Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 44, 2018 - Issue 4
1,314
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review

ORCID Icon, , ORCID Icon, &
Pages 247-262 | Received 30 Jan 2017, Accepted 17 Nov 2017, Published online: 11 Nov 2018

References

  • Adam, E., Mutanga, O., and Rugege, D., 2010. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, Vol. 18(No. 3): pp. 281–296.
  • Alsdorf, D., Bates, P., Melack, J., Wilson, M., and Dunne, T., 2007. Spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters, Vol. 34(No. 8): pp. L08402.
  • Alsdorf, D.E., Melack, J.M., Dunne, T., Mertes, L.A., Hess, L.L., and Smith, L.C., 2000. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, Vol. 404(No. 6774): pp. 174–177.
  • Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, Vol. 40(No. 11): pp. 2375–2383.
  • Birkett, C.M., Mertes, L.A.K., Dunne, T., Costa, M.H., and Jasinski, M.J., 2002. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry. Journal of Geophysical Research: Atmospheres, Vol. 107(No. D20): pp. LBA–26.
  • Brisco, B., Ahern, F., Murnaghan, K., White, L., Canisus, F., and Lancaster, P., 2017. Seasonal change in wetland coherence as an aid to wetland monitoring. Remote Sensing, Vol. 9(No. 2): pp. 158.
  • Brisco, B., Murnaghan, K., Wdowinski, S., and Hong, S.H., 2015. Evaluation of RADARSAT-2 acquisition modes for wetland monitoring applications. Canadian Journal of Remote Sensing, Vol. 41(No. 5): pp. 431–439.
  • Bwangoy, J.R.B., Hansen, M.C., Roy, D.P., De Grandi, G., and Justice, C.O., 2010. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, Vol. 114(No. 1): pp. 73–86.
  • Cloude, S.R., and Pottier, E., 1996. A review of target decomposition theorems in radar polarimetry. IEEE Transactions on Geoscience and Remote Sensing, Vol. 34(No. 2): pp. 498–518.
  • Colesanti, C., and Wasowski, J., 2006. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, Vol. 88(No. 3): pp. 173–199.
  • Esmaeili, M., Motagh, M., and Hooper, A., 2017. Application of dual-polarimetry SAR images in multitemporal InSAR processing. IEEE Geoscience and Remote Sensing Letters, Vol. 14(No. 9): pp. 1489–1493.
  • Evans, T.L., and Costa, M., 2013. Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sensing of Environment, Vol. 128: pp. 118–137.
  • Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., 2011. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, Vol. 49(No. 9): pp. 3460–3470.
  • Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., and Massonet, D., 2007. InSAR principles-guidelines for SAR interferometry processing and interpretation (Vol. 19). ESA publication.
  • Ferretti, A., Prati, C., and Rocca, F., 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, Vol. 39(No. 1): pp. 8–20.
  • Fjørtoft, R., Gaudin, J.M., Pourthié, N., Lalaurie, J.C., Mallet, A., Nouvel, J.F., Martinot-Lagarde, J., Oriot, H., Borderies, P., Ruiz, C., and Daniel, S., 2014. KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, Vol. 52(No. 4): pp. 2172–2185.
  • Frappart, F., Calmant, S., Cauhopé, M., Seyler, F., and Cazenave, A., 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote sensing of Environment, Vol. 100(No. 2): pp. 252–264.
  • Freeman, A., and Durden, S.L., 1998. A three-component scattering model for polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, Vol. 36(No. 3): pp. 963–973.
  • Gallant, A.L., 2015. The challenges of remote monitoring of wetlands. Remote Sensing, Vol. 7(No. 8): pp. 10938–10950.
  • Gatelli, F., Guamieri, A.M., Parizzi, F., Pasquali, P., Prati, C., and Rocca, F., 1994. The wavenumber shift in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, Vol. 32(No. 4): pp. 855–865.
  • Gondwe, B.R., Hong, S.H., Wdowinski, S., and Bauer-Gottwein, P., 2010. Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands, Vol. 30(No. 1): pp. 1–13.
