Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 48, 2022 - Issue 2
231
Views
2
CrossRef citations to date
0
Altmetric
Articles

Testing ASTER and Sentinel-2 MSI Images to Discriminate Igneous and Metamorphic Rock Units in the Chadormalu Paleocrater, Central Iran

Évaluation des images MSI ASTER et Sentinel-2 pour discriminer les unités rocheuses ignées et métamorphiques dans le paléocratère Chadormalu, au Centre de l’Iran

, ORCID Icon &
Pages 214-238 | Received 04 Apr 2021, Accepted 13 Oct 2021, Published online: 20 Dec 2021

References

  • Abrams, M., and Yamaguchi, Y. 2019. “Twenty years of ASTER contributions to lithologic mapping and mineral exploration.” Remote Sensing, Vol. 11(No. 11): pp. 1394. doi:https://doi.org/10.3390/rs11111394.
  • Arivazhagan, S., and Anbazhagan, S. 2017. “ASTER data analysis for lithological discrimination of Sittampundi anorthositic complex, southern India.” Geosciences Research, Vol. 3: pp. 196–209. doi:https://doi.org/10.22606/gr.2017.23005.
  • Beiranvand Pour, A., and Hashim, M. 2014. “ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.” Springer Plus, Vol. 3(No. 1–19): pp. 130. http://www.springerplus.com/content/3/1/130.
  • Blom, R.G., Abrams, M.J., and Adams, H.G. 1980. “Spectral reflectance and discrimination of plutonic rocks in the 0.45- to 2.45 µm region.” Journal of Geophysical Research, Vol. 85: pp. 2638–2648. doi:https://doi.org/10.1029/JB085iB05p02638.
  • Boardman, J.W., Kruse, F.A., and Green, R.O. 1995. “Mapping target signatures via partial unmixing of AVIRIS data.” Summaries of the Fifth JPL Airborne Geoscience Workshop JPL Publication, Pasadena, California, 1, 1995.
  • Borengasser, M., Hungate, W.S., and Watkins, R. 2008. “Hyperspectral remote sensing principles and applications.” In Remote Sensing Applications, edited by Q. Weng, 45–62. Boca Raton, Florida: CRC Press.
  • Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V.V., and Calvin, W.M. 1993. The U. S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 mm: U. S. Geological Survey (open file report 93-592). Denver, Colorado: U. S. Geological Survey.
  • Clark, R.N. 1999. “Spectroscopy of rock and minerals, and principles of spectroscopy.” In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, edited by A.N. Rencz, 3–52. New York: John Wiley and Son.
  • Daliran, F. 1999. “REE geochemistry of Kiruna-type iron ores.” In Mineral Deposits, Processes to Processing, edited by C.J. Stanley, A.H. Rankin, and R.J. Bondar, Vol. 1, 631–634. Rotterdam: Balkema.
  • Daliran, F. 2002. “Kiruna-type iron oxide–apatite ores and apatites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites.” In Hydrothermal Iron Oxide-Copper–Gold and Related Deposits: A Global prospective, edited by T.M. Porter, Vol. I, 303–320. Adelaide: PGC Publishing.
  • Ehlers, M., and Klonus, S. 2014. “Scale issues in multisensory image fusion.” In Scale Issues in Remote Sensing, edited by Q. Weng, 13–33. Hoboken, New Jersey: John Wiley and Sons, Inc.
  • Eidsvik, J., Mukerji, T., and Bhattacharjia, D. 2015. Value of Information in the Earth Sciences. Padstow Cornwall: Cambridge University Press.
  • Ferrier, G., White, K., Griffiths, G., Bryant, R., and Stefouli, M. 2002. “The mapping of hydrothermal alteration zones on the island of Lesvos, Greece, using an integrated remote sensing data set.” International Journal of Remote Sensing, Vol. 23(No. 2): pp. 341–356. doi:https://doi.org/10.1080/01431160010003857.
  • Forster, H., and Jafarzadeh, A. 1994. “The Bafq mining district in central Iran– a highly mineralized infracambrian volcanic field.” Economic Geology, Vol. 89(No. 8): pp. 1697–1721. doi:https://doi.org/10.2113/gsecongeo.89.8.1697.
  • Ge, W., Cheng, Q., Tang, Y., Jing, L., and Gao, C. 2018. “Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex Inner Mongolia, China.” Remote Sensing, MDPI, Vol. 10(No. 638): pp. 1–22. doi:https://doi.org/10.3390/rs10040638.
  • Gomez, C., Delacourt, C., Allemand, P., Ledru, P., and Wackerle, R. 2005. “Using ASTER remote sensing data set for geological mapping, in Namibia.” Physics and Chemistry of the Earth, Vol. 30(No. 1–3): pp. 97–108. doi:https://doi.org/10.1016/j.pce.2004.08.042.
  • Gruninger, J., Ratkowski, A.J., and Hoke, M.L. 2004. “The sequential maximum angle convex cone (SMACC) endmember model.” In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, edited by S.S. Shen and P.E. Lewis, Vol. 542. Proceedings of SPIE. SPIE, Bellingham, WA, 2004. doi:https://doi.org/10.1117/12.543794.
