2,821
Views
6
CrossRef citations to date
0
Altmetric
Review / Synthèse

Cloud Microphysics in Global Cloud Resolving Models

ORCID Icon, &
Pages 477-505 | Received 19 Apr 2022, Accepted 02 May 2022, Published online: 31 May 2022

References

  • Ackerman, S. A., & Stephens, G. L. (1987). The absorption of solar radiation by cloud droplets: An application of anomalous diffraction theory. Journal of the Atmospheric Sciences, 44(12), 1574–1588. https://doi.org/10.1175/1520-0469(1987)044<1574:TAOSRB>2.0.CO;2
  • Ackerman, T. P., Liou, K.-N., Valero, F. P. J., & Pfister, L. (1988). Heating rates in tropical anvils. Journal of the Atmospheric Sciences, 45(10), 1606–1623. https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2
  • Andrews, T., Gregory, J. M., & Webb, M. J. (2015). The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. Journal of Climate, 28(4), 1630–1648. https://doi.org/10.1175/JCLI-D-14-00545.1
  • Arabas, S., Jaruga, A., Pawlowska, H., & Grabowski, W. W. (2015). Libcloudph++ 1.0: A single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C++. Geoscientific Model Development, 8(6), 1677–1707. https://doi.org/10.5194/gmd-8-1677-2015
  • Arnold, N. P., Putman, W. M., & Freitas, S. R. (2020). Impact of resolution and parameterized convection on the diurnal cycle of precipitation in a global nonhydrostatic model. Journal of the Meteorological Society of Japan. Ser. II, 98(6), 1279–1304. https://doi.org/10.2151/jmsj.2020-066
  • Austin, R. T., Heymsfield, A. J., & Stephens, G. L. (2009). Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. Journal of Geophysical Research: Atmospheres, 114(D8), 1–19. https://doi.org/10.1029/2008JD010049
  • Austin, R. T., & Stephens, G. L. (2001). Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation. Journal of Geophysical Research: Atmospheres, 106(D22), 28233–28242. https://doi.org/10.1029/2000JD000293
  • Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., & Reinhardt, T. (2011). Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Monthly Weather Review, 139(12), 3887–3905. https://doi.org/10.1175/MWR-D-10-05013.1
  • Bauer, P., Stevens, B., & Hazeleger, W. (2021). A digital twin of earth for the green transition. Nature Climate Change, 11(2), 80–83. https://doi.org/10.1038/s41558-021-00986-y
  • Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., & Pettersen, C. (2013). July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496(7443), 83–86. https://doi.org/10.1038/nature12002
  • Benner, T. C., & Evans, K. F. (2001). Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery. Journal of Geophysical Research: Atmospheres, 106(D14), 14975–14984. https://doi.org/10.1029/2001JD900158
  • Bigg, E. K. (1953). The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of the Royal Meteorological Society, 79(342), 510–519. https://doi.org/10.1002/qj.49707934207
  • Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., & John, V. O. (2011). COSP: Satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 92(8), 1023–1043. https://doi.org/10.1175/2011BAMS2856.1
  • Bony, S., & Dufresne, J.-L. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32(20), 1–4. https://doi.org/10.1029/2005GL023851
  • Boutle, I. A., Eyre, J. E. J., & Lock, A. P. (2014). Seamless stratocumulus simulation across the turbulent gray zone. Monthly Weather Review, 142(4), 1655–1668. https://doi.org/10.1175/MWR-D-13-00229.1
  • Böhm, H. P. (1989). A general equation for the terminal fall speed of solid hydrometeors. Journal of the Atmospheric Sciences, 46(15), 2419–2427. https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2
  • Böhm, J. P. (1992). A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speed of hydrometeors. Atmospheric Research, 27(4), 253–274. https://doi.org/10.1016/0169-8095(92)90035-9
  • Bu, Y. P., Fovell, R. G., & Corbosiero, K. L. (2014). Influence of cloud–radiative forcing on tropical cyclone structure. Journal of the Atmospheric Sciences, 71(5), 1644–1662. https://doi.org/10.1175/JAS-D-13-0265.1
  • Bu, Y. P., Fovell, R. G., & Corbosiero, K. L. (2017). The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. Journal of the Atmospheric Sciences, 74(4), 1273–1292. https://doi.org/10.1175/JAS-D-16-0231.1
  • Bubnová, R., Hello, G., Bénard, P., & Geleyn, J.-F. (1995). Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/aladin NWP system. Monthly Weather Review, 123(2), 515–535. https://doi.org/10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2
  • Cesana, G., & Chepfer, H. (2012). How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophysical Research Letters, 39(20), 1–6. https://doi.org/10.1029/2012GL053153
  • Cesana, G., & Chepfer, H. (2013). Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. Journal of Geophysical Research: Atmospheres, 118(14), 7922–7937. https://doi.org/10.1002/jgrd.50376
  • Cesana, G., Waliser, D. E., Jiang, X., & Li, J.-L. F. (2015). Multimodel evaluation of cloud phase transition using satellite and reanalysis data. Journal of Geophysical Research: Atmospheres, 120(15), 7871–7892. https://doi.org/10.1002/2014JD022932
  • Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., Castruccio, F. S., Chen, Y., Edwards, J., Fu, D., Jia, Y., Laurindo, L. C., Liu, X., Rosenbloom, N., Small, R. J., Xu, G., Zeng, Y., Zhang, Q., Bacmeister, J., … Wu, L. (2020). An unprecedented Set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change. Journal of Advances in Modeling Earth Systems, 12(12), 1–52. https://doi.org/10.1029/2020MS002298
  • Chen, Y.-W., Seiki, T., Kodama, C., Satoh, M., & Noda, A. T. (2018). Impact of precipitating Ice hydrometeors on longwave radiative effect estimated by a global cloud-system resolving model. Journal of Advances in Modeling Earth Systems, 10(2), 284–296. https://doi.org/10.1002/2017MS001180
  • Chen, Y., Weng, F., Han, Y., & Liu, Q. (2008). Validation of the community radiative transfer model by using CloudSat data. Journal of Geophysical Research: Atmospheres, 113(D8), 1–15. https://doi.org/10.1029/2007JD009561
  • Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., Stubenrauch, C. J., & Zeng, S. (2010). The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). Journal of Geophysical Research: Atmospheres, 115(D4), 1–13. https://doi.org/10.1029/2009JD012251
  • Curry, J. A., Schramm, J. L., & Ebert, E. E. (1993). Impact of clouds on the surface radiation balance of the Arctic ocean. Meteorology and Atmospheric Physics, 51(3), 197–217. https://doi.org/10.1007/BF01030494
  • Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., & Wood, N. (2005). A new dynamical core for the Met office’s global and regional modelling of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 131(608), 1759–1782. https://doi.org/10.1256/qj.04.101
  • DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., Borys, R., & Rogers, D. C. (2003). Measurements of the concentration and composition of nuclei for cirrus formation. Proceedings of the National Academy of Sciences, 100(25), 14655–14660. https://doi.org/10.1073/pnas.2532677100
  • Ding, S., Yang, P., Weng, F., Liu, Q., Han, Y., van Delst, P., Li, J., & Baum, B. (2011). Validation of the community radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(6), 1050–1064. https://doi.org/10.1016/j.jqsrt.2010.11.009
  • Dueben, P. D., Wedi, N., Saarinen, S., & Zeman, C. (2020). Global simulations of the Atmosphere at 1.45 km grid-spacing with the integrated forecasting system. Journal of the Meteorological Society of Japan. Ser. II, 98(3), 551–572. https://doi.org/10.2151/jmsj.2020-016
  • Elsaesser, G. S., O’Dell, C. W., Lebsock, M. D., Bennartz, R., Greenwald, T. J., & Wentz, F. J. (2017). The multisensor advanced climatology of liquid water path (MAC-LWP). Journal of Climate, 30(24), 10193–10210. https://doi.org/10.1175/JCLI-D-16-0902.1
  • Engdahl, B. J. K., Thompson, G., & Bengtsson, L. (2020). Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model. Tellus A: Dynamic Meteorology and Oceanography, 72(1), 1–18. https://doi.org/10.1080/16000870.2019.1697603
  • Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., & Cotton, R. J. (2005). Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quarterly Journal of the Royal Meteorological Society, 131(609), 1997–2017. https://doi.org/10.1256/qj.04.134
  • Forbes, R., Tompkins, A. M., & Untch, A. (2011). A new prognostic bulk microphysics scheme for the IFS. ECMWF. https://doi.org/10.21957/bf6vjvxk
  • Fovell, R. G., Corbosiero, K. L., Seifert, A., & Liou, K.-N. (2010). Impact of cloud-radiative processes on hurricane track. Geophysical Research Letters, 37(7), 1–6. https://doi.org/10.1029/2010GL042691
  • Francis, J. A., Hunter, E., Key, J. R., & Wang, X. (2005). Clues to variability in Arctic minimum sea ice extent. Geophysical Research Letters, 32(21), 1–4. https://doi.org/10.1029/2005GL024376
  • Fu, Q. (1996). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. Journal of Climate, 9(9), 2058–2082. https://doi.org/10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2
  • Fu, Q. (2007). A New Parameterization of an asymmetry factor of cirrus clouds for climate models. Journal of the Atmospheric Sciences, 64(11), 4140–4150. https://doi.org/10.1175/2007JAS2289.1
  • Fu, Q., & Liou, K. N. (1993). Parameterization of the Radiative Properties of Cirrus clouds. Journal of the Atmospheric Sciences, 50(13), 2008–2025. https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
  • Fu, Q., Yang, P., & Sun, W. B. (1998). An Accurate Parameterization of the infrared radiative properties of cirrus clouds for climate models. Journal of Climate, 11(9), 2223–2237. https://doi.org/10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2