  • Gray, A.L., Mattar, K.E., and Sofko, G., 2000. Influence of ionospheric electron density fluctuations on satellite radar interferometry. Geophysical Research Letters, Vol. 27(No. 10): pp. 1451–1454.
  • Grenier, M., Demers, A.M., Labrecque, S., Benoit, M., Fournier, R.A., and Drolet, B. 2007. An object-based method to map wetland using RADARSAT-1 and Landsat ETM images: test case on two sites in Quebec, Canada. Canadian Journal of Remote Sensing, Vol. 33(No. S1): pp. S28–S45.
  • Grings, F.M., Ferrazzoli, P., Jacobo-Berlles, J.C., Karszenbaum, H., Tiffenberg, J., Pratolongo, P., and Kandus, P. 2006. Monitoring flood condition in marshes using EM models and Envisat ASAR observations. IEEE Transactions on Geoscience and Remote Sensing, Vol. 44(No. 4): pp. 936–942.
  • Guarnieri, A.M., and Prati, C. 1997. SAR interferometry: A “quick and dirty” coherence estimator for data browsing. IEEE Transactions on Geoscience and Remote Sensing, Vol. 35(No. 3): pp. 660–669.
  • Hirosawa, H., Matsuzaka, Y., and Kobayashi, O. 1989. Measurement of microwave backscatter from a cypress with and without leaves. IEEE Transactions on Geoscience and Remote Sensing, Vol. 27(No. 6): pp. 698–701.
  • Hong, S.H., and Wdowinski, S. 2012. Evaluation of the quad-polarimetric RADARSAT-2 observations for the wetland InSAR application. Canadian Journal of Remote Sensing, Vol. 37(No. 5); pp. 484–492.
  • Hong, S.H., and Wdowinski, S. 2014. Multitemporal multitrack monitoring of wetland water levels in the Florida Everglades using ALOS PALSAR data with interferometric processing. IEEE Geoscience and Remote Sensing Letters, Vol. 11(No. 8): pp. 1355–1359.
  • Hong, S.H., Wdowinski, S., and Kim, S.W. 2010a. Evaluation of TerraSAR-X observations for wetland InSAR application. IEEE Transactions on Geoscience and Remote Sensing, Vil. 48(No. 2): pp. 864–873.
  • Hong, S.H., Wdowinski, S., Kim, S.W., and Won, J.S. 2010b. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR). Remote Sensing of Environment, Vol. 114(No. 11): pp. 2436–2447.
  • Hooper, A., Zebker, H., Segall, P., and Kampes, B. 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, Vol. 31(No. 23): pp. 611–615.
  • Huang, C., Peng, Y., Lang, M., Yeo, I.Y., and McCarty, G. 2014. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment, Vol. 141: pp. 231–242.
  • James, L.A., Watson, D.G., and Hansen, W.F. 2007. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena, Vol. 71(No. 1): pp. 132–144.
  • Jones, K.L., Poole, G.C., O'Daniel, S.J., Mertes, L.A., and Stanford, J.A. 2008. Surface hydrology of low-relief landscapes: Assessing surface water flow impedance using LIDAR-derived digital elevation models. Remote Sensing of Environment, Vol. 112(No. 11): pp. 4148–4158.
  • Jung, H.C., Hamski, J., Durand, M., Alsdorf, D., Hossain, F., Lee, H., Hossain, A.K.M., Hasan, K., Khan, A.S., and Hoque, A.K.M. 2010. Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surface Processes and Landforms, Vol. 35(No. 3): pp. 294–304.
  • Kasischke, E.S., and Bourgeau-Chavez, L.L. 1997. Monitoring South Florida wetlands using ERS-1 SAR imagery. Photogrammetric Engineering and Remote Sensing, Vol. 63(No. 3): pp. 281–291.
  • Kasischke, E.S., Smith, K.B., Bourgeau-Chavez, L.L., Romanowicz, E.A., Brunzell, S., and Richardson, C.J. 2003. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, Vol. 88(No. 4): pp. 423–441.