  • Gupta, R. P. 2018. Remote Sensing Geology. Heidelberg: Springer.
  • Haghipour, A., and Pelissier, G. 1977. “Geology of the Saghand Sector.” In Explanatory Text of the Ardekan Quadrangle Map, edited by A. Haghipour, N. Valeh, G. Pelissier, and M. Davoudzadeh, pp. 10–68. H8. Tehran: Geological Survey of Iran.
  • Haselwimmer, C.E., Riley, T.R., and Liu, J.G. 2010. “Assessing the potential of multispectral remote sensing for lithological mapping on the Antarctic Peninsula: Case study from eastern Adelaide Island, Graham Land.” Antarctic Science, Vol. 22(No. 3): pp. 299–318. doi:https://doi.org/10.1017/S0954102010000015.
  • Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., and Mauger, A. J. 2005. “Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia.” Remote Sensing of Environment, Vol. 99(No. 1–2): pp. 159–172. doi:https://doi.org/10.1016/j.rse.2005.04.025.
  • Hubbard, B. E., Crowley, J. K., and Zimbelman, D. R. 2003. “Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4) Hyperion, ALI and ASTER Imagery.” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41: pp. 1401–1410. doi:https://doi.org/10.1109/TGRS.2003.812906.
  • Hunt, G.R. 1977. “Spectral signatures of particulate minerals in the visible and near infrared.” Geophysics, Vol. 42(No. 3): pp. 501–513. doi:https://doi.org/10.1190/1.1440721.
  • Hunt, G.R. 1979. “Near infrared (1.3–2.4 µm) spectra of alteration minerals-potential for use in remote sensing.” Geophysics, Vol. 44(No. 12): pp. 1974–1986. doi:https://doi.org/10.1190/1.1440951.
  • Kang, K.K., Song, K.Y., Ahn, C.H., and Won, J.S. 2001. “Reflectance of geological media by using a field spectrometer in the Ungsang area, Kyungsang Basin.” Korean Journal of Remote Sensing, Vol. 17: pp.165–181. http://www.kjrs.or.kr/.
  • Keshava, N., and Mustard, J.F. 2002. “Spectral unmixing.” IEEE Signal Processing Magazine, 2002. https://doi.org/https://doi.org/10.1109/79.974727.
  • Knipling, E.B. 1970. “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.” Remote Sensing of Environment, Vol. 1(No. 3): pp. 155–159. doi:https://doi.org/10.1016/S0034-4257.(70)80021-9.
  • Kruse, F.A., Raines, G.L., and Watson, K. 1985. “Analytical techniques for extracting geologic information from multichannel airborne spectroradiometer and airborne imaging spectrometer data.” Proceedings, International Symposium on Remote Sensing of Environment, Fourth Thematic Conference, "Remote Sensing for Exploration Geology", San Francisco, California, 1–4 April, 1985.
  • Kruse, F.A. 1988. “Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California.” Remote Sensing of Environment, Vol. 24(No. 1): pp. 31–51. doi:https://doi.org/10.1016/0034-4257(88)90004-1.
  • Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., and Goetz, A.F. 1993. “H (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data.” Remote Sensing of Environment, Vol. 44(No. 2–3): pp. 145–163. doi:https://doi.org/10.1016/0034-4257(93)90013-N.
  • Lau, I.C. 2004. Regolith-Landform and mineralogical mapping of the white Dam prospect, eastern Olary domain, South Australia, using integrated remote sensing and spectral techniques. PhD dissertation. Adelaide, Australia: University of Adelaide.
  • Lillesand, T.M., Kieffer, R.W., and Chipman, J.W. 2015. Remote Sensing and Image Interpretation. Hoboken: John Wiley and Sons.
  • Liu, J.G., and Mason, P.J. 2009. Essential Image Processing and GIS for Remote Sensing. Oxford: Wiley-Blackwell.
  • Liu, L., Zhou, J., Jiang, D., Zhuang, D., and Mansaray, L.R. 2014. “Lithological Discrimination of the mafic-ultramafic complex, Huitongshan, China: Using ASTER data.” Journal of Earth Sciences, Vol. 25: pp. 529–536. doi:https://doi.org/10.1007/s12583-014-0437-3.
  • Mars, J.C., and Rowan, L.C. 2006. “Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic Radiometer (ASTER) data and logical operator algorithms arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection.” Geophysics, Vol. 2: pp. 161–186. doi:https://doi.org/10.1130/GES00044.1.
  • McSween, H.Y., Moersch, J.E., Burr, D.M., Dunne, W.M., Emery, J.P., Kah, L.C., and McCanta, M.C. 2019. Planetary Geoscience. New York: Cambridge University Press.