  • Fudeyasu, H., Wang, Y., Satoh, M., Nasuno, T., Miura, H., & Yanase, W. (2008). Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophysical Research Letters, 35(22), 1–6. https://doi.org/10.1029/2008GL036003
  • Fukuta, N., & Schaller, R. C. (1982). Ice nucleation by Aerosol particles. Theory of condensation-freezing nucleation. Journal of the Atmospheric Sciences, 39(3), 648–655. https://doi.org/10.1175/1520-0469(1982)039<0648:INBAPT>2.0.CO;2
  • Furtado, K., & Field, P. (2017). The role of Ice microphysics parametrizations in Determining the prevalence of supercooled liquid water in high-resolution simulations of a Southern Ocean Midlatitude cyclone. Journal of the Atmospheric Sciences, 74(6), 2001–2021. https://doi.org/10.1175/JAS-D-16-0165.1
  • Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., Klein, S. A., Boyle, J., Mitchell, D. L., & Li, J.-L. F. (2010). Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere model. Journal of Geophysical Research: Atmospheres, 115(D18), 1–19. https://doi.org/10.1029/2009JD013797
  • Gettelman, A., & Morrison, H. (2015). Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-line Tests and comparison with other schemes. Journal of Climate, 28(3), 1268–1287. https://doi.org/10.1175/JCLI-D-14-00102.1
  • Gilmore, M. S., Straka, J. M., & Rasmussen, E. N. (2004). Precipitation uncertainty Due to Variations in Precipitation Particle parameters within a Simple microphysics scheme. Monthly Weather Review, 132(11), 2610–2627. https://doi.org/10.1175/MWR2810.1
  • Grabowski, W. W. (1998). Toward cloud Resolving Modeling of large-scale tropical circulations: A Simple cloud microphysics parameterization. Journal of the Atmospheric Sciences, 55(21), 3283–3298. https://doi.org/10.1175/1520-0469(1998)055<3283:TCRMOL>2.0.CO;2
  • Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., … von Storch, J.-S. (2016). High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9(11), 4185–4208. https://doi.org/10.5194/gmd-9-4185-2016
  • Hagihara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., Kubota, T., & Oki, R. (2021). Assessments of Doppler velocity errors of EarthCARE cloud profiling radar using global cloud system resolving simulations: Effects of Doppler broadening and folding. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–9. https://doi.org/10.1109/TGRS.2021.3060828
  • Hagihara, Y., Okamoto, H., & Luo, Z. J. (2014). Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics. Journal of Geophysical Research: Atmospheres, 119(7), 4087–4106. https://doi.org/10.1002/2013JD020919
  • Hagihara, Y., Okamoto, H., & Yoshida, R. (2010). Development of a combined CloudSat-CALIPSO cloud mask to show global cloud distribution. Journal of Geophysical Research: Atmospheres, 115(D4), 1–17. https://doi.org/10.1029/2009JD012344
  • Haladay, T., & Stephens, G. (2009). Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations. Journal of Geophysical Research: Atmospheres, 114(D8), 1–13. https://doi.org/10.1029/2008JD010675
  • Hall, A., Cox, P., Huntingford, C., & Klein, S. (2019). Progressing emergent constraints on future climate change. Nature Climate Change, 9(4), 269–278. https://doi.org/10.1038/s41558-019-0436-6
  • Hansen, J. E., & Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Science Reviews, 16(4), 527–610. https://doi.org/10.1007/BF00168069
  • Harris, L. M., Rees, S. L., Morin, M., Zhou, L., & Stern, W. F. (2019). Explicit prediction of continental Convection in a skillful variable-resolution global model. Journal of Advances in Modeling Earth Systems, 11(6), 1847–1869. https://doi.org/10.1029/2018MS001542
  • Harris, L., Zhou, L., Lin, S.-J., Chen, J.-H., Chen, X., Gao, K., Morin, M., Rees, S., Sun, Y., Tong, M., Xiang, B., Bender, M., Benson, R., Cheng, K.-Y., Clark, S., Elbert, O. D., Hazelton, A., Huff, J. J., Kaltenbaugh, A., … Stern, W. (2020). GFDL SHiELD: A Unified system for weather-to-seasonal prediction. Journal of Advances in Modeling Earth Systems, 12(10), 1–25. https://doi.org/10.1029/2020MS002223
  • Hartmann, D. L., & Larson, K. (2002). An important constraint on tropical cloud—climate feedback. Geophysical Research Letters, 29(20), 12-1–12-14. https://doi.org/10.1029/2002GL015835
  • Hartmann, D. L., Ockert-Bell, M. E., & Michelsen, M. L. (1992). The effect of cloud type on Earth’s energy balance: Global analysis. Journal of Climate, 5(11), 1281–1304. https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2
  • Hashino, T., Satoh, M., Hagihara, Y., Kato, S., Kubota, T., Matsui, T., Nasuno, T., Okamoto, H., & Sekiguchi, M. (2016). Evaluating Arctic cloud radiative effects simulated by NICAM with A-train. Journal of Geophysical Research: Atmospheres, 121(12), 7041–7063. https://doi.org/10.1002/2016JD024775
  • Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., & Okamoto, H. (2013). Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. Journal of Geophysical Research: Atmospheres, 118(13), 7273–7292. https://doi.org/10.1002/jgrd.50564
  • Herring, S. C., Christidis, N., Hoell, A., Hoerling, M. P., & Stott, P. A. (2019). Explaining Extreme Events of 2017 from a Climate perspective. Bulletin of the American Meteorological Society, 100(1), S1–S117. https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2017.1
  • Heymsfield, A. (1975). Cirrus Uncinus Generating cells and the Evolution of cirriform clouds. Part II: The structure and Circulations of the Cirrus Uncinus Generating head. Journal of the Atmospheric Sciences, 32(4), 809–819. https://doi.org/10.1175/1520-0469(1975)032<0809:CUGCAT>2.0.CO;2
  • Hohenegger, C., Kornblueh, L., Klocke, D., Becker, T., Cioni, G., Engels, J. F., Schulzweida, U., & Stevens, B. (2020). Climate Statistics in Global simulations of the atmosphere, from 80 to 2.5 km grid spacing. Journal of the Meteorological Society of Japan. Ser. II, 98(1), 73–91. https://doi.org/10.2151/jmsj.2020-005
  • Hotta, H., Suzuki, K., Goto, D., & Lebsock, M. (2020). Climate Impact of cloud water inhomogeneity through microphysical processes in a Global Climate model. Journal of Climate, 33(12), 5195–5212. https://doi.org/10.1175/JCLI-D-19-0772.1
  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The Global Precipitation Measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722. https://doi.org/10.1175/BAMS-D-13-00164.1
  • Hu, Y., Rodier, S., Xu, K., Sun, W., Huang, J., Lin, B., Zhai, P., & Josset, D. (2010). Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. Journal of Geophysical Research: Atmospheres, 115(D4), 1–13. https://doi.org/10.1029/2009JD012384
  • Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner, D., Yang, P., Nasiri, S. L., Baum, B., Holz, R., Sun, W., Liu, Z., Wang, Z., Young, S., Stamnes, K., Huang, J., & Kuehn, R. (2009). CALIPSO/CALIOP cloud phase discrimination algorithm. Journal of Atmospheric and Oceanic Technology, 26(11), 2293–2309. https://doi.org/10.1175/2009JTECHA1280.1
  • Hyder, P., Edwards, J. M., Allan, R. P., Hewitt, H. T., Bracegirdle, T. J., Gregory, J. M., Wood, R. A., Meijers, A. J. S., Mulcahy, J., Field, P., Furtado, K., Bodas-Salcedo, A., Williams, K. D., Copsey, D., Josey, S. A., Liu, C., Roberts, C. D., Sanchez, C., Ridley, J., … Belcher, S. E. (2018). Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 9(1), 1–17. https://doi.org/10.1038/s41467-018-05634-2
  • Iga, S., Tomita, H., Tsushima, Y., & Satoh, M. (2007). Climatology of a nonhydrostatic global model with explicit cloud processes. Geophysical Research Letters, 34(22), 1–6. https://doi.org/10.1029/2007GL031048
  • Igel, A. L., Igel, M. R., & Heever, S. C. v. d. (2015). Make It a double? Sobering results from simulations using single-moment microphysics schemes. Journal of the Atmospheric Sciences, 72(2), 910–925. https://doi.org/10.1175/JAS-D-14-0107.1
  • Iguchi, T., Kozu, T., Kwiatkowski, J., Meneghini, R., Awaka, J., & Okamoto, K. (2009). Uncertainties in the rain Profiling Algorithm for the TRMM Precipitation radar. Journal of the Meteorological Society of Japan. Ser. II, 87A, 1–30. https://doi.org/10.2151/jmsj.87A.1
  • Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., … Zadelhoff, G.-J. v. (2015). The EarthCARE satellite: The Next Step forward in Global measurements of clouds, aerosols, precipitation, and radiation. Bulletin of the American Meteorological Society, 96(8), 1311–1332. https://doi.org/10.1175/BAMS-D-12-00227.1
  • Inoue, T. (1987). A cloud type classification with NOAA 7 split-window measurements. Journal of Geophysical Research: Atmospheres, 92(D4), 3991–4000. https://doi.org/10.1029/JD092iD04p03991
  • Inoue, T., & Ackerman, S. A. (2002). Radiative effects of various cloud types as classified by the Split Window technique over the eastern Sub-tropical Pacific derived from collocated ERBE and AVHRR data. Journal of the Meteorological Society of Japan. Ser. II, 80(6), 1383–1394. https://doi.org/10.2151/jmsj.80.1383
  • Inoue, T., Satoh, M., Hagihara, Y., Miura, H., & Schmetz, J. (2010). Comparison of high-level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. Journal of Geophysical Research: Atmospheres, 115(D4), 1–15. https://doi.org/10.1029/2009JD012371
  • Inoue, T., Satoh, M., Miura, H., & Mapes, B. (2008). Characteristics of cloud size of Deep Convection Simulated by a Global cloud Resolving Model over the western tropical pacific. Journal of the Meteorological Society of Japan. Ser. II, 86A, 1–15. https://doi.org/10.2151/jmsj.86A.1
  • Inoue, T., Ueda, H., & Inoue, T. (2006). Cloud Properties over the Bay of Bengal derived from NOAA-9 Split Window data and the TRMM PR product. Sola, 2, 41–44. https://doi.org/10.2151/sola.2006-011
  • Ishihara, M., Kato, Y., Abo, T., Kobayashi, K., & Izumikawa, Y. (2006). Characteristics and performance of the Operational wind profiler network of the Japan Meteorological agency. Journal of the Meteorological Society of Japan. Ser. II, 84(6), 1085–1096. https://doi.org/10.2151/jmsj.84.1085