  • Kim, J.W. 2013. Applications of Synthetic Aperture Radar (SAR)/SAR Interferometry (InSAR) for Monitoring of Wetland Water Level and Land Subsidence (Doctoral dissertation, The Ohio State University).
  • Kim, J.W., Lu, Z., Jones, J.W., Shum, C.K., Lee, H., and Jia, Y. 2014. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sensing of Environment, Vol. 150: pp. 66–81.
  • Kim, J.W., Lu, Z., Lee, H., Shum, C.K., Swarzenski, C.M., Doyle, T.W., and Baek, S.H., 2009. Integrated analysis of PALSAR/RADARSAT-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sensing of Environment, Vol. 113(No. 11): pp. 2356–2365.
  • Kim, S.W., Wdowinski, S., Amelung, F., and Dixon, T.H. 2005, “July. C-band interferometric SAR measurements of water level change in the wetlands: Examples from Florida and Louisiana.” In Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS'05 (Vol. 4, pp. 2708–2710). IEEE.
  • Kim, S.W., Wdowinski, S., Amelung, F., Dixon, T.H., and Won, J.S. 2013. Interferometric coherence analysis of the Everglades wetlands, South Florida. IEEE Transactions on Geoscience and Remote Sensing, Vol. 51(No. 12): pp. 5210–5224.
  • Kwoun, O.I., and Lu, Z. 2009. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana. Photogrammetric Engineering & Remote Sensing, Vol. 75(No. 5): pp. 607–617.
  • Lanari, R., Mora, O., Manunta, M., Mallorquí, J.J., Berardino, P., and Sansosti, E. 2004. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, Vol. 42(No. 7): pp. 1377–1386.
  • Lang, M.W., Kasischke, E.S., Prince, S.D., and Pittman, K.W. 2008. Assessment of C-band synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, USA. Remote Sensing of Environment, Vol. 112(No. 11): pp. 4120–4130.
  • Leckie, D.G., and Ranson, K.J. 1998. Forestry applications using imaging radar. Principles and Applications of Imaging Radar, Vol. 2: pp. 435–509.
  • Lee, H., Yuan, T., Jung, H.C., and Beighley, E. 2015. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sensing of Environment, Vol. 159: pp. 70–79.
  • Li, J., and Chen, W. 2005. A rule-based method for mapping Canada's wetlands using optical, radar and DEM data. International Journal of Remote Sensing, Vol. 26(No. 22): pp. 5051–5069.
  • Li, J., Chen, W., and Touzi, R. 2007. Optimum RADARSAT-1 configurations for wetlands discrimination: a case study of the Mer Bleue peat bog. Canadian Journal of Remote Sensing, Vol. 33(No. sup1): pp. S46–S55
  • Lin, S., and Gregg, R., 1988. Water budget analysis: Water conservation area 1. Water Resources Division, Resource Planning Department, South Florida Water Management District.
  • Lu, Z., and Kwoun, O.I., 2008. RADARSAT-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests. IEEE Transactions on Geoscience and Remote Sensing, Vol. 46(No. 8): pp. 2167–2184.
  • Lu, Z., and Kwoun, O.I. 2010. 2 Interferometric Synthetic Aperture Radar (InSAR) Study of Coastal Wetlands Over Southeastern Louisiana (pp. 25–60). Boca Raton, Florida: CRC Press.
  • Lu, Z., Crane, M., Kwoun, O.I., Wells, C., Swarzenski, C., and Rykhus, R., 2005. C‐band radar observes water level change in swamp forests. EOS, Transactions American Geophysical Union, Vol. 86(No. 14): pp. 141–144.
  • Lu, Z., Kim, J.W., Lee, H., Shum, C.K., Duan, J., Ibaraki, M., Akyilmaz, O., and Read, C.H. 2009. Helmand River hydrologic studies using ALOS PALSAR InSAR and ENVISAT altimetry. Marine Geodesy, Vol. 32(No. 3): pp. 320–333.
