S0967-0645(98)00068-X.
  • Coble, Paula G., Sarah A. Green, Neil V. Blough, and Robert B. Gagosian. 1990. “Characterization of Dissolved Organic Matter in the Black Sea by Fluorescence Spectroscopy.” Nature 348 (6300): 432–435. doi:10.1038/348432a0.
  • Coble, P. G. 1996. “Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy.” Marine Chemistry. 51 (4): 325–346. doi:10.1016/0304-4203(95)00062-3.
  • Coble, P. G. 2007. “Marine Optical Biogeochemistry: The Chemistry of Ocean Color.” Chemical Reviews. 107 (2): 402–418. doi:10.1021/cr050350+.
  • Conly, F. M, and G. van der Kamp. 2001. “Monitoring the Hydrology of Canadian Prairie Wetlands to Detect the Effects of Climate Change and Land Use Changes.” Environmental Monitoring and Assessment 67 (1-2): 195–215. doi:10.1023/a:1006486607040.
  • Cory, R. M., E. W. Boyer, and D. M. McKnight. 2011. “Spectral Methods to Advance Understanding of Dissolved Organic Carbon Dynamics in Forested Catchments.” Forest Hydrology and Biogeochemistry 117 (135). doi:10.1007/978-94-007-1363-5_6.
  • Cory, R. M, and D. M. McKnight. 2005. “Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter.” Environmental Science & Technology 39 (21): 8142–8149. doi:10.1021/es0506962.
  • Cory, Rose M., Collin P. Ward, Byron C. Crump, and George W. Kling. 2014. “Sunlight Controls Water Column Processing of Carbon in Arctic Fresh Waters.” Science (New York, N.Y.) 345 (6199): 925–928. doi:10.1126/science.1253119.
  • Curtis, P. J, and D. W. Schindler. 1997. “Hydrologic Control of Dissolved Organic Matter in Low-Order Precambrian Shield Lakes.” Biogeochemistry 36 (1): 125–138. doi:10.1023/A:1005787913638.
  • Driver, E. A, and D. G. Peden. 1977. “The Chemistry of Surface Water in Prairie Ponds.” Hydrobiologia 53 (1): 33–48. doi:10.1007/BF00021230.
  • Environmental and Climate Change Canada. 2020. https://www.canada.ca/en/environment-climate-change/services/water-overview/sources/wetlands.html
  • Fellman, J. B., E. Hood, and R. G. M. Spencer. 2010. “Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review.” Limnology and Oceanography 55 (6): 2452–2462. doi:10.4319/lo.2010.55.6.2452.
  • Fleck, J. A., G. Gill, B. A. Bergamaschi, T. E. C. Kraus, B. D. Downing, and C. N. Alpers. 2014. “Concurrent Photolytic Degradation of Aqueous Methylmercury and Dissolved Organic Matter.” The Science of the Total Environment 484: 263–275. doi:10.1016/j.scitotenv.2013.03.107.
  • Girard, C., M. Leclerc, and M. Amyot. 2016. “Photodemethylation of Methylmercury in Eastern canadian Arctic Thaw Pond and Lake Ecosystems.” Environmental Science & Technology 50 (7): 3511–3520. doi:10.1021/acs.est.5b04921.
  • Girden, E. R. 1992. ANOVA: Repeated Measures. Sage University Papers Series. Sage Publications, Inc. 07–084.
  • Hall, B. D., G. R. Aiken, D. P. Krabbenhoft, M. Marvin-Dipasquale, and C. M. Swarzenski. 2008. “Wetlands as Principal Zones of Methylmercury Production in Southern Louisiana and the Gulf of Mexico Region.” Environmental Pollution (Barking, Essex : 1987) 154 (1): 124–134. doi:10.1016/j.envpol.2007.12.017.
  • Hammerschmidt, C. R, and W. F. Fitzgerald. 2010. “Iron-Mediated Photochemical Decomposition of Methylmercury in an Arctic Alaskan Lake.” Environmental Science & Technology 44 (16): 6138–6143. doi:10.1021/es1006934.
  • Hansen, A. M., T. E. C. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing, and B. A. Bergamaschi. 2016. “Optical Properties of Dissolved Organic Matter (DOM): Effects of Biological and Photolytic Degradation.” Limnology and Oceanography 61 (3): 1015–1032. doi:10.1002/lno.10270.