  • Iwabuchi, H., Putri, N. S., Saito, M., Tokoro, Y., Sekiguchi, M., Yang, P., & Baum, B. A. (2018). Cloud property Retrieval from multiband Infrared measurements by himawari-8. Journal of the Meteorological Society of Japan. Ser. II, 96B(0), 27–42. https://doi.org/10.2151/jmsj.2018-001
  • Iwabuchi, H., Saito, M., Tokoro, Y., Putri, N. S., & Sekiguchi, M. (2016). Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements. Progress in Earth and Planetary Science, 3(1), 1–18. https://doi.org/10.1186/s40645-016-0108-3
  • Jaruga, A., & Pawlowska, H. (2018). Libcloudph++ 2.0: Aqueous-phase chemistry extension of the particle-based cloud microphysics scheme. Geoscientific Model Development, 11(9), 3623–3645. https://doi.org/10.5194/gmd-11-3623-2018
  • Jensen, E. J., Kinne, S., & Toon, O. B. (1994). Tropical cirrus cloud radiative forcing: Sensitivity studies. Geophysical Research Letters, 21(18), 2023–2026. https://doi.org/10.1029/94GL01358
  • Kajikawa, Y., Miyamoto, Y., Yoshida, R., Yamaura, T., Yashiro, H., & Tomita, H. (2016). Resolution dependence of deep convections in a global simulation from over 10-kilometer to sub-kilometer grid spacing. Progress in Earth and Planetary Science, 3(1), 1–14. https://doi.org/10.1186/s40645-016-0094-5
  • Kalnay, E., Kanamitsu, M., & Baker, W. E. (1990). Global Numerical Weather prediction at the national Meteorological center. Bulletin of the American Meteorological Society, 71(10), 1410–1428. https://doi.org/10.1175/1520-0477(1990)071<1410:GNWPAT>2.0.CO;2
  • Kang, S. M., Frierson, D. M. W., & Held, I. M. (2009). The tropical response to extratropical thermal forcing in an idealized GCM: The Importance of radiative feedbacks and convective parameterization. Journal of the Atmospheric Sciences, 66(9), 2812–2827. https://doi.org/10.1175/2009JAS2924.1
  • Kapsch, M.-L., Graversen, R. G., & Tjernström, M. (2013). Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nature Climate Change, 3(8), 744–748. https://doi.org/10.1038/nclimate1884
  • Kapsch, M.-L., Graversen, R. G., Tjernström, M., & Bintanja, R. (2016). The effect of downwelling longwave and shortwave radiation on Arctic Summer Sea Ice. Journal of Climate, 29(3), 1143–1159. https://doi.org/10.1175/JCLI-D-15-0238.1
  • Kato, T., & Saito, K. (1995). Hydrostatic and Non-hydrostatic simulations of Moist convection. Journal of the Meteorological Society of Japan. Ser. II, 73(1), 59–77. https://doi.org/10.2151/jmsj1965.73.1_59
  • Kawai, H., & Teixeira, J. (2010). Probability Density Functions of Liquid Water Path and cloud amount of Marine Boundary Layer Clouds: Geographical and seasonal Variations and controlling Meteorological factors. Journal of Climate, 23(8), 2079–2092. https://doi.org/10.1175/2009JCLI3070.1
  • Kawai, H., & Teixeira, J. (2012). Probability Density Functions of Liquid Water Path and total water content of Marine Boundary Layer clouds: Implications for cloud parameterization. Journal of Climate, 25(6), 2162–2177. https://doi.org/10.1175/JCLI-D-11-00117.1
  • Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C. (2016). Global Climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). Journal of Climate, 29(12), 4617–4636. https://doi.org/10.1175/JCLI-D-15-0358.1
  • Kärcher, B., Hendricks, J., & Lohmann, U. (2006). Physically based parameterization of cirrus cloud formation for use in global atmospheric models. Journal of Geophysical Research: Atmospheres, 111(D1), 1–11. https://doi.org/10.1029/2005JD006219
  • Khairoutdinov, M. F., & Randall, D. A. (2003). Cloud Resolving Modeling of the ARM Summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. Journal of the Atmospheric Sciences, 60(4), 607–625. https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2
  • Khairoutdinov, M., & Kogan, Y. (2000). A New cloud physics Parameterization in a large-eddy simulation Model of Marine stratocumulus. Monthly Weather Review, 128(1), 229–243. https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2
  • Khvorostyanov, V. I., & Curry, J. A. (2009). Critical humidities of homogeneous and heterogeneous ice nucleation: Inferences from extended classical nucleation theory. Journal of Geophysical Research: Atmospheres, 114(D4), 1–16. https://doi.org/10.1029/2008JD011197
  • Kikuchi, K., Kodama, C., Nasuno, T., Nakano, M., Miura, H., Satoh, M., Noda, A. T., & Yamada, Y. (2017a). Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM. Climate Dynamics, 48(7), 2507–2528. https://doi.org/10.1007/s00382-016-3219-z
  • Kikuchi, M., Okamoto, H., Sato, K., Suzuki, K., Cesana, G., Hagihara, Y., Takahashi, N., Hayasaka, T., & Oki, R. (2017b). Development of Algorithm for discriminating hydrometeor particle types With a synergistic Use of CloudSat and CALIPSO. Journal of Geophysical Research: Atmospheres, 122(20), 11,022–11,044. https://doi.org/10.1002/2017JD027113
  • Kodama, C., Noda, A. T., & Satoh, M. (2012). An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. Journal of Geophysical Research: Atmospheres, 117(D12), 1–17. https://doi.org/10.1029/2011JD017317
  • Kodama, C., Ohno, T., Seiki, T., Yashiro, H., Noda, A. T., Nakano, M., Yamada, Y., Roh, W., Satoh, M., Nitta, T., Goto, D., Miura, H., Nasuno, T., Miyakawa, T., Chen, Y.-W., & Sugi, M. (2021). The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geoscientific Model Development, 14(2), 795–820. https://doi.org/10.5194/gmd-14-795-2021
  • Kodama, C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T., Tomita, T., Yamaura, T., Takahashi, H. G., Hara, M., Kawatani, Y., Satoh, M., & Sugi, M. (2015). A 20-year Climatology of a NICAM AMIP-type simulation. Journal of the Meteorological Society of Japan. Ser. II, 93(4), 393–424. https://doi.org/10.2151/jmsj.2015-024
  • Kondo, M., Sato, Y., Inatsu, M., & Katsuyama, Y. (2021). Evaluation of cloud Microphysical Schemes for Winter snowfall Events in hokkaido: A case Study of snowfall by Winter monsoon. Sola, 17(0), 74–80. https://doi.org/10.2151/sola.2021-012
  • Kuba, N., Seiki, T., Suzuki, K., Roh, W., & Satoh, M. (2020). Evaluation of rain microphysics using a radar simulator and Numerical models: Comparison of Two-Moment bulk and spectral Bin cloud microphysics schemes. Journal of Advances in Modeling Earth Systems, 12(3), 1–18. https://doi.org/10.1029/2019MS001891
  • Kuba, N., Suzuki, K., Hashino, T., Seiki, T., & Satoh, M. (2015). Numerical experiments to analyze cloud microphysical processes depicted in vertical profiles of radar reflectivity of Warm clouds. Journal of the Atmospheric Sciences, 72(12), 4509–4528. https://doi.org/10.1175/JAS-D-15-0053.1
  • Lang, S., Tao, W.-K., Simpson, J., Cifelli, R., Rutledge, S., Olson, W., & Halverson, J. (2007). Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. Journal of the Atmospheric Sciences, 64(4), 1141–1164. https://doi.org/10.1175/JAS3879.1
  • Li, J.-L. F., Forbes, R. M., Waliser, D. E., Stephens, G., & Lee, S. (2014). Characterizing the radiative impacts of precipitating snow in the ECMWF Integrated forecast system global model. Journal of Geophysical Research: Atmospheres, 119(16), 9626–9637. https://doi.org/10.1002/2014JD021450
  • Li, J.-L. F., Lee, W.-L., Waliser, D., Wang, Y.-H., Yu, J.-Y., Jiang, X., L’Ecuyer, T., Chen, Y.-C., Kubar, T., Fetzer, E., & Mahakur, M. (2016). Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using A-train observations. Journal of Geophysical Research: Atmospheres, 121(4), 1621–1636. https://doi.org/10.1002/2015JD023587
  • Li, J.-L. F., Waliser, D. E., Stephens, G., Lee, S., L’Ecuyer, T., Kato, S., Loeb, N., & Ma, H.-Y. (2013). Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. Journal of Geophysical Research: Atmospheres, 118(15), 8166–8184. https://doi.org/10.1002/jgrd.50378
  • Li, X., Tao, W.-K., Matsui, T., Liu, C., & Masunaga, H. (2010). Improving a spectral bin microphysical scheme using TRMM satellite observations. Quarterly Journal of the Royal Meteorological Society, 136(647), 382–399. https://doi.org/10.1002/qj.569
  • Liao, L., & Meneghini, R. (2011). A Study on the feasibility of Dual-Wavelength radar for identification of hydrometeor phases. Journal of Applied Meteorology and Climatology, 50(2), 449–456. https://doi.org/10.1175/2010JAMC2499.1
  • Liao, L., & Meneghini, R. (2016). A Dual-Wavelength Radar technique to detect hydrometeor phases. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7292–7298. https://doi.org/10.1109/TGRS.2016.2599022
  • Liao, L., Meneghini, R., Tokay, A., & Kim, H. (2020). Assessment of Ku- and Ka-band dual-frequency radar for snow retrieval. Journal of the Meteorological Society of Japan. Ser. II, 98(6), 1129–1146. https://doi.org/10.2151/jmsj.2020-057
  • Lin, S.-J. (2004). A “Vertically lagrangian” Finite-Volume dynamical core for Global models. Monthly Weather Review, 132(10), 2293–2307. https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2
  • Lin, S.-J., & Rood, R. B. (1997). An explicit flux-form semi-lagrangian shallow-water model on the sphere. Quarterly Journal of the Royal Meteorological Society, 123(544), 2477–2498. https://doi.org/10.1002/qj.49712354416
  • Lin, Y.-L., Farley, R. D., & Orville, H. D. (1983). Bulk Parameterization of the snow field in a cloud model. Journal of Applied Meteorology and Climatology, 22(6), 1065–1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  • Liou, K.-N. (1986). Influence of cirrus clouds on Weather and Climate processes: A Global perspective. Monthly Weather Review, 114(6), 1167–1199. https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2
  • Liou, K. N. (2002). An introduction to Atmospheric radiation. Elsevier.
