Publication Cover
Canadian Journal of Remote Sensing
Journal canadien de télédétection
Volume 48, 2022 - Issue 6
1,350
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A New U-Net Based Convolutional Neural Network for Estimating Caribou Lichen Ground Cover from Field-Level RGB Images

Un nouveau réseau neuronal convolutif basé sur U-net pour estimer la couverture végétale du lichen de caribou à partir de photographies RVB de terrain

, , , , , , , , & show all
Pages 849-872 | Received 20 Apr 2022, Accepted 27 Oct 2022, Published online: 30 Nov 2022

References

  • Abrams, J.F., Vashishtha, A., Wong, S.T., Nguyen, A., Mohamed, A., Wieser, S., Kuijper, A., Wilting, A., and Mukhopadhyay, A. 2019. “Habitat-Net: Segmentation of habitat images using deep learning.” Ecological Informatics, Vol. 51: pp. 121–128. doi:10.1016/j.ecoinf.2019.01.009
  • Bäuerle, A., van Onzenoodt, C., and Ropinski, T. 2021. “Net2Vis – A visual grammar for automatically generating publication-tailored CNN architecture visualizations.” Cornell University Machine Learning. Last modified 10 February 2021. https://arxiv.org/abs/1902.04394v6.
  • Cagney, J., Cox, S.E., and Booth, D.T. 2011. “Comparison of point intercept and image analysis for monitoring rangeland transects.” Rangeland Ecology & Management, Vol. 64(No. 3): pp. 309–315. doi:10.2111/REM-D-10-00090.1.
  • Chen, Z., Chen, W., Leblanc, S.G., and Henry, G.H.R. 2010. “Digital photograph analysis for measuring percent plant cover in the arctic.” ARCTIC, Vol. 63(No. 3): pp. 315–326. doi:10.14430/arctic1495
  • Coy, A., Rankine, D., Taylor, M., Nielsen, D., and Cohen, J. 2016. “Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs.” Remote Sensing, Vol. 8(No. 7): pp. 474. doi:10.3390/rs8070474.
  • Dengler, J., Jansen, F., Glöckler, F., Peet, R.K., De Cáceres, M., Chytrý, M., Ewald, J., et al. 2011. “The Global Index of Vegetation-Plot Databases (GIVD): A new resource for vegetation science.” Journal of Vegetation Science, Vol. 22(No. 4): pp. 582–597. doi:10.1111/j.1654-1103.2011.01265.x.
  • Diakogiannis, F.I., Waldner, F., Caccetta, P., and Wu, C. 2020. “ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data.” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 162: pp. 94–114. doi:10.1016/j.isprsjprs.2020.01.013.
  • Dyrmann, M., Karstoft, H., and Midtiby, H.S. 2016. “Plant species classification using deep convolutional neural network.” Biosystems Engineering, Vol. 151: pp. 72–80. doi:10.1016/j.biosystemseng.2016.08.024.
  • Environment and Climate Change Canada. 2019. “Amended recovery strategy for the woodland caribou (Rangifer tarandus Caribou), Boreal population, in Canada [proposed].” Species at Risk Act Recovery Strategy Series, pp. xiii + 143. Accessed October 2020. Available from https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/recovery-strategies/woodland-caribou-boreal-2019.html.
  • Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Fountas, S., and Vasilakoglou, I. 2020. “Towards weeds identification assistance through transfer learning.” Computers and Electronics in Agriculture, Vol. 171: pp. 105306. doi:10.1016/j.compag.2020.105306.
  • Fraser, R.H., Pouliot, D., and van der Sluijs, J. 2022. “UAV and high resolution satellite mapping of forage lichen (Cladonia Spp.) in a rocky Canadian shield landscape.” Canadian Journal of Remote Sensing, Vol. 48(No. 1): pp. 5–18. doi:10.1080/07038992.2021.1908118.
  • He, L., Chen, W., Leblanc, S.G., Lovitt, J., Arsenault, A., Schmelzer, I., Fraser, R.H., et al. 2021. “Integration of multi-scale remote sensing data for reindeer lichen fractional cover mapping in Eastern Canada.” Remote Sensing of Environment, Vol. 267(No. 15): pp. 112731. doi:10.1016/j.rse.2021.112731.