  • Hayashi, M. 1996. “Surface-Subsurface Transport Cycle of Chloride Induced by Wetland-Focused Groundwater Recharge.” PhD thesis. University of Waterloo.
  • Hayashi, M., G. van der Kamp, and D. L. Rudolph. 1998. “Water and Solute Transfer between a Prairie Wetland and Adjacent Uplands.” Journal of Hydrology 207 (1–2): 42–55. doi:10.1016/S0022-1694(98)00098-5.
  • Hayashi, M, and G. van der Kamp. 2000. “Simple Equations to Represent the Volume-Area-Depth Relations of Shallow Wetlands in Small Topographic Depressions.” Journal of Hydrology 237 (1–2): 74–85. doi:10.1016/S0022-1694(00)00300-0.
  • Helms, John R., Aron Stubbins, Jason D. Ritchie, Elizabeth C. Minor, David J. Kieber, and Kenneth Mopper. 2008. “Absorption Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and Photobleaching of Chromophoric Dissolved Organic Matter.” Limnology and Oceanography 53 (3): 955–969. doi:10.4319/lo.2008.53.3.0955.
  • Helms, J. R. 2012. “Spectroscopic Characterization of Dissolved Organic Matter: Insights into Composition, Photochemical Transformation and Carbon Cycling. Old Dominion University.” Published Online. doi:10.25777/1y3p-e444.
  • Hiriart-Baer, V. P., N. Diep, and R. E. H. Smith. 2008. “Dissolved Organic Matter in the Great Lakes: role and Nature of Allochthonous Material.” Journal of Great Lakes Research. 34 (3): 383–394. doi:10.3394/0380-1330(2008)34[383:domitg]2.0.co;2.
  • Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J. M. Froidefond, and E. Parlanti. 2009. “Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary.” Organic Geochemistry. 40 (6): 706–719. doi:10.1016/j.orggeochem.2009.03.002.
  • Ishiwatari, R., H. Hamana, and T. Machihara. 1980. “Isolation and Characterization of Polymeric Organic Materials in a Polluted River Water.” Water Research. 14 (9): 1257–1262. doi:10.1016/0043-1354(80)90184-0.
  • Jaffé, R., D. McKnight, N. Maie, et al. 2008. “ Spatial and Temporal Variations in DOM Composition in Ecosystems: The Importance of Long‐Term Monitoring of Optical Properties.” Journal of Geophysical Research: Biogeosciences 113 (G4): G04032. doi:10.1029/2008jg000683.
  • Koehler, Birgit, Tomas Landelius, Gesa A. Weyhenmeyer, Nanako Machida, and Lars J. Tranvik. 2014. “Sunlight‐Induced Carbon Dioxide Emissions from Inland Waters.” Global Biogeochemical Cycles 28 (7): 696–711. doi:10.1002/2014GB004850.
  • Kothawala, D. N., E. von Wachenfeldt, B. Koehler, and L. J. Tranvik. 2012. “Selective Loss and Preservation of Lake Water Dissolved Organic Matter Fluorescence during Long-Term Dark Incubations.” The Science of the Total Environment 433: 238–246. doi:10.1016/j.scitotenv.2012.06.029.
  • LaBaugh, J. W., T. C. Winter, G. A. Swanson, D. O. Rosenberry, R. D. Nelson, and N. H. Euliss. 1996. “Changes in Atmospheric Circulation Patterns Affect Midcontinent Wetlands Sensitive to Climate.” Limnology and Oceanography 41 (5): 864–870. doi:10.4319/lo.1996.41.5.0864.
  • Lapierre, J.-F, and P. A. del Giorgio. 2014. “Partial Coupling and Differential Regulation of Biologically and Photo-Chemically Labile Dissolved Organic Carbon across Boreal Aquatic Networks.” Biogeosciences Discuss 11 (5): 6673–6714. doi:10.5194/bgd-11-6673-2014.
  • Laurion, I., W. F. Vincent, and D. R. S. Lean. 1997. “Underwater Ultraviolet Radiation: development of Spectral Models for Northern High Latitude Lakes.” Photochemistry and Photobiology 65 (1): 107–114. doi:0031–8655.
  • Leenheer, J. A, and J.-P. Croué. 2003. “Peer Reviewed: Characterizing Aquatic Dissolved Organic Matter.” Environmental Science & Technology 37 (1): 18A–26A. doi:10.1021/es032333c.
  • Malcolm, R. L. 1990. “The Uniqueness of Humic Substances in Each of Soil, Stream and Marine Environments.” Analytica Chimica Acta. 232: 19–30. doi:10.1016/s0003-2670(00)81222-2.