  • Locatelli, J. D., & Hobbs, P. V. (1974). Fall speeds and masses of solid precipitation particles. Journal of Geophysical Research (1896-1977), 79(15), 2185–2197. https://doi.org/10.1029/JC079i015p02185
  • Long, A. B. (1974). Solutions to the droplet collection equation for polynomial kernels. Journal of the Atmospheric Sciences, 31(4), 1040–1052. https://doi.org/10.1175/1520-0469(1974)031<1040:STTDCE>2.0.CO;2
  • Lopez, P. (2002). Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quarterly Journal of the Royal Meteorological Society, 128(579), 229–257. https://doi.org/10.1256/00359000260498879
  • Macke, A. (1993). Scattering of light by polyhedral ice crystals. Applied Optics, 32(15), 2780–2788. https://doi.org/10.1364/AO.32.002780
  • Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kuehnlein, C., Mozdzynski, G., Hamrud, M., & Smolarkiewicz, P. (2016). A new grid for the IFS. ECMWF. https://doi.org/10.21957/zwdu9u5i
  • Mapes, B. E., & Houze, R. A. (1993). Cloud clusters and superclusters over the Oceanic Warm pool. Monthly Weather Review, 121(5), 1398–1416. https://doi.org/10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2
  • Marchand, R., Haynes, J., Mace, G. G., Ackerman, T., & Stephens, G. (2009). A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. Journal of Geophysical Research: Atmospheres, 114(D8), 1–18. https://doi.org/10.1029/2008JD009790
  • Masunaga, H., & Bony, S. (2018). Radiative invigoration of Tropical Convection by preceding cirrus clouds. Journal of the Atmospheric Sciences, 75(4), 1327–1342. https://doi.org/10.1175/JAS-D-17-0355.1
  • Masunaga, H., & Kummerow, C. D. (2006). Observations of tropical precipitating clouds ranging from shallow to deep convective systems. Geophysical Research Letters, 33(16), 1–5. https://doi.org/10.1029/2006GL026547
  • Masunaga, H., L’Ecuyer, T. S., & Kummerow, C. D. (2005). Variability in the Characteristics of Precipitation systems in the tropical pacific. Part I: Spatial structure. Journal of Climate, 18(6), 823–840. https://doi.org/10.1175/JCLI-3304.1
  • Masunaga, H., & Mapes, B. E. (2020). A Mechanism for the maintenance of sharp tropical margins. Journal of the Atmospheric Sciences, 77(4), 1181–1197. https://doi.org/10.1175/JAS-D-19-0154.1
  • Masunaga, H., Matsui, T., Tao, W., Hou, A. Y., Kummerow, C. D., Nakajima, T., Bauer, P., Olson, W. S., Sekiguchi, M., & Nakajima, T. Y. (2010). Satellite Data Simulator Unit: a multisensor, multispectral satellite simulator package. Bulletin of the American Meteorological Society, 91(12), 1625–1632. https://doi.org/10.1175/2010BAMS2809.1
  • Masunaga, H., Satoh, M., & Miura, H. (2008). A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis. Journal of Geophysical Research: Atmospheres, 113(D17), 1–11. https://doi.org/10.1029/2008JD009986
  • Matsui, T., Chern, J.-D., Tao, W.-K., Lang, S., Satoh, M., Hashino, T., & Kubota, T. (2016). On the land–Ocean contrast of Tropical Convection and microphysics Statistics derived from TRMM satellite signals and Global Storm-Resolving models. Journal of Hydrometeorology, 17(5), 1425–1445. https://doi.org/10.1175/JHM-D-15-0111.1
  • Matsui, T., Dolan, B., Rutledge, S. A., Tao, W.-K., Iguchi, T., Barnum, J., & Lang, S. E. (2019). POLARRIS: A POLArimetric Radar Retrieval and Instrument simulator. Journal of Geophysical Research: Atmospheres, 124(8), 4634–4657. https://doi.org/10.1029/2018JD028317
  • Matsui, T., Iguchi, T., Li, X., Han, M., Tao, W.-K., Petersen, W., L’Ecuyer, T., Meneghini, R., Olson, W., Kummerow, C. D., Hou, A. Y., Schwaller, M. R., Stocker, E. F., & Kwiatkowski, J. (2013). GPM satellite simulator over ground validation sites. Bulletin of the American Meteorological Society, 94(11), 1653–1660. https://doi.org/10.1175/BAMS-D-12-00160.1
  • Matsui, T., Santanello, J., Shi, J. J., Tao, W.-K., Wu, D., Peters-Lidard, C., Kemp, E., Chin, M., Starr, D., Sekiguchi, M., & Aires, F. (2014). Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling. Journal of Geophysical Research: Atmospheres, 119(13), 8450–8475. https://doi.org/10.1002/2013JD021424
  • Matsui, T., Zeng, X., Tao, W.-K., Masunaga, H., Olson, W. S., & Lang, S. (2009). Evaluation of long-term Cloud-Resolving Model Simulations using satellite radiance observations and multifrequency satellite simulators. Journal of Atmospheric and Oceanic Technology, 26(7), 1261–1274. https://doi.org/10.1175/2008JTECHA1168.1
  • Matsui, T., Zhang, S. Q., Lang, S. E., Tao, W.-K., Ichoku, C., & Peters-Lidard, C. D. (2020). Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West african monsoon simulations. Climate Dynamics, 55(1), 193–213. https://doi.org/10.1007/s00382-018-4187-2
  • McFarquhar, G. M., Heymsfield, A. J., Macke, A., Iaquinta, J., & Aulenbach, S. M. (1999). Use of observed ice crystal sizes and shapes to calculate mean-scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. Journal of Geophysical Research: Atmospheres, 104(D24), 31763–31779. https://doi.org/10.1029/1999JD900802
  • Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F., Stouffer, R. J., Taylor, K. E., & Schlund, M. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6(26), 1–10. https://doi.org/10.1126/sciadv.aba1981
  • Meehl, G. A., Yang, D., Arblaster, J. M., Bates, S. C., Rosenbloom, N., Neale, R., Bacmeister, J., Lauritzen, P. H., Bryan, F., Small, J., Truesdale, J., Hannay, C., Shields, C., Strand, W. G., Dennis, J., & Danabasoglu, G. (2019). Effects of Model resolution, physics, and coupling on Southern hemisphere Storm tracks in CESM1.3. Geophysical Research Letters, 46(21), 12408–12416. https://doi.org/10.1029/2019GL084057
  • Michibata, T., & Suzuki, K. (2020). Reconciling compensating Errors between Precipitation constraints and the Energy Budget in a Climate model. Geophysical Research Letters, 47(12), 1–10. https://doi.org/10.1029/2020GL088340
  • Michibata, T., Suzuki, K., Sekiguchi, M., & Takemura, T. (2019). Prognostic Precipitation in the MIROC6-SPRINTARS GCM: Description and Evaluation against satellite observations. Journal of Advances in Modeling Earth Systems, 11(3), 839–860. https://doi.org/10.1029/2018MS001596
  • Michibata, T., Suzuki, K., & Takemura, T. (2020). Snow-induced buffering in aerosol–cloud interactions. Atmospheric Chemistry and Physics, 20(22), 13771–13780. https://doi.org/10.5194/acp-20-13771-2020
  • Milbrandt, J. A., & Yau, M. K. (2005). A multimoment bulk Microphysics Parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62(9), 3065–3081. https://doi.org/10.1175/JAS3535.1
  • Mitchell, D. L. (1996). Use of mass- and area-dimensional power laws for Determining Precipitation particle terminal velocities. Journal of the Atmospheric Sciences, 53(12), 1710–1723. https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2
  • Mitchell, D. L., & Arnott, W. P. (1994). A Model predicting the Evolution of Ice particle size spectra and radiative Properties of Cirrus clouds. Part II: Dependence of Absorption and extinction on Ice crystal morphology. Journal of the Atmospheric Sciences, 51(6), 817–832. https://doi.org/10.1175/1520-0469(1994)051<0817:AMPTEO>2.0.CO;2
  • Mitchell, D. L., Liu, Y., & Macke, A. (1996). Modeling cirrus clouds. Part II: treatment of radiative properties. Journal of the Atmospheric Sciences, 53(20), 2967–2988. https://doi.org/10.1175/1520-0469(1996)053<2967:MCCPIT>2.0.CO;2
  • Miura, H., Satoh, M., Nasuno, T., Noda, A. T., & Oouchi, K. (2007a). A Madden-Julian Oscillation Event realistically simulated by a Global Cloud-Resolving model. Science, 318(5857), 1763–1765. https://doi.org/10.1126/science.1148443
  • Miura, H., Satoh, M., Tomita, H., Noda, A. T., Nasuno, T., & Iga, S. (2007b). A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophysical Research Letters, 34(2), 1–5. https://doi.org/10.1029/2006GL027448
  • Miyakawa, T., & Kikuchi, K. (2018). CINDY2011/DYNAMO Madden-Julian oscillation successfully reproduced in global cloud/cloud-system resolving simulations despite weak tropical wavelet power. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-29931-4
  • Miyakawa, T., Satoh, M., Miura, H., Tomita, H., Yashiro, H., Noda, A. T., Yamada, Y., Kodama, C., Kimoto, M., & Yoneyama, K. (2014). Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Communications, 5(1), 1–6. https://doi.org/10.1038/ncomms4769
  • Miyakawa, T., Takayabu, Y. N., Nasuno, T., Miura, H., Satoh, M., & Moncrieff, M. W. (2012). Convective momentum Transport by Rainbands within a madden–Julian Oscillation in a Global Nonhydrostatic Model with explicit deep convective processes. Part I: Methodology and general results. Journal of the Atmospheric Sciences, 69(4), 1317–1338. https://doi.org/10.1175/JAS-D-11-024.1
  • Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., & Tomita, H. (2013). Deep moist atmospheric convection in a subkilometer global simulation. Geophysical Research Letters, 40(18), 4922–4926. https://doi.org/10.1002/grl.50944.