  • Hively, W.D., Shermeyer, J., Lamb, B.T., Daughtry, C.T., Quemada, M., and Keppler, J. 2019. “Mapping crop residue by combining Landsat and WorldView-3 satellite imagery.” Remote Sensing, Vol. 11(No. 16): pp. 1857. doi:10.3390/rs11161857.
  • Hu, K., Coleman, G., Zeng, S., Wang, Z., and Walsh, M. 2020. “Graph weeds net: A graph-based deep learning method for weed recognition.” Computers and Electronics in Agriculture, Vol. 174: pp. 105520. doi:10.1016/j.compag.2020.105520.
  • Jozdani, S., Chen, D., Chen, W., Leblanc, S.G., Prévost, C., Lovitt, J., He, L., and Johnson, B.A. 2021. “Leveraging deep neural networks to map caribou lichen in high-resolution satellite images based on a small-scale, noisy UAV-derived map.” Remote Sensing, Vol. 13(No. 14): pp. 2658. doi:10.3390/rs13142658
  • Karl, J.W., McCord, S.E., and Hadley, B.C. 2017. “A comparison of cover calculation techniques for relating point-intercept vegetation sampling to remote sensing imagery.” Ecological Indicators, Vol. 73: pp. 156–165. doi:10.1016/j.ecolind.2016.09.034.
  • Kelly, M., Easterday, K., Rapacciuolo, G., Koo, M., McIntyre, P., and Thorne, J. 2016. “Rescuing and sharing historical vegetation data for ecological analysis: The California vegetation type mapping project.” Biodiversity Informatics, Vol. 11(No. 1): pp. 40–62. doi:10.17161/bi.v11i0.5886
  • King, D.H., Wasley, J., Ashcroft, M.B., Ryan-Colton, E., Lucieer, A., Chisholm, L.A., and Robinson, S. A. 2020. “Semi-automated analysis of digital photographs for monitoring east antarctic vegetation.” Frontiers in Plant Science, Vol. 11: pp. 766–16. doi:10.3389/fpls.2020.00766.
  • Ko, D.W., Kim, D., Narantsetseg, A., and Kang, S. 2017. “Comparison of field- and satellite-based vegetation cover estimation methods.” Journal of Ecology and Environment, Vol. 41(No. 1): pp. 1–11. doi:10.1186/s41610-016-0022-z.
  • Laliberte, A.S., Rango, A., Herrick, J.E., Fredrickson, E.L., and Burkett, L. 2007. “An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography.” Journal of Arid Environments, Vol. 69(No. 1): pp. 1–14. doi:10.1016/j.jaridenv.2006.08.016
  • Liu, Y., Mu, X., Wang, H., and Yan, G. 2012. “A novel method for extracting green fractional vegetation cover from digital images.” Journal of Vegetation Science, Vol. 23(No. 3): pp. 406–418. doi:10.1111/j.1654-1103.2011.01373.x.
  • Luscier, J.D., Thompson, W.L., Wilson, J.M., Gorham, B.E., and Dragut, L.D. 2006. “Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots.” Frontiers in Ecology and the Environment, Vol. 4(No. 8): pp. 408–413. doi:10.1890/1540-9295(2006)4
  • Macander, M.J., Palm, E.C., Frost, G.V., Herriges, J.D., Nelson, P.R., Roland, C., Russell, K.L., et al. 2020. “Lichen cover mapping for caribou ranges in interior Alaska and Yukon.” Environmental Research Letters, Vol. 15(No. 5): pp. 055001. doi:10.1088/1748-9326/ab6d38.
  • Miranda, B.R., Sturtevant, B.R., Schmelzer, I., Doyon, F., and Wolter, P. 2016. “Vegetation recovery following fire and harvest disturbance in central Labrador — A landscape perspective.” Canadian Journal of Forest Research, Vol. 46(No. 8): pp. 1009–1018. doi:10.1139/cjfr-2015-0516.
  • Nunes, A., Tápia, S., Pinho, P., Correia, O., and Branquinho, C. 2015. “Advantages of the point-intercept method for assessing functional diversity in semi-arid areas.” iForest - Biogeosciences and Forestry, Vol. 8(No. 4): pp. 471–479. doi:10.3832/ifor1261-007.
  • O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., and Invernizzi, L. 2019. “Keras Tuner.” https://github.com/keras-team/keras-tuner.