  • Mahdianpari, M., Salehi, B., Mohammadimanesh, F., and Motagh, M. 2017a. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 130: pp. 13–31.
  • Mahdianpari, M., Salehi, B., and Mohammadimanesh, F. 2017b. The effect of PolSAR image de-speckling on wetland classification: introducing a new adaptive method. CanadianJournal of Remote Sensing, Vol. 43 (No. 5): pp. 485–503. doi:10.1080/07038992.2017.1381549.
  • Mahdianpari, M., Salehi, B., Mohammadimanesh, F., and Brisco, B. 2017c. An assessment of simulated compact polarimetric SAR data for wetland classification using random forest algorithm. Canadian Journal of Remote Sensing, Vol. 43(No. 5): pp. 468–484. doi:10.1080/07038992.2017.1381550
  • Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., and Zhang, Y. 2018a. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sensing, Vol. 10: pp. 1119.
  • Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Mahdavi, S., Amani, M., and Granger, J.E. 2018b. Fisher Linear Discriminant Analysis of coherency matrix for wetland classification using PolSAR imagery. Remote Sensing of Environment, Vol. 206: pp. 300–317.
  • Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., and Motagh, M. 2018. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 142: pp. 78–93.
  • Mohammadimanesh, F., Salehi, B., Mahdianpari, M., and Homayouni, S. 2016. Unsupervised Wishart classification of wetlands in Newfoundland, Canada Using Polsar Data based on Fisher Linear Discriminant Analysis. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B7: pp. 305–310.
  • Mougin, E., Lopes, A., Karam, M.A., and Fung, A.K. 1993. Effect of tree structure on X-band microwave signature of conifers. IEEE Transactions on Geoscience and Remote Sensing, Vol. 31(No. 3): pp. 655–667.
  • Oliver-Cabrera, T., and Wdowinski, S. 2016. InSAR-based mapping of tidal inundation extent and amplitude in Louisiana Coastal Wetlands. Remote Sensing, Vol. 8(No. 5): pp. 393.
  • Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E. 2016. Time series analysis of InSAR data: methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 115: pp. 90–102.
  • Ozesmi, S.L., and Bauer, M.E. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management, Vol. 10(No. 5): pp. 381–402.
  • Poncos, V., Molson, S., Welch, A., and Brazeau, S. 2013a. Detection of flooded vegetation and measurements of water level changes using RADARSAT-2. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS (pp. 2208–2211). IEEE.
  • Poncos, V., Molson, S., Welch, A., Brazeau, S., and Kotchi, S.O. 2014. SAR for surface water monitoring and public health. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 1167–1170). Quebec City, Canada: IEEE.
  • Poncos, V., Teleaga, D., Bondar, C., and Oaie, G. 2013b. A new insight on the water level dynamics of the Danube Delta using a high spatial density of SAR measurements. Journal of Hydrology, Vol. 482: pp. 79–91.
  • Pope, K.O., Rejmankova, E., Paris, J.F., and Woodruff, R. 1997. Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sensing of Environment, Vol. 59 (No. 2): pp. 157–166.
  • Ramsey III, E., 1998. Radar remote sensing of wetlands. In Remote Sensing Change Detection: Environmental Monitoring Methods and Applications, pp. 211–243. Sleeping Bear Press, Inc.
  • Ramsey, III, E., Lu, Z., Rangoonwala, A., and Rykhus, R. 2006. Multiple baseline radar interferometry applied to coastal land cover classification and change analyses. GIScience & Remote Sensing, Vol. 43(No. 4): pp. 283–309.
  • Rezaee, M., Mahdianpari, M., Zhang, Y., and Salehi, B. 2018. Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2018.2846178
  • Richards, J.A., Woodgate, P.W., and Skidmore, A.K. 1987. An explanation of enhanced radar backscattering from flooded forests. International Journal of Remote Sensing, Vol. 8(No. 7): pp. 1093–1100.
  • Rignot, E.J., Williams, C.L., Way, J., and Viereck, L.A. 1994. Mapping of forest types in Alaskan boreal forests using SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, Vol. 32(No. 5): pp. 1051–1059.