  • Miyamoto, Y., Satoh, M., Tomita, H., Oouchi, K., Yamada, Y., Kodama, C., & Kinter, J. (2014). Gradient wind balance in tropical cyclones in High-Resolution Global experiments. Monthly Weather Review, 142(5), 1908–1926. https://doi.org/10.1175/MWR-D-13-00115.1
  • Miyamoto, Y., Yoshida, R., Yamaura, T., Yashiro, H., Tomita, H., & Kajikawa, Y. (2015). Does convection vary in different cloud disturbances? Atmospheric Science Letters, 16(3), 305–309. https://doi.org/10.1002/asl2.558
  • Mizielinski, M. S., Roberts, M. J., Vidale, P. L., Schiemann, R., Demory, M.-E., Strachan, J., Edwards, T., Stephens, A., Lawrence, B. N., Pritchard, M., Chiu, P., Iwi, A., Churchill, J., del Cano Novales, C., Kettleborough, J., Roseblade, W., Selwood, P., Foster, M., Glover, M., & Malcolm, A. (2014). High-resolution global climate modelling: The UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), 1629–1640. https://doi.org/10.5194/gmd-7-1629-2014
  • Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., & Sulia, K. (2012). Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience, 5(1), 11–17. https://doi.org/10.1038/ngeo1332
  • Morrison, H., & Gettelman, A. (2008). A New Two-Moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). part I: Description and Numerical tests. Journal of Climate, 21(15), 3642–3659. https://doi.org/10.1175/2008JCLI2105.1
  • Morrison, H., & Grabowski, W. W. (2008). Modeling supersaturation and subgrid-scale Mixing with Two-Moment Bulk Warm microphysics. Journal of the Atmospheric Sciences, 65(3), 792–812. https://doi.org/10.1175/2007JAS2374.1
  • Mroz, K., Battaglia, A., Lang, T. J., Tanelli, S., & Sacco, G. F. (2018). Global Precipitation Measuring dual-frequency Precipitation radar observations of hailstorm vertical structure: Current capabilities and drawbacks. Journal of Applied Meteorology and Climatology, 57(9), 2161–2178. https://doi.org/10.1175/JAMC-D-18-0020.1
  • Nakajima, T., & King, M. D. (1990). Determination of the optical thickness and effective particle radius of clouds from reflected Solar radiation measurements. Part I: Theory. Journal of the Atmospheric Sciences, 47(15), 1878–1893. https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2
  • Nakajima, T., Tsukamoto, M., Tsushima, Y., Numaguti, A., & Kimura, T. (2000). Modeling of the radiative process in an atmospheric general circulation model. Applied Optics, 39(27), 4869–4878. https://doi.org/10.1364/AO.39.004869
  • Nakajima, T. Y., Suzuki, K., & Stephens, G. L. (2010). Droplet growth in Warm water clouds observed by the A-train. Part II: A Multisensor view. Journal of the Atmospheric Sciences, 67(6), 1897–1907. https://doi.org/10.1175/2010JAS3276.1
  • Nakano, M., & Kikuchi, K. (2019). Seasonality of Intraseasonal variability in Global Climate models. Geophysical Research Letters, 46(8), 4441–4449. https://doi.org/10.1029/2019GL082443
  • Nakano, M., Sawada, M., Nasuno, T., & Satoh, M. (2015). Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. Geophysical Research Letters, 42(2), 565–571. https://doi.org/10.1002/2014GL062479
  • Nakano, M., Wada, A., Sawada, M., Yoshimura, H., Onishi, R., Kawahara, S., Sasaki, W., Nasuno, T., Yamaguchi, M., Iriguchi, T., Sugi, M., & Takeuchi, Y. (2017). Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results. Geoscientific Model Development, 10(3), 1363–1381. https://doi.org/10.5194/gmd-10-1363-2017
  • Nam, C., Bony, S., Dufresne, J.-L., & Chepfer, H. (2012). The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophysical Research Letters, 39(21), 1–7. https://doi.org/10.1029/2012GL053421
  • Nasuno, T., Miura, H., Satoh, M., Noda, A. T., & Oouchi, K. (2009). Multi-scale organization of Convection in a Global Numerical simulation of the December 2006 MJO Event using explicit Moist processes. Journal of the Meteorological Society of Japan. Ser. II, 87(2), 335–345. https://doi.org/10.2151/jmsj.87.335
  • Nishizawa, S., Yashiro, H., Sato, Y., Miyamoto, Y., & Tomita, H. (2015). Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geoscientific Model Development, 8(10), 3393–3419. https://doi.org/10.5194/gmd-8-3393-2015
  • Noda, A. T., Kodama, C., Yamada, Y., Satoh, M., Ogura, T., & Ohno, T. (2019). Responses of clouds and large-scale circulation to Global warming evaluated from multidecadal simulations using a Global Nonhydrostatic model. Journal of Advances in Modeling Earth Systems, 11(9), 2980–2995. https://doi.org/10.1029/2019MS001658
  • Noda, A. T., Satoh, M., Yamada, Y., Kodama, C., & Seiki, T. (2014). Responses of tropical and subtropical high-cloud Statistics to Global warming. Journal of Climate, 27(20), 7753–7768. https://doi.org/10.1175/JCLI-D-14-00179.1
  • Noda, A. T., Seiki, T., Roh, W., Satoh, M., & Ohno, T. (2021). Improved representation of low-level mixed-phase clouds in a global cloud-system-resolving simulation. Journal of Geophysical Research: Atmospheres, 126(17), e2021JD035223, 1-15. https://doi.org/10.1029/2021JD035223.
  • Noda, A. T., Seiki, T., Satoh, M., & Yamada, Y. (2016). High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulations. Geophysical Research Letters, 43(5), 2307–2314. https://doi.org/10.1002/2016GL067742
  • Okamoto, K. (2017). Evaluation of IR radiance simulation for all-sky assimilation of himawari-8/AHI in a mesoscale NWP system. Quarterly Journal of the Royal Meteorological Society, 143(704), 1517–1527. https://doi.org/10.1002/qj.3022
  • Okamoto, K., Sawada, Y., & Kunii, M. (2019). Comparison of assimilating all-sky and clear-sky infrared radiances from himawari-8 in a mesoscale system. Quarterly Journal of the Royal Meteorological Society, 145(719), 745–766. https://doi.org/10.1002/qj.3463
  • Okata, M., Nakajima, T., Suzuki, K., Inoue, T., Nakajima, T. Y., & Okamoto, H. (2017). A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data. Journal of Geophysical Research: Atmospheres, 122(1), 443–468. https://doi.org/10.1002/2016JD025441
  • Onishi, R., & Takahashi, K. (2012). A warm-Bin–cold-bulk hybrid cloud microphysical model. Journal of the Atmospheric Sciences, 69(5), 1474–1497. https://doi.org/10.1175/JAS-D-11-0166.1
  • Onishi, R., Sugiyama, D., & Matsuda, K. (2019). Super-Resolution simulation for real-time prediction of urban micrometeorology. Sola, 15(0), 178–182. https://doi.org/10.2151/sola.2019-032
  • Oouchi, K., Noda, A. T., Satoh, M., Miura, H., Tomita, H., Nasuno, T., & Iga, S. (2009). A simulated preconditioning of Typhoon genesis controlled by a Boreal Summer Madden-Julian Oscillation Event in a Global cloud-system-resolving model. Sola, 5, 65–68. https://doi.org/10.2151/sola.2009-017
  • Park, S., Bretherton, C. S., & Rasch, P. J. (2014). Integrating cloud processes in the Community Atmosphere Model, version 5. Journal of Climate, 27(18), 6821–6856. https://doi.org/10.1175/JCLI-D-14-00087.1
  • Phillips, V. T. J., Donner, L. J., & Garner, S. T. (2007). Nucleation processes in Deep Convection Simulated by a Cloud-System-Resolving Model with double-moment bulk microphysics. Journal of the Atmospheric Sciences, 64(3), 738–761. https://doi.org/10.1175/JAS3869.1
  • Pollack, J. B., & Cuzzi, J. N. (1980). Scattering by nonspherical particles of size comparable to a wavelength: A New semi-empirical Theory and Its Application to tropospheric aerosols. Journal of the Atmospheric Sciences, 37(4), 868–881. https://doi.org/10.1175/1520-0469(1980)037<0868:SBNPOS>2.0.CO;2
  • Posselt, R., & Lohmann, U. (2008). Introduction of prognostic rain in ECHAM5: Design and single column model simulations. Atmospheric Chemistry and Physics, 8(11), 2949–2963. https://doi.org/10.5194/acp-8-2949-2008
  • Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of clouds and precipitation (2nd ed.). Springer Netherlands. https://doi.org/10.1007/978-0-306-48100-0.