  • Marion, G. M. 1998. “The Geochemistry of Natural Waters: surface and Groundwater Environments, Third Edition.” Journal of Environmental Quality 27 (1): 245–246. doi:10.2134/jeq1998.00472425002700010037x.
  • McDonald, Suzanne, Andrea G. Bishop, Paul D. Prenzler, and Kevin Robards. 2004. “Analytical Chemistry of Freshwater Humic Substances.” Analytica Chimica Acta. 527 (2): 105–124. doi:10.1016/j.aca.2004.10.011.
  • McKnight, Diane M., Edmund D. Andrews, Sarah A. Spaulding, and George R. Aiken. 1994. “Aquatic Fulvic Acids in Algal-Rich Antarctic Ponds.” Limnology and Oceanography 39 (8): 1972–1979. doi:10.4319/lo.1994.39.8.1972.
  • McKnight, Diane M., Elizabeth W. Boyer, Paul K. Westerhoff, Peter T. Doran, Thomas Kulbe, and Dale T. Andersen. 2001. “Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity.” Limnology and Oceanography 46 (1): 38–48. doi:10.4319/lo.2001.46.1.0038.
  • Miano, T. M, and N. Senesi. 1992. “Synchronous Excitation Fluorescence Spectroscopy Applied to Soil Humic Substances Chemistry.” Science of the Total Environment 117-118 (118): 41–51. doi:10.1016/0048-9697(92)90071-Y.
  • Miller, W. L. 2010. “Recent Advances in the Photochemistry of Natural Dissolved Organic Matter.” ChemInform 27 (41). doi:10.1002/chin.199641285.
  • Moran, M. A., W. M. Sheldon, and R. G. Zepp. 2000. “Carbon Loss and Optical Property Changes during Long-Term Photochemical and Biological Degradation of Estuarine Dissolved Organic Matter.” Limnology and Oceanography 45 (6): 1254–1264. doi:10.4319/lo.2000.45.6.1254.
  • Murphy, K. R., C. A. Stedmon, D. Graeber, and R. Bro. 2013. “Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC.” Analytical Methods 5 (23): 6557–6566. doi:10.1039/c3ay41160e.
  • Murphy, K. R., C. A. Stedmon, T. D. Waite, and G. M. Ruiz. 2008. “Distinguishing between Terrestrial and Autochthonous Organic Matter Sources in Marine Environments Using Fluorescence Spectroscopy.” Marine Chemistry 108 (1-2): 40–58. doi:10.1016/j.marchem.2007.10.003.
  • Murphy, K. R., K. D. Butler, R. G. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken. 2010. “Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison.” Environmental Science & Technology 44 (24): 9405–9412. doi:10.1021/es102362t.
  • Obernosterer, I, and R. Benner. 2004. “Competition between Biological and Photochemical Processes in the Mineralization of Dissolved Organic Carbon.” Limnology and Oceanography 49 (1): 117–124. doi:10.4319/lo.2004.49.1.0117.
  • Osburn, C. L., C. R. Wigdahl, S. C. Fritz, and J. E. Saros. 2011. “Dissolved Organic Matter Composition and Photoreactivity in Prairie Lakes of the U.S. Great Plains.” Limnology and Oceanography 56 (6): 2371–2390. doi:10.4319/lo.2011.56.6.2371.
  • Parlanti, E., K. Wörz, L. Geoffroy, and M. Lamotte. 2000. “Dissolved Organic Matter Fluorescence Spectroscopy as a Tool to Estimate Biological Activity in a Coastal Zone Submitted to Anthropogenic Inputs.” Organic Geochemistry. 31 (12): 1765–1781. doi:10.1016/S0146-6380(00)00124-8.
  • Pennock, D., T. Yates, A. Bedard-Haughn, K. Phipps, R. Farrell, and R. McDougal. 2010. “Landscape Controls on N2O and CH4 Emissions from Freshwater Mineral Soil Wetlands of the Canadian Prairie Pothole Region.” Geoderma 155 (3-4): 308–319. doi:10.1016/j.geoderma.2009.12.015.
  • Poulain, A. J., M. Amyot, D. Findlay, S. Telor, T. Barkay, and H. Hintelmann. 2004. “Biological and Photochemical Production of Dissolved Gaseous Mercury in a Boreal Lake.” Limnology and Oceanography 49 (6): 2265–2275. doi:10.4319/lo.2004.49.6.2265.