  • Rodriguez, E. 2012. Surface Water and Ocean Topography Mission (SWOT). Science Requirements Document v1, 1.
  • Telis, P.A., 2006. The Everglades Depth Estimation Network (EDEN) for support of ecological and biological assessments (No. 2006-3087). Geological Survey (US).
  • Tiner, R.W., Lang, M.W., and Klemas, V.V. eds., 2015. Remote Sensing of Wetlands: Applications and Advances. Boca Raton, FL, USA: CRC Press.
  • Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., and Traver, I.N. 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, Vol. 120: pp. 9–24.
  • Touzi, R. 2007. Target scattering decomposition in terms of roll-invariant target parameters. IEEE Transactions on Geoscience and Remote Sensing, Vol. 45(No. 1): pp. 73–84.
  • Wdowinski, S., and Hong, S.H. 2015. Wetland InSAR: A review of the technique and applications. In Remote Sensing of Wetlands: Applications and Advances (pp. 137–154). Boca Raton, FL, USA: CRC Press.
  • Wdowinski, S., Amelung, F., Miralles‐Wilhelm, F., Dixon, T.H., and Carande, R., 2004. Space‐based measurements of sheet‐flow characteristics in the Everglades wetland, Florida. Geophysical Research Letters, Vol. 31(No. 15): pp. L15503.
  • Wdowinski, S., Hong, S.H., Mulcan, A., and Brisco, B. 2013. Remote-sensing monitoring of tide propagation through coastal wetlands. Oceanography, Vol. 26(No. 3): pp. 64–69.
  • Wdowinski, S., Kim, S.W., Amelung, F., Dixon, T.H., Miralles-Wilhelm, F., and Sonenshein, R. 2008. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry. Remote Sensing of Environment, Vol. 112(No. 3): pp. 681–696.
  • Xie, C., Shao, Y., Xu, J., Wan, Z., and Fang, L., 2013. Analysis of ALOS PALSAR InSAR data for mapping water level changes in Yellow River Delta wetlands. International Journal of Remote Sensing, Vol. 34(No. 6): pp. 2047–2056.
  • Xie, C., Xu, J., Shao, Y., Cui, B., Goel, K., Zhang, Y., and Yuan, M. 2015. Long term detection of water depth changes of coastal wetlands in the Yellow River Delta based on distributed scatterer interferometry. Remote Sensing of Environment, Vol. 164: pp. 238–253.
  • Yamaguchi, Y., Moriyama, T., Ishido, M., and Yamada, H., 2005. Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, Vol. 43(8): pp. 1699–1706.
  • Yuan, M., Xie, C., Shao, Y., Xu, J., Cui, B., and Liu, L. 2016. Retrieval of Water Depth of Coastal Wetlands in the Yellow River Delta From ALOS PALSAR Backscattering Coefficients and Interferometry. IEEE Geoscience and Remote Sensing Letters, Vol. 13(No. 10): pp. 1517–1521.
  • Yuan, T., Lee, H., and Jung, H.C. 2015. Toward estimating wetland water level changes based on hydrological sensitivity analysis of PALSAR backscattering coefficients over different vegetation fields. Remote Sensing, Vol. 7(No. 3): pp. 3153–3183.
  • Zebker, H.A., and Villasenor, J. 1992. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, Vol. 30(No. 5): pp. 950–959.
  • Zhang, M. 2009. Satellite Radar Altimetry for Inland Hydrologic Studies (Doctoral dissertation, The Ohio State University).
  • Zhang, M., Li, Z., Tian, B., Zhou, J., and Tang, P. 2016. The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: a case study. International Journal of Applied Earth Observation and Geoinformation, Vol. 45: pp. 1–13.
  • Zhang, M., Li, Z., Tian, B., Zhou, J., and Zeng, J. 2015. A method for monitoring hydrological conditions beneath herbaceous wetlands using multi-temporal ALOS PALSAR coherence data. Remote Sensing Letters, Vol. 6(No. 8): pp. 618–627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.