  • Putman, W. M., & Lin, S.-J. (2007). Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics, 227(1), 55–78. https://doi.org/10.1016/j.jcp.2007.07.022
  • Putman, W. M., & Suarez, M. (2011). Cloud-system resolving simulations with the NASA Goddard Earth Observing system global atmospheric model (GEOS-5). Geophysical Research Letters, 38(16), 1–5. https://doi.org/10.1029/2011GL048438
  • Randall, D. A., Genio, A. D. D., Donner, L. J., Collins, W. D., & Klein, S. A. (2016). The Impact of ARM on Climate modeling. Meteorological Monographs, 57(1), 26.1–26.16. https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0050.1
  • Ren, C., & Mackenzie, A. R. (2005). Cirrus parametrization and the role of ice nuclei. Quarterly Journal of the Royal Meteorological Society, 131(608), 1585–1605. https://doi.org/10.1256/qj.04.126
  • Reverdy, M., Chepfer, H., Donovan, D., Noel, V., Cesana, G., Hoareau, C., Chiriaco, M., & Bastin, S. (2015). An EarthCARE/ATLID simulator to evaluate cloud description in climate models. Journal of Geophysical Research: Atmospheres, 120(21), 11,090–11,113. https://doi.org/10.1002/2015JD023919
  • Roberts, M. J., Vidale, P. L., Senior, C., Hewitt, H. T., Bates, C., Berthou, S., Chang, P., Christensen, H. M., Danilov, S., Demory, M.-E., Griffies, S. M., Haarsma, R., Jung, T., Martin, G., Minobe, S., Ringler, T., Satoh, M., Schiemann, R., Scoccimarro, E., … Wehner, M. F. (2018). The Benefits of Global high resolution for Climate simulation: Process understanding and the enabling of stakeholder decisions at the regional scale. Bulletin of the American Meteorological Society, 99(11), 2341–2359. https://doi.org/10.1175/BAMS-D-15-00320.1
  • Roehrig, R., Beau, I., Saint-Martin, D., Alias, A., Decharme, B., Guérémy, J.-F., Voldoire, A., Abdel-Lathif, A. Y., Bazile, E., Belamari, S., Blein, S., Bouniol, D., Bouteloup, Y., Cattiaux, J., Chauvin, F., Chevallier, M., Colin, J., Douville, H., Marquet, P., … Sénési, S. (2020). The CNRM Global Atmosphere Model ARPEGE-Climat 6.3: Description and evaluation. Journal of Advances in Modeling Earth Systems, 12(7), 1–53. https://doi.org/10.1029/2020MS002075
  • Roh, W., & Satoh, M. (2014). Evaluation of precipitating hydrometeor parameterizations in a single-moment Bulk Microphysics scheme for deep convective systems over the tropical central pacific. Journal of the Atmospheric Sciences, 71(7), 2654–2673. https://doi.org/10.1175/JAS-D-13-0252.1
  • Roh, W., & Satoh, M. (2018). Extension of a Multisensor satellite radiance-based Evaluation for cloud system resolving models. Journal of the Meteorological Society of Japan. Ser. II, 96(1), 55–63. https://doi.org/10.2151/jmsj.2018-002
  • Roh, W., Satoh, M., Hashino, T., Okamoto, H., & Seiki, T. (2020). Evaluations of the thermodynamic Phases of clouds in a Cloud-System-Resolving Model Using CALIPSO and a satellite simulator over the Southern Ocean. Journal of the Atmospheric Sciences, 77(11), 3781–3801. https://doi.org/10.1175/JAS-D-19-0273.1
  • Roh, W., Satoh, M., & Hohenegger, C. (2021). Intercomparison of cloud properties in DYAMOND simulations over the Atlantic Ocean. Journal of the Meteorological Society of Japan. Ser. II, 99(6), 1439–1451. https://doi.org/10.2151/jmsj.2021-070
  • Roh, W., Satoh, M., & Nasuno, T. (2017). Improvement of a cloud microphysics scheme for a Global Nonhydrostatic Model Using TRMM and a satellite simulator. Journal of the Atmospheric Sciences, 74(1), 167–184. https://doi.org/10.1175/JAS-D-16-0027.1
  • Rossow, W. B., & Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80(11), 2261–2288. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
  • Rutledge, S. A., & Hobbs, P. V. (1984). The mesoscale and microscale structure and organization of clouds and Precipitation in Midlatitude cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in narrow cold-frontal rainbands. Journal of the Atmospheric Sciences, 41(20), 2949–2972. https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2
  • Saito, K., Ishida, J., Aranami, K., Hara, T., Segawa, T., Narita, M., & Honda, Y. (2007). Nonhydrostatic Atmospheric models and Operational Development at JMA. Journal of the Meteorological Society of Japan. Ser. II, 85B, 271–304. https://doi.org/10.2151/jmsj.85B.271
  • Saito, M., Iwabuchi, H., Yang, P., Tang, G., King, M. D., & Sekiguchi, M. (2017). Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP-IIR measurements. Journal of Geophysical Research: Atmospheres, 122(8), 4440–4462. https://doi.org/10.1002/2016JD026080
  • Sant, V., Posselt, R., & Lohmann, U. (2015). Prognostic precipitation with three liquid water classes in the ECHAM5–HAM GCM. Atmospheric Chemistry and Physics, 15(15), 8717–8738. https://doi.org/10.5194/acp-15-8717-2015
  • Sasaki, W., Onishi, R., Fuchigami, H., Goto, K., Nishikawa, S., Ishikawa, Y., & Takahashi, K. (2016). MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model. Geophysical Research Letters, 43(17), 9352–9360. https://doi.org/10.1002/2016GL070550
  • Sassen, K., Wang, Z., & Liu, D. (2008). Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite observations (CALIPSO) measurements. Journal of Geophysical Research: Atmospheres, 113(D8), 1–12. https://doi.org/10.1029/2008JD009972
  • Sato, Y., Miyamoto, Y., & Tomita, H. (2019). Large dependency of charge distribution in a tropical cyclone inner core upon aerosol number concentration. Progress in Earth and Planetary Science, 6(1), 1–13. https://doi.org/10.1186/s40645-019-0309-7
  • Sato, Y., Nishizawa, S., Yashiro, H., Miyamoto, Y., Kajikawa, Y., & Tomita, H. (2015). Impacts of cloud microphysics on trade wind cumulus: Which cloud microphysics processes contribute to the diversity in a large eddy simulation? Progress in Earth and Planetary Science, 2(1), 1–16. https://doi.org/10.1186/s40645-015-0053-6
  • Sato, Y., Shima, S., & Tomita, H. (2018). Numerical Convergence of shallow Convection cloud field simulations: Comparison between double-moment eulerian and particle-based Lagrangian microphysics coupled to the same dynamical core. Journal of Advances in Modeling Earth Systems, 10(7), 1495–1512. https://doi.org/10.1029/2018MS001285
  • Satoh, M. (2002). Conservative Scheme for the Compressible Nonhydrostatic models with the horizontally explicit and Vertically implicit time Integration scheme. Monthly Weather Review, 130(5), 1227–1245. https://doi.org/10.1175/1520-0493(2002)130<1227:CSFTCN>2.0.CO;2
  • Satoh, M. (2003). Conservative Scheme for a Compressible Nonhydrostatic Model with Moist processes. Monthly Weather Review, 131(6), 1033–1050. https://doi.org/10.1175/1520-0493(2003)131<1033:CSFACN>2.0.CO;2
  • Satoh, M., Inoue, T., & Miura, H. (2010). Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. Journal of Geophysical Research: Atmospheres, 115(D4), 1–18. https://doi.org/10.1029/2009JD012247
  • Satoh, M., Matsugishi, S., Roh, W., Ikuta, Y., Kuba, N., Seiki, T., Hashino, T., & Okamoto, H. (2022). Evaluation of cloud and precipitation processes in regional and global models with ULTIMATE (ULTra-sIte for Measuring Atmosphere of Tokyo metropolitan environment): A case study using the dual-polarization Doppler weather radars. [Manuscript submitted for publication]. Research Square. https://doi.org/10.21203/rs.3.rs-1484431/v1
  • Satoh, M., Matsuno, T., Tomita, H., Miura, H., Nasuno, T., & Iga, S. (2008a). Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. Journal of Computational Physics, 227(7), 3486–3514. https://doi.org/10.1016/j.jcp.2007.02.006
  • Satoh, M., Nasuno, T., Miura, H., Tomita, H., Iga, S., & Takayabu, Y. (2008b). Precipitation Statistics comparison between Global cloud resolving simulation with NICAM and TRMM PR data. In K. Hamilton, & W. Ohfuchi (Eds.), High Resolution Numerical Modelling of the Atmosphere and ocean (pp. 99–112). Springer. https://doi.org/10.1007/978-0-387-49791-4_6
  • Satoh, M., Noda, A. T., Seiki, T., Chen, Y.-W., Kodama, C., Yamada, Y., Kuba, N., & Sato, Y. (2018). Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model. Progress in Earth and Planetary Science, 5(1), 1–29. https://doi.org/10.1186/s40645-018-0226-1
  • Satoh, M., Roh, W., & Hashino, T. (2016). Evaluations of clouds and precipitations in NICAM using the joint simulator for satellite sensors. CGER’S SUPERCOMPUTER MONOGRAPH REPORT, 22. Center for Global Environmental Research. http://www.cger.nies.go.jp/publications/report/i127/i127.pdf.