  • Richardson, G., Leblanc, S.G., Lovitt, J., Rajaratnam, K., and Chen, W. 2021. “Leveraging AI to estimate caribou lichen in UAV orthomosaics from ground photo datasets.” Drones, Vol. 5(No. 3): pp. 99. Vol (No doi:10.3390/drones5030099
  • Riegler-Nurscher, P., Prankl, J., Bauer, T., Strauss, P., and Prankl, H. 2018. “A machine learning approach for pixel wise classification of residue and vegetation cover under field conditions.” Biosystems Engineering, Vol. 169: pp. 188–198. doi:10.1016/j.biosystemseng.2018.02.011.
  • Rochefort, L., Isselin-Nondedeu, F., Boudreau, S., and Poulin, M. 2013. “Comparing survey methods for monitoring vegetation change through time in a restored peatland.” Wetlands Ecology and Management, Vol. 21(No. 1): pp. 71–85. doi:10.1007/s11273-012-9280-4
  • Ronneberger, O., Fischer, P., and Brox, T. 2015. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, edited by N. Navab, J. Hornegger, W. Wells, and A. Frangi, Vol 9351, 234–241. Cham: Springer. doi:10.1007/978-3-319-24574-4_28
  • Sadeghi-Tehran, P., Virlet, N., Sabermanesh, K., and Hawkesford, M.J. 2017. “Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.” Plant Methods., Vol. 13(No. 1): pp. 1–16. doi:10.1186/s13007-017-0253-8.
  • Salem, M., Ibrahim, A. F., and Ali, H. A. 2013. “Automatic quick-shift method for color image segmentation.” 2013 8th International Conference on Computer Engineering & Systems (ICCES), Vol. 31349: pp. 245–251. doi:10.1109/icces.2013.6707212
  • Schmelzer, I. 2019. “CFS Lichen Mapping.” Personal Correspondence, June 28, 2019. (J. Lovitt, Interviewer)
  • Seidl, R., Fernandes, P.M., Fonseca, T.F., Gillet, F., Jönsson, A.M., Merganičová, K., Netherer, S., et al. 2011. “Modelling natural disturbances in forest ecosystems: a review.” Ecological Modelling, Vol. 222(No. 4): pp. 903–924. doi:10.1016/j.ecolmodel.2010.09.040.
  • Tang, H., Wang, B., and Chen, X. 2020. “Deep learning techniques for automatic butterfly segmentation in ecological images.” Computers and Electronics in Agriculture, Vol. 178: pp. 105739. doi:10.1016/j.compag.2020.105739
  • Terrance Booth, D., Cox, S.E., Fifield, C., Phillips, M., and Williamson, N. 2005. “image analysis compared with other methods for measuring ground cover.” Arid Land Research and Management, Vol. 19(No. 2): pp. 91–100. doi:10.1080/15324980590916486
  • Thompson, I.D., Wiebe, P.A., Mallon, E., Rodgers, A.R., Fryxell, J.M., Baker, J.A., and Reid, D. 2015. “Factors influencing the seasonal diet selection by woodland caribou (Rangifer tarandus tarandus) in boreal forests in Ontario.” Canadian Journal of Zoology, Vol. 93(No. 2): pp. 87–98. doi:10.1139/cjz-2014-0140
  • Wallace, L., Saldias, D.S., Reinke, K., Hillman, S., Hally, B., and Jones, S. 2019. “Using orthoimages generated from oblique terrestrial photography to estimate and monitor vegetation cover.” Ecological Indicators, Vol. 101: pp. 91–101. doi:10.1016/j.ecolind.2018.12.044
  • Zhang, H., Eziz, A., Xiao, J., Tao, S., Wang, S., Tang, Z., Zhu, J., and Fang, J. 2019. “High-resolution vegetation mapping using eXtreme gradient boosting based on extensive features.” Remote Sensing, Vol. 11(No. 12): pp. 1505. doi:https://doi.org/10.3390/rs11121505.
  • Zhou, Q., and Robson, M. 2001. “Automated rangeland vegetation cover and density estimation using ground digital images and a spectral-contextual classifier.” International Journal of Remote Sensing, Vol. 22(No. 17): pp. 3457–3470. doi:10.1080/01431160010004504.