Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 46, 2020 - Issue 5
106
Views
2
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the Performance of the Integration of Remote Sensing and Noah Hydrologic Model for Soil Moisture Estimation in Hetao Irrigation Region of Inner Mongolia

Évaluation de la performance de l’intégration de la télédétection et du modèle hydrologique Noah pour l’estimation de l’humidité du sol dans la région irriguée de l’Hetao en Mongolie intérieure

, , & ORCID Icon
Pages 552-566 | Received 29 Oct 2019, Accepted 09 Aug 2020, Published online: 31 Aug 2020

References

  • Bai, L.L., Long, D., and Yan, L. 2019. “Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land.” Water Resources Research, Vol. 55(No. 2): pp. 1105–1128. doi:10.1029/2018WR024162.
  • Carlson, T.N. 2007. “An overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery.” Sensors, Vol. 7(No. 8): pp. 1612–1629. doi:10.3390/s7081612.
  • Carlson, T.N., Gillies, R.R., and Perry, E.M. 1994. “A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover.” Remote Sensing Reviews, Vol. 9(No. 1–2): pp. 161–173. doi:10.1080/02757259409532220.
  • Carlson, T.N., Gillies, R.R., and Schmugge, T.J. 1995. “An interpretation of methodologies for indirect measurement of soil water content.” Agricultural and Forest Meteorology, Vol. 77(No. 3–4): pp. 191–205. doi:10.1016/0168-1923(95)02261-U.
  • Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., and Humes, K.S. 1997. “A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature.” International Journal of Remote Sensing, Vol. 18(No. 15): pp. 3145–3166. doi:10.1080/014311697217026.
  • Hogue, T.S., Bastidas, L., Gupta, H., Sorooshian, S., Mitchell, K., and Emmerich, W. 2005. “Evaluation and transferability of the Noah land surface model in semi-arid environments.” Journal of Hydrometeorology, Vol. 6(No. 1): pp. 68–84. doi:10.1175/JHM-402.1.
  • Hong, S., Lakshmi, V., Small, E.E., Chen, F., Tewari, M., and Manning, K.W. 2009. “Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model.” Journal of Geophysical Research, Vol. 114(No. D18): pp. D18118. doi:10.1029/2008JD011249.
  • Istanbulluoglu, E., and Bras, R.L. 2006. “On the dynamics of soil moisture, vegetation and erosion: Implications of climate variability and change.” Water Resources Research, Vol. 42(No. 6): pp. W06418. doi:10.1029/2005WR004113.
  • Jackson, R.D., and Pinter, P.J. 1981. “Detection of water stress in wheat by measurement of reflected solar and emitted thermal IR radiation.” In Spectral Signatures of Objects in Remote Sensing, edited by G. Guyot and M. Verbrugghe, 399–406. Versailles, France: Institut National de la Recherche Agronomique.
  • Joiner, J., Yoshida, Y., Anderson, M., Holmes, T., Hain, C., Reichle, R., Koster, R., et al. 2018. “Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales.” Remote Sensing of Environment, Vol. 219: pp. 339–352. doi:10.1016/j.rse.2018.10.020.
  • Leng, P., Li, Z.-L., Duan, S.-B., Gao, M.-F., and Huo, H.-Y. 2017. “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 131: pp. 40–51. doi:10.1016/j.isprsjprs.2017.07.013.
  • Leng, P., Li, Z.-L., Duan, S.B., Tang, R., and Gao, M.-F. 2017. “A method for deriving all-sky evapotranspiration from the synergistic use of remotely sensed images and meteorological data.” Journal of Geophysical Research Atmospheres, Vol. 122: pp. 263–277.
  • Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., and Sobrino, J.A. 2013. “Satellite-derived land surface temperature: Current status and perspectives.” Remote Sensing of Environment, Vol. 131: pp. 14–37. doi:10.1016/j.rse.2012.12.008.
  • Li, Z.-L., Tang, R.L., Wan, Z.M., Bi, Y.Y., Zhou, C.H., Tang, B.H., Yan, G.J., and Zhang, X.Y. 2009. “A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data.” Sensors, Vol. 9(No. 5): pp. 3801–3853. doi:10.3390/s90503801.
  • Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng, X., and Shi, C. 2019. “Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution.” Remote Sensing of Environment, Vol. 233: pp. 111364. doi:10.1016/j.rse.2019.111364.
  • Long, D., and Singh, V.P. 2012. “A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery.” Remote Sensing of Environment, Vol. 121: pp. 370–388. doi:10.1016/j.rse.2012.02.015.
  • Long, D., Singh, V.P., and Scanlon, V.R. 2012. “Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation.” Journal of Geophysical Research, Vol. 117(No. D5): pp. D05113. doi:10.1029/2011JD017079.
  • Moran, M.S., Clarke, T.R., Inoue, Y., and Vidal, A. 1994. “Estimating crop water deficit using the relation of between surface air temperature and spectral vegetation index.” Remote Sensing of Environment, Vol. 49(No. 3): pp. 246–263. doi:10.1016/0034-4257(94)90020-5.
  • Petropoulos, G., Carlson, T.N., Wooster, M.J., and Islam, S. 2009. “A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture.” Progress in Physical Geography: Earth and Environment, Vol. 33(No. 2): pp. 224–250. doi:10.1177/0309133309338997.
  • Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., et al. 2010. “The impacts of climate change on water resources and agriculture in China.” Nature, Vol. 467(No. 7311): pp. 43–51. doi:10.1038/nature09364.
  • Price, J.C. 1990. “Using spatial context in satellite data to infer regional scale evapotranspiration.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 28(No. 5): pp. 940–948. doi:10.1109/36.58983.
  • Rozenstein, O., Qin, Z., Derimian, Y., and Karnieli, A. 2014. “Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm.” Sensors, Vol. 14(No. 4): pp. 5768–5780. doi:10.3390/s140405768.
  • Sandholt, I., Rasmussen, K., and Andersen, J. 2002. “A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status.” Remote Sensing of Environment, Vol. 79(No. 2–3): pp. 213–224. doi:10.1016/S0034-4257(01)00274-7.
  • Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., and Jensen, K.H. 2008. “Combining the triangle method with thermal inertia to estimate regional evapotranspiration – Applied to MSG-SEVIRI data in the Senegal River basin.” Remote Sensing of Environment, Vol. 112(No. 3): pp. 1242–1255. doi:10.1016/j.rse.2007.08.013.
  • Sun, L., Sun, R., Li, X.W., Liang, S.L., and Zhang, R.H. 2012. “Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information.” Agricultural and Forest Meteorology, Vol. 166–167: pp. 175–187. doi:10.1016/j.agrformet.2012.07.015.
  • Tang, R., Li, Z.-L., Chen, K.-S., Zhu, Y., and Liu, W. 2012. “Verification of land surface evapotranspiration estimation from remote sensing spatial contextual information.” Hydrological Processes, Vol. 26(No. 15): pp. 2283–2293. doi:10.1002/hyp.8341.
  • Tang, R.L., Li, Z.-L., and Tang, B.H. 2010. “An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation.” Remote Sensing of Environment, Vol. 114(No. 3): pp. 540–551. doi:10.1016/j.rse.2009.10.012.
  • Tasumi, M. 2003. Progress in Operational Estimation of Regional Evapotranspiration Using Satellite Imagery [Ph.D. thesis]. Idaho: University of Idaho, pp. 357.
  • Verstraeten, W.W., Veroustraete, F., Van Der Sande, C.J., Grootaers, I., and Feyen, J. 2006. “Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests.” Remote Sensing of Environment, Vol. 101(No. 3): pp. 299–314. doi:10.1016/j.rse.2005.12.016.
  • Wan, Z., Wang, P., and Li, X.W. 2004. “Using MODIS land surface temperature and normalized difference vegetation Index products for monitoring drought in the southern Great Plains, USA.” International Journal of Remote Sensing, Vol. 25(No. 1): pp. 61–72. 2004. doi:10.1080/0143116031000115328.
  • Wang, E., Yu, Q., Wu, D., and Xia, J. 2008. “Climate, agricultural production and hydrological balance in the North China Plain.” International Journal of Climatology, Vol. 28(No. 14): pp. 1959–1970. doi:10.1002/joc.1677.
  • Wang, L.L., and Qu, J. 2009. “Satellite remote sensing applications for surface soil moisture monitoring: A review.” Frontiers of Earth Science in China, Vol. 3(No. 2): pp. 237–247. doi:10.1007/s11707-009-0023-7.
  • Zhang, D., Li, Z.-L., Tang, R., Tang, B.-H., Wu, H., Lu, J., and Shao, K. 2015. “Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions.” International Journal of Remote Sensing, Vol. 36(No. 19–20): pp. 5015–5016. doi:10.1080/01431161.2015.1055610.
  • Zhang, D.J., Tang, R.L., Tang, B.H., Wu, H., and Li, Z.-L. 2014. “A simple method for soil moisture determination from LST–VI feature space using non-linear interpolation based on thermal infrared remotely sensed data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8(No. 2): pp. 638–648. doi:10.1109/JSTARS.2014.2371135.
  • Zhang, D.J., Tang, R.L., Zhao, W., Tang, B.H., Wu, H., Shao, K., and Li, Z.-L. 2014. “Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature.” Remote Sensing, Vol. 6(No. 4): pp. 3170–3187. doi:10.3390/rs6043170.
  • Zhang, R.H., Tian, J., Su, H.B., Sun, X.M., Chen, S.H., and Xia, J. 2008. “Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval.” Sensors, Vol. 8(No. 10): pp. 6165–6187. doi:10.3390/s8106165.
  • Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L. 2019. “Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau.” Remote Sensing of Environment, Vol. 225: pp. 30–44. doi:10.1016/j.rse.2019.02.022.
  • Zhao, W., Li, A., and Zhao, T. 2017. “Potential of estimating surface soil moisture with the triangle-based empirical relationship model.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 55(No. 11): pp. 6494–6504. doi:10.1109/TGRS.2017.2728815.
  • Zhao, W., Sánchez, N., and Li, A. 2018. “Triangle space-based surface soil moisture estimation by the synergistic use of in\situ measurements and optical/thermal infrared remote sensing: An alternative to conventional validations.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 56(No. 8): pp. 4546–4558. doi:10.1109/TGRS.2018.2825284.
  • Zhao, W., Li, Z.-L., Wu, H., Tang, B.-H., Zhang, X.Y., Song, X.N., and Zhou, G.Q. 2013. “Determination of bare surface soil moisture from combined temporal evolution of land surface temperature and net surface shortwave radiation.” Hydrological Processes, Vol. 27(No. 19): pp. 2825–2833. doi:10.1002/hyp.9410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.