  • Satoh, M., Stevens, B., Judt, F., Khairoutdinov, M., Lin, S.-J., Putman, W. M., & Düben, P. (2019). Global Cloud-Resolving models. Current Climate Change Reports, 5(3), 172–184. https://doi.org/10.1007/s40641-019-00131-0
  • Satoh, M., Tomita, H., Yashiro, H., Kajikawa, Y., Miyamoto, Y., Yamaura, T., Miyakawa, T., Nakano, M., Kodama, C., Noda, A. T., Nasuno, T., Yamada, Y., & Fukutomi, Y. (2017). Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer. Progress in Earth and Planetary Science, 4(1), 1–24. https://doi.org/10.1186/s40645-017-0127-8
  • Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T., Inoue, T., & Kubokawa, H. (2014). The Non-hydrostatic icosahedral Atmospheric model: Description and development. Progress in Earth and Planetary Science, 1(1), 1–32. https://doi.org/10.1186/s40645-014-0018-1
  • Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., & Lupu, C. (2018). An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11(7), 2717–2737. https://doi.org/10.5194/gmd-11-2717-2018
  • Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Girolamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler, D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L., Schulthess, T. C., Sprenger, M., Ubbiali, S., & Wernli, H. (2020). Kilometer-Scale Climate Models: Prospects and challenges. Bulletin of the American Meteorological Society, 101(5), E567–E587. https://doi.org/10.1175/BAMS-D-18-0167.1
  • Seifert, A. (2008). On the Parameterization of evaporation of raindrops as simulated by a One-dimensional rainshaft model. Journal of the Atmospheric Sciences, 65(11), 3608–3619. https://doi.org/10.1175/2008JAS2586.1
  • Seifert, A., & Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric Research, 59–60, 265–281. https://doi.org/10.1016/S0169-8095(01)00126-0
  • Seifert, A., & Beheng, K. D. (2006). A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorology and Atmospheric Physics, 92(1), 45–66. https://doi.org/10.1007/s00703-005-0112-4
  • Seifert, A., Khain, A., Pokrovsky, A., & Beheng, K. D. (2006). A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmospheric Research, 80(1), 46–66. https://doi.org/10.1016/j.atmosres.2005.06.009
  • Seiki, T. (2021). Near-global three-dimensional hail signals detected by using GPM-DPR observations. Journal of the Meteorological Society of Japan. Ser. II, 99(2), 379–402. https://doi.org/10.2151/jmsj.2021-018
  • Seiki, T., Kodama, C., Noda, A. T., & Satoh, M. (2015a). Improvement in Global cloud-system-resolving simulations by using a double-moment bulk cloud microphysics scheme. Journal of Climate, 28(6), 2405–2419. https://doi.org/10.1175/JCLI-D-14-00241.1
  • Seiki, T., Kodama, C., Satoh, M., Hagihara, Y., & Okamoto, H. (2019). Characteristics of Ice clouds over mountain regions Detected by CALIPSO and CloudSat satellite observations. Journal of Geophysical Research: Atmospheres, 124(20), 10858–10877. https://doi.org/10.1029/2019JD030519
  • Seiki, T., Kodama, C., Satoh, M., Hashino, T., Hagihara, Y., & Okamoto, H. (2015b). Vertical grid spacing necessary for simulating tropical cirrus clouds with a high-resolution atmospheric general circulation model. Geophysical Research Letters, 42(10), 4150–4157. https://doi.org/10.1002/2015GL064282
  • Seiki, T., & Nakajima, T. (2014). Aerosol effects of the condensation process on a convective cloud simulation. Journal of the Atmospheric Sciences, 71(2), 833–853. https://doi.org/10.1175/JAS-D-12-0195.1
  • Seiki, T., & Roh, W. (2020). Improvements in supercooled liquid water simulations of Low-level mixed-phase clouds over the Southern Ocean using a single-column model. Journal of the Atmospheric Sciences, 77(11), 3803–3819. https://doi.org/10.1175/JAS-D-19-0266.1
  • Seiki, T., Satoh, M., Tomita, H., & Nakajima, T. (2014). Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations. Journal of Geophysical Research: Atmospheres, 119(11), 6681–6701. https://doi.org/10.1002/2013JD021086
  • Sekiguchi, M., & Nakajima, T. (2008). A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(17), 2779–2793. https://doi.org/10.1016/j.jqsrt.2008.07.013
  • Senf, F., Voigt, A., Clerbaux, N., Hünerbein, A., & Deneke, H. (2020). Increasing resolution and resolving Convection improve the simulation of Cloud-Radiative effects over the North atlantic. Journal of Geophysical Research: Atmospheres, 125(19), 1–26. https://doi.org/10.1029/2020JD032667
  • Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., Heydt, A. S. v. d., Knutti, R., Mauritsen, T., … Zelinka, M. D. (2020). An Assessment of Earth’s Climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4), 1–92. https://doi.org/10.1029/2019RG000678
  • Shibuya, R., Miura, H., & Sato, K. (2016). A Grid Transformation method for a quasi-uniform, circular fine region using the Spring dynamics. Journal of the Meteorological Society of Japan. Ser. II, 94(5), 443–452. https://doi.org/10.2151/jmsj.2016-022
  • Shibuya, R., Nakano, M., Kodama, C., Nasuno, T., Kikuchi, K., Satoh, M., Miura, H., & Miyakawa, T. (2021). Prediction skill of the Boreal Summer intra-seasonal Oscillation in Global Non-hydrostatic Atmospheric Model simulations with Explicit Cloud microphysics. Journal of the Meteorological Society of Japan. Ser. II, 99(4), 973–992. https://doi.org/10.2151/jmsj.2021-046
  • Shipway, B. J., & Hill, A. A. (2012). Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quarterly Journal of the Royal Meteorological Society, 138(669), 2196–2211. https://doi.org/10.1002/qj.1913
  • Shupe, M. D., & Intrieri, J. M. (2004). Cloud radiative forcing of the Arctic surface: The Influence of Cloud Properties, surface albedo, and Solar zenith angle. Journal of Climate, 17(3), 616–628. https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2
  • Skamarock, W. C., Duda, M. G., Ha, S., & Park, S.-H. (2018). Limited-Area Atmospheric Modeling using an Unstructured mesh. Monthly Weather Review, 146(10), 3445–3460. https://doi.org/10.1175/MWR-D-18-0155.1
  • Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., & Ringler, T. D. (2012). A Multiscale Nonhydrostatic Atmospheric Model using centroidal voronoi tesselations and C-grid staggering. Monthly Weather Review, 140(9), 3090–3105. https://doi.org/10.1175/MWR-D-11-00215.1
  • Sölch, I., & Kärcher, B. (2011). Process-oriented large-eddy simulations of a midlatitude cirrus cloud system based on observations. Quarterly Journal of the Royal Meteorological Society, 137(655), 374–393. https://doi.org/10.1002/qj.764
  • Song, X., Zhang, G. J., & Li, J.-L. F. (2012). Evaluation of microphysics Parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5. Journal of Climate, 25(24), 8568–8590. https://doi.org/10.1175/JCLI-D-11-00563.1
  • Stephens, G. L., Tsay, S.-C., Stackhouse, P. W., & Flatau, P. J. (1990). The relevance of the microphysical and radiative Properties of Cirrus clouds to Climate and climatic feedback. Journal of the Atmospheric Sciences, 47(14), 1742–1754. https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2
  • Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., & Marchand, R. (2008). CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research: Atmospheres, 113(D8), 1–18. https://doi.org/10.1029/2008JD009982
  • Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke, D., Rybka, H., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I., Barlakas, V., Biercamp, J., Brueck, M., Brune, S., Buehler, S. A., Burkhardt, U., Cioni, G., Costa-Surós, M., … Zängl, G. (2020). The added value of large-eddy and storm-resolving models for simulating clouds and precipitation. Journal of the Meteorological Society of Japan. Ser. II, 98(2), 395–435. https://doi.org/10.2151/jmsj.2020-021
  • Stevens, B., & Feingold, G. (2009). Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461(7264), 607–613. https://doi.org/10.1038/nature08281
  • Stevens, B., Satoh, M., Auger, L., Biercamp, J., Bretherton, C. S., Chen, X., Düben, P., Judt, F., Khairoutdinov, M., Klocke, D., Kodama, C., Kornblueh, L., Lin, S.-J., Neumann, P., Putman, W. M., Röber, N., Shibuya, R., Vanniere, B., Vidale, P. L., … Zhou, L. (2019). DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic domains. Progress in Earth and Planetary Science, 6(1), 1–17. https://doi.org/10.1186/s40645-019-0304-z
  • Stockdale, T. N. (1997). Coupled ocean–Atmosphere forecasts in the presence of Climate drift. Monthly Weather Review, 125(5), 809–818. https://doi.org/10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2
  • Sueki, K., Yamaura, T., Yashiro, H., Nishizawa, S., Yoshida, R., Kajikawa, Y., & Tomita, H. (2019). Convergence of convective updraft ensembles With respect to the grid Spacing of Atmospheric models. Geophysical Research Letters, 46(24), 14817–14825. https://doi.org/10.1029/2019GL084491
  • Suzuki, K., Golaz, J.-C., & Stephens, G. L. (2013). Evaluating cloud tuning in a climate model with satellite observations. Geophysical Research Letters, 40(16), 4464–4468. https://doi.org/10.1002/grl.50874
  • Suzuki, K., Nakajima, T. Y., & Stephens, G. L. (2010). Particle growth and drop collection efficiency of Warm clouds as inferred from Joint CloudSat and MODIS observations. Journal of the Atmospheric Sciences, 67(9), 3019–3032. https://doi.org/10.1175/2010JAS3463.1
  • Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata, T., & Koshiro, T. (2015). Evaluation of the Warm Rain formation process in Global Models with satellite observations. Journal of the Atmospheric Sciences, 72(10), 3996–4014. https://doi.org/10.1175/JAS-D-14-0265.1
  • Suzuki, K., Stephens, G. L., Heever, S. C. v. d., & Nakajima, T. Y. (2011). Diagnosis of the Warm Rain process in Cloud-Resolving Models using Joint CloudSat and MODIS observations. Journal of the Atmospheric Sciences, 68(11), 2655–2670. https://doi.org/10.1175/JAS-D-10-05026.1
  • Swales, D. J., Pincus, R., & Bodas-Salcedo, A. (2018). The cloud feedback Model Intercomparison Project observational simulator package: Version 2. Geoscientific Model Development, 11(1), 77–81. https://doi.org/10.5194/gmd-11-77-2018
  • Takahashi, K., Peng, X., Onishi, R., Ohdaira, M., Goto, K., Fuchigami, H., & Sugimura, T. (2008). Impact of coupled Nonhydrostatic atmosphere-ocean-land model with high resolution. In K. Hamilton, & W. Ohfuchi (Eds.), High Resolution Numerical Modelling of the Atmosphere and ocean (pp. 261–273). Springer. https://doi.org/10.1007/978-0-387-49791-4_15
  • Takano, Y., & Liou, K. N. (1995). Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. Journal of the Atmospheric Sciences, 52(7), 818–837. https://doi.org/10.1175/1520-0469(1995)052<0818:RTICCP>2.0.CO;2
  • Takano, Y., & Liou, K.-N. (1989). Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal Ice crystals. Journal of the Atmospheric Sciences, 46(1), 3–19. https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2
  • Takasuka, D., Miyakawa, T., Satoh, M., & Miura, H. (2015). Topographical effects on internally produced MJO-like disturbances in an Aqua-Planet version of NICAM. Sola, 11(0), 170–176. https://doi.org/10.2151/sola.2015-038