  • Poiani, K. A., W. C. Johnson, G. A. Swanson, and T. C. Winter. 1996. “Climate Change and Northern Prairie Wetlands: Simulations of Long-Term Dynamics.” Limnology and Oceanography 41 (5): 871–881. doi:10.4319/lo.1996.41.5.0871.
  • Robarts, R. D, and M. J. Waiser. 1998. “Effects of Atmospheric Change and Agriculture on the Biogeochemistry and Microbial Ecology of Prairie Wetlands.” Great Plains Research 8 (1): 113–136.
  • Sellers, P., C. A. Kelly, J. W. M. Rudd, and A. R. MacHutchon. 1996. “Photodegradation of Methylmercury in Lakes.” Nature 380 (6576): 694–697. doi:10.1038/380694a0.
  • Stedmon, C. A, and R. Bro. 2008. “Characterizing Dissolved Organic Matter Fluorescence with Parallel Factor Analysis: A Tutorial: Fluorescence-PARAFAC Analysis of DOM.” Limnology and Oceanography: Methods 6 (11): 572–579. doi:10.4319/lom.2008.6.572.
  • Stedmon, C. A., S. Markager, and R. Bro. 2003. “Tracing Dissolved Organic Matter in Aquatic Environments Using a New Approach to Fluorescence Spectroscopy.” Marine Chemistry. 82 (3–4): 239–254. doi:10.1016/S0304-4203(03)00072-0.
  • Stewart, R. E, and H. A. Kantrud. 1971. The Bureau of Sport Fisheries and Wildlife. “Classification of Natural Ponds and Lakes in the Glaciated Prairie Region.” Published online.
  • Stubbins, A., J.-F. Lapierre, M. Berggren, Y. T. Prairie, T. Dittmar, and P. A. del Giorgio. 2014. “What’s in an EEM? Molecular Signatures Associated with Dissolved Organic Fluorescence in Boreal Canada.” Environmental Science & Technology 48 (18): 10598–10606. doi:10.1021/es502086e.
  • Spencer, R. G., K. D. Butler, and G. R. Aiken. 2012. “Dissolved Organic Carbon and Chromophoric Dissolved Organic Matter Properties of Rivers in the USA.” Journal of Geophysical Research: Biogeosciences 117 (G3): n/a–n/a. doi:10.1029/2011JG001928.
  • Su, M., W. J. Stolte, and G. Van der Kamp. 2000. “Modelling Canadian Prairie Wetland Hydrology Using a Semi‐Distributed Streamflow Model.” Hydrological Processes 14 (14): 2405–2422. doi:10.1002/1099-1085(20001015)14:14 < 2405::aid-hyp92 > 3.0.co;2-b.
  • Twardowski, M. S, and P. L. Donaghay. 2002. “Photobleaching of Aquatic Dissolved Materials: Absorption Removal, Spectral Alteration, and Their Interrelationship.” Journal of Geophysical Research, Oceans.1978 2012107 (C8): 6–1–6-12. doi:10.1029/1999jc000281.
  • US Environmental Protection Agency. 2020: https://www.wbdg.org/ffc/epa/criteria/epa-600-4-79-020
  • United States Fish and Wildlife Service. https://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Prairie-Wetlands-in-the-United-States-1997-to-2009-Fact-Sheet.pdf
  • Vähätalo, A. V, and R. G. Wetzel. 2004. “Photochemical and Microbial Decomposition of Chromophoric Dissolved Organic Matter during Long (Months–Years) Exposures.” Marine Chemistry. 89 (1-4): 313–326. doi:10.1016/j.marchem.2004.03.010.
  • Valentine, R. L, and R. G. Zepp. 1993. “Formation of Carbon Monoxide from the Photodegradation of Terrestrial Dissolved Organic Carbon in Natural Waters.” Environmental Science & Technology 27 (2): 409–412. doi:10.1021/es00039a023.
  • Vecchio, R. D, and N. V. Blough. 2006. “Environmental UV Radiation: Impact on Ecosystems and Human Health and Predictive Models, Proceedings of the NATO Advanced Study Institute.” NATO Science Series Earth and Environmental Sciences 57: 203–216. doi:10.1007/1-4020-3697-3_16.
  • Vecchio, R. D, and N. V. Blough. 2004. “On the Origin of the Optical Properties of Humic Substances.” Environmental Science & Technology 38 (14): 3885–3891. doi:10.1021/es049912h.