  • Moghtaderi, A. 2006. The geology and geochemistry of Chadormalu iron mine south east of Yazd- northeast of Bafq. PhD dissertation. Shiraz, Iran: Shiraz University.
  • Moghtaderi, A., Moore, F., and Mohammadzadeh, A. 2007. “The application of advanced space borne thermal emission and reflection radiometer (ASTER) data in alteration mapping of Chadormalu paleocrater, Bafq region, Central Iran.” Journal of Asian Earth Sciences, Vol. 30(No. 2): pp. 238–252. doi:https://doi.org/10.1016/j.jseaes.2006.09.004.
  • Moghtaderi, A., Moore, F., Taghavi, S.M., and Rezaei, R. 2011. “The application of ASTER imageries and mathematical evaluation method in detecting cyanobacteria in biological soil crust, Chadormalu area, central Iran.” Iranian Journal of Science and Technology, Vol. 35: pp. 13–28. doi:https://doi.org/10.22099/ijsts.2011.2124.
  • Moghtaderi, A., Moore, F., and Ranjbar, H. 2017. “Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran.” Journal of Applied Remote Sensing, Vol. 11(No. 1): pp. 016027. doi:https://doi.org/10.1117/1.JRS.11.016027.
  • Nair, A., and Mathew, G. 2012. “Lithological discrimination of the Phenaimata felsic-mafic complex. Gujarat, India, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).” International Journal of Remote Sensing, Vol. 33(No. 1): pp. 198–219. doi:https://doi.org/10.1080/01431161.2011.591441.
  • Perry, S., and Kruse, F. 2011. “ASTER data use in mining applications.” In Land remote sensing and Global Environmental change, Remote Sensing and Digital image processing, edited by B. Ramachandran, C.O. Justice, and M.J. Abrams, 301–324. New York: Springer.
  • Pu, R. 2017. “Hyperspectral Data Analysis Techniques” In Hyperspectral remote sensing: Fundamentals and Practices, Remote sensing applications, edited by Q. Weng, 196–203, Boca Raton, Florida: CRC Press.
  • Qari, M.H.T., Madani, A.A., Matsah, M.I.M., and Hamimi, Z. 2008. “Utilization of ASTER and LANDSAT data in geologic mapping of basement rocks of Arafat area, Saudi Arabia.” The Arabian Journal of Science and Engineering, Vol. 33: pp. 99–116. https://www.researchgate.net/publication/228645349_Utilization_of_ASTER_and_Landsat_data_in_geologic_mapping_of_basement_rocks_of_Arafat_Area_Saudi_Arabia.
  • Ramezani, J., and Tucker, R.D. 2003. “The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics.” American Journal of Science, Vol. 303(No. 7): pp. 622–655. doi:https://doi.org/10.2475/ajs.303.7.622.
  • Rowan, L.C., and Mars, J.C. 2003. “Lithologic mapping in the mountain pass, California, area using advanced space-borne thermal emission and reflection radiometer (ASTER) data.” Remote Sensing of Environment, Vol. 84(No. 3): pp. 350–366. doi:https://doi.org/10.1016/S0034-4257.(02)00127-X.
  • Rowan, L.C., Mars, J.C., and Simpson, C.J. 2005. “Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the advanced spaceborne thermal emission and reflection radiometer (ASTER).” Remote Sensing of Environment, Vol. 99(No. 1–2): pp. 105–126. doi:https://doi.org/10.1016/j.rse.2004.11.021.
  • Salisbury, J.W., Walter, L.S., and Vergo, N. 1987. Mid-infrared (2.1–25 µm) Spectra of Minerals, first ed (Open File Report, 87–263), 177. Reston, Virginia: United States Geological Survey.
  • Samani, B.A. 1988. “Metallogeny of the Precambrian in Iran.” Precambrian Research, Vol. 39 (No. 1-2): pp. 85–106. doi: https://doi.org/https://doi.org/10.1016/0301-9268(88)90053-8.
  • Samani, B.A. 1998. “Precambrian metallogenic deposits in central Iran.” AEOI, Scientific Bulletin, Vol (17): pp.1–16 (in Farsi with English abstract). doi:https://doi.org/10.1016/0301-9268(88)90053-8.
  • Smith, S.W. 1997. The Scientist and Engineer's Guide to Digital Signal Processing. San Diego: California Technical Publishing.
  • Stocklin, J. 1968. “Structural history and tectonics of Iran: A review.” American Association of Petroleum Geology Bulletin, Vol. 52: pp. 1229–1258. doi:https://doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D.
  • Van Der Meer, F.D. 1994. “Calibration of airborne visible/infrared imaging spectrometer data (AVIRIS) to reflectance and mineral mapping in hydrothermal alteration zones: An example from ‘cuprite mining district.” Geocarto International, Vol. 9(No. 3): pp. 23–37. doi:https://doi.org/10.1080/10106049409354457.
  • Vincent, R.K. 1997. Fundamentals of geological and environmental remote sensing. Upper Saddle River, New Jersey: Prentice Hall, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.