  • Takasuka, D., Satoh, M., Miyakawa, T., & Miura, H. (2018). Initiation processes of the tropical Intraseasonal variability simulated in an Aqua-Planet experiment: What is the intrinsic Mechanism for MJO onset? Journal of Advances in Modeling Earth Systems, 10(4), 1047–1073. https://doi.org/10.1002/2017MS001243
  • Takayabu, Y. N. (2002). Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophysical Research Letters, 29(12), 25-1–25-4. https://doi.org/10.1029/2001GL014113
  • Taniguchi, H., Yanase, W., & Satoh, M. (2010). Ensemble simulation of Cyclone Nargis by a Global cloud-system-resolving model—Modulation of cyclogenesis by the Madden-Julian oscillation. Journal of the Meteorological Society of Japan. Ser. II, 88(3), 571–591. https://doi.org/10.2151/jmsj.2010-317
  • Tao, W.-K., Chern, J.-D., Atlas, R., Randall, D., Khairoutdinov, M., Li, J.-L., Waliser, D. E., Hou, A., Lin, X., Peters-Lidard, C., Lau, W., Jiang, J., & Simpson, J. (2009). A Multiscale Modeling system: Developments, applications, and Critical issues. Bulletin of the American Meteorological Society, 90(4), 515–534. https://doi.org/10.1175/2008BAMS2542.1
  • Tao, W.-K., Lang, S., Simpson, J., Sui, C.-H., Ferrier, B., & Chou, M.-D. (1996). Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. Journal of the Atmospheric Sciences, 53(18), 2624–2651. https://doi.org/10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2
  • Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O’ishi, R., … Kimoto, M. (2019). Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12(7), 2727–2765. https://doi.org/10.5194/gmd-12-2727-2019
  • Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D. (2008). Explicit forecasts of Winter Precipitation using an improved bulk microphysics scheme. Part II: Implementation of a New snow parameterization. Monthly Weather Review, 136(12), 5095–5115. https://doi.org/10.1175/2008MWR2387.1
  • Thompson, G., Tewari, M., Ikeda, K., Tessendorf, S., Weeks, C., Otkin, J., & Kong, F. (2016). Explicitly-coupled cloud physics and radiation parameterizations and subsequent evaluation in WRF high-resolution convective forecasts. Atmospheric Research, 168, 92–104. https://doi.org/10.1016/j.atmosres.2015.09.005
  • Tomita, H. (2008a). A stretched icosahedral grid by a New grid transformation. Journal of the Meteorological Society of Japan. Ser. II, 86A(0), 107–119. https://doi.org/10.2151/jmsj.86A.107
  • Tomita, H. (2008b). New microphysical schemes with five and Six categories by Diagnostic Generation of cloud Ice. Journal of the Meteorological Society of Japan. Ser. II, 86A, 121–142. https://doi.org/10.2151/jmsj.86A.121
  • Tomita, H., Miura, H., Iga, S., Nasuno, T., & Satoh, M. (2005). A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophysical Research Letters, 32(8), 1–4. https://doi.org/10.1029/2005GL022459
  • Tomita, H., & Satoh, M. (2004). A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dynamics Research, 34(6), 357–400. https://doi.org/10.1016/j.fluiddyn.2004.03.003
  • Tomita, H., Tsugawa, M., Satoh, M., & Goto, K. (2001). Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. Journal of Computational Physics, 174(2), 579–613. https://doi.org/10.1006/jcph.2001.6897
  • Trenberth, K. E., & Fasullo, J. T. (2010). Simulation of present-Day and twenty-first-century energy budgets of the Southern Oceans. Journal of Climate, 23(2), 440–454. https://doi.org/10.1175/2009JCLI3152.1
  • Turbeville, S. M., Nugent, J. M., Ackerman, T. P., Bretherton, C. S., & Blossey, P. N. (2022). Tropical cirrus in global storm-resolving models: 2. Cirrus life cycle and top-of-Atmosphere radiative fluxes. Earth and Space Science, 9(2), 1–19. https://doi.org/10.1029/2021EA001978
  • Uchida, J., Mori, M., Hara, M., Satoh, M., Goto, D., Kataoka, T., Suzuki, K., & Nakajima, T. (2017). Impact of lateral Boundary Errors on the simulation of clouds with a Nonhydrostatic regional Climate model. Monthly Weather Review, 145(12), 5059–5082. https://doi.org/10.1175/MWR-D-17-0158.1
  • Uchida, J., Mori, M., Nakamura, H., Satoh, M., Suzuki, K., & Nakajima, T. (2016). Error and energy budget analysis of a Nonhydrostatic stretched-grid Global Atmospheric model. Monthly Weather Review, 144(4), 1423–1447. https://doi.org/10.1175/MWR-D-15-0271.1
  • Vergara-Temprado, J., Ban, N., Panosetti, D., Schlemmer, L., & Schär, C. (2020). Climate Models permit Convection at much coarser resolutions than previously considered. Journal of Climate, 33(5), 1915–1933. https://doi.org/10.1175/JCLI-D-19-0286.1
  • Voldoire, A., Decharme, B., Pianezze, J., Lebeaupin Brossier, C., Sevault, F., Seyfried, L., Garnier, V., Bielli, S., Valcke, S., Alias, A., Accensi, M., Ardhuin, F., Bouin, M.-N., Ducrocq, V., Faroux, S., Giordani, H., Léger, F., Marsaleix, P., Rainaud, R., … Riette, S. (2017). SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geoscientific Model Development, 10(11), 4207–4227. https://doi.org/10.5194/gmd-10-4207-2017
  • Voors, R., Donovan, D., Acarreta, J., Eisinger, M., Franco, R., Lajas, D., Moyano, R., Pirondini, F., Ramos, J., & Wehr, T. (2007). ECSIM: The simulator framework for EarthCARE. Sensors, Systems, and Next-Generation Satellites XI, 6744, 1–11. https://doi.org/10.1117/12.737738
  • Waliser, D. E., Li, J.-L. F., L’Ecuyer, T. S., & Chen, W.-T. (2011). The impact of precipitating ice and snow on the radiation balance in global climate models. Geophysical Research Letters, 38(6), 1–6. https://doi.org/10.1029/2010GL046478
  • Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., … Zerroukat, M. (2019). The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global land 7.0 configurations. Geoscientific Model Development, 12(5), 1909–1963. https://doi.org/10.5194/gmd-12-1909-2019
  • Watanabe, M., Emori, S., Satoh, M., & Miura, H. (2009). A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dynamics, 33(6), 795–816. https://doi.org/10.1007/s00382-008-0489-0
  • Wedi, N. P. (2014). Increasing horizontal resolution in numerical weather prediction and climate simulations: Illusion or panacea? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2018), 1–12. https://doi.org/10.1098/rsta.2013.0289
  • Wedi, N. P., Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne, P., Deconinck, W., Gaudin, W., Hadade, I., Hatfield, S., Iffrig, O., Lopez, P., Maciel, P., Mueller, A., Saarinen, S., Sandu, I., Quintino, T., & Vitart, F. (2020). A baseline for Global Weather and Climate simulations at 1 km resolution. Journal of Advances in Modeling Earth Systems, 12(11), 1–17. https://doi.org/10.1029/2020MS002192
  • Weisman, M. L., Skamarock, W. C., & Klemp, J. B. (1997). The resolution dependence of explicitly Modeled convective systems. Monthly Weather Review, 125(4), 527–548. https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2
  • Wilson, D. R., & Ballard, S. P. (1999). A microphysically based precipitation scheme for the UK meteorological office unified model. Quarterly Journal of the Royal Meteorological Society, 125(557), 1607–1636. https://doi.org/10.1002/qj.49712555707
  • Wing, A. A., Emanuel, K., Holloway, C. E., & Muller, C. (2017). Convective self-aggregation in Numerical simulations: A review. Surveys in Geophysics, 38(6), 1173–1197. https://doi.org/10.1007/s10712-017-9408-4
  • Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., & Young, S. A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11), 2310–2323. https://doi.org/10.1175/2009JTECHA1281.1
  • Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., & Thuburn, J. (2014). An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society, 140(682), 1505–1520. https://doi.org/10.1002/qj.2235
  • WRF Users’ Guide. (n.d.). Retrieved May 19, 2021, from https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/user_guide_V3.8/contents.html
  • Xiao, F., Okazaki, T., & Satoh, M. (2003). An Accurate Semi-Lagrangian scheme for Raindrop sedimentation. Monthly Weather Review, 131(5), 974–983. https://doi.org/10.1175/1520-0493(2003)131<0974:AASSFR>2.0.CO;2
  • Yamada, H., Nasuno, T., Yanase, W., & Satoh, M. (2016). Role of the vertical structure of a simulated tropical cyclone in Its motion: A case Study of Typhoon fengshen (2008). Sola, 12(0), 203–208. https://doi.org/10.2151/sola.2016-041
  • Yamada, Y., Oouchi, K., Satoh, M., Tomita, H., & Yanase, W. (2010). Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophysical Research Letters, 37(7), 1–10. https://doi.org/10.1029/2010GL042518
  • Yamada, Y., & Satoh, M. (2013). Response of Ice and liquid water paths of tropical cyclones to Global warming simulated by a Global Nonhydrostatic Model with Explicit Cloud microphysics. Journal of Climate, 26(24), 9931–9945. https://doi.org/10.1175/JCLI-D-13-00182.1
  • Yamada, Y., Satoh, M., Sugi, M., Kodama, C., Noda, A. T., Nakano, M., & Nasuno, T. (2017). Response of tropical cyclone activity and structure to Global warming in a High-Resolution Global Nonhydrostatic model. Journal of Climate, 30(23), 9703–9724. https://doi.org/10.1175/JCLI-D-17-0068.1
  • Yanase, W., Taniguchi, H., & Satoh, M. (2010). The genesis of tropical cyclone Nargis (2008): Environmental Modulation and Numerical predictability. 気象集誌. 第2輯, 88(3), 497–519. https://doi.org/10.2151/jmsj.2010-314
  • Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M. I., & Cole, B. (2013). Spectrally consistent scattering, absorption, and polarization properties of Atmospheric Ice crystals at wavelengths from 0.2 to 100 μm. Journal of the Atmospheric Sciences, 70(1), 330–347. https://doi.org/10.1175/JAS-D-12-039.1
  • Yang, P., & Liou, K. N. (1995). Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics models. JOSA A, 12(1), 162–176. https://doi.org/10.1364/JOSAA.12.000162
  • Yang, Q., Leung, L. R., Lu, J., Lin, Y.-L., Hagos, S., Sakaguchi, K., & Gao, Y. (2017). Exploring the effects of a nonhydrostatic dynamical core in high-resolution aquaplanet simulations. Journal of Geophysical Research: Atmospheres, 122(6), 3245–3265. https://doi.org/10.1002/2016JD025287
  • Yoshida, R., Okamoto, H., Hagihara, Y., & Ishimoto, H. (2010). Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite observation (CALIPSO) data using attenuated backscattering and depolarization ratio. Journal of Geophysical Research: Atmospheres, 115(D4), 1–12. https://doi.org/10.1029/2009JD012334
  • Zängl, G., Reinert, D., Rípodas, P., & Baldauf, M. (2015). The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quarterly Journal of the Royal Meteorological Society, 141(687), 563–579. https://doi.org/10.1002/qj.2378
  • Zelinka, M. D., & Hartmann, D. L. (2010). Why is longwave cloud feedback positive? Journal of Geophysical Research: Atmospheres, 115(D16), 1–16. https://doi.org/10.1029/2010JD013817
  • Zhang, F., Sun, Y. Q., Magnusson, L., Buizza, R., Lin, S.-J., Chen, J.-H., & Emanuel, K. (2019a). What is the Predictability limit