  • Vodacek, Anthony, Neil V. Blough, Michael D. DeGrandpre, Michael D. DeGrandpre, and Robert K. Nelson. 1997. “Seasonal Variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial Inputs and Photooxidation.” Limnology and Oceanography 42 (4): 674–686. doi:10.4319/lo.1997.42.4.0674.
  • Waiser, M. J, and R. D. Robarts. 2004. “Photodegradation of DOC in a Shallow Prairie Wetland: evidence from Seasonal Changes in DOC Optical Properties and Chemical Characteristics.” Biogeochemistry 69 (2): 263–284. doi:10.1023/B:BIOG.0000031048.20050.4e.
  • Waiser, M. J. 2006. “Relationship between Hydrological Characteristics and Dissolved Organic Carbon Concentration and Mass in Northern Prairie Wetlands Using a Conservative Tracer Approach.” Journal of Geophysical Research: Biogeosciences 111 (G2): G02024. doi:10.1029/2005JG000088.
  • Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. “Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon.” Environmental Science & Technology 37 (20): 4702–4708. doi:10.1021/es030360x.
  • Williams, C. J., Y. Yamashita, H. F. Wilson, R. Jaffé, and M. A. Xenopoulos. 2010. “Unraveling the Role of Land Use and Microbial Activity in Shaping Dissolved Organic Matter Characteristics in Stream Ecosystems.” Limnology and Oceanography 55 (3): 1159–1171. doi:10.4319/lo.2010.55.3.1159.
  • Wilson, H. F, and M. A. Xenopoulos. 2009. “Effects of Agricultural Land Use on the Composition of Fluvial Dissolved Organic Matter.” Nature Geoscience 2 (1): 37–41. doi:10.1038/ngeo391.
  • Winter, T. C, and D. O. Rosenberry. 1998. “Hydrology of Prairie Pothole Wetlands during Drought and Deluge: A 17-Year Study of the Cottonwood Lake Wetland Complex in North Dakota in the Perspective of Longer Term Measured and Proxy Hydrological Records.” Climatic Change 40 (2): 189–209. doi:10.1023/A:1005448416571.
  • Xu, H, and L. Guo. 2018. “Intriguing Changes in Molecular Size and Composition of Dissolved Organic Matter Induced by Microbial Degradation and Self-Assembly.” Water Research. 135: 187–194. doi:10.1016/j.watres.2018.02.016.
  • Yu, Zhen, Xiaoming Liu, Meihua Zhao, Wenqi Zhao, Jing Liu, Jia Tang, Hanpeng Liao, Zhi Chen, and Shungui Zhou. 2019. “Hyperthermophilic Composting Accelerates the Humification Process of Sewage Sludge: Molecular Characterization of Dissolved Organic Matter Using EEM–PARAFAC and Two-Dimensional Correlation Spectroscopy.” Bioresource Technology 274: 198–206. doi:10.1016/j.biortech.2018.11.084.
  • Zafiriou, Oliver C., Jacques Joussot-Dubien, Richard G. Zepp, and Rod G. Zika. 1984. “Photochemistry of Natural Waters.” Environmental Science & Technology 18 (12): 358A–371A. doi:10.1021/es00130a001.
  • Zhang, Y., M. Liu, B. Qin, and S. Feng. 2009. “Photochemical Degradation of Chromophoric-Dissolved Organic Matter Exposed to Simulated UV-B and Natural Solar Radiation.” Hydrobiologia 627 (1): 159–168. doi:10.1007/s10750-009-9722-z.
  • Zhang, Yunlin, Xiaohan Liu, Christopher L. Osburn, Mingzhu Wang, Boqiang Qin, and Yongqiang Zhou. 2013. “Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra.” PloS One 8 (10): e77515. doi:10.1371/journal.pone.0077515.
  • Ziegelgruber, Kate L., Teng Zeng, William A. Arnold, and Yu-Ping Chin. 2013. “Sources and Composition of Sediment Pore‐Water Dissolved Organic Matter in Prairie Pothole Lakes.” Limnology and Oceanography 58 (3): 1136–1146. doi:10.4319/lo.2013.58.3.1136.
  • Zsolnay, Á. 2003. “Dissolved Organic Matter: artefacts, Definitions, and Functions.” Geoderma 113 (3-4): 187–209. doi:10.1016/S0016-7061(02)00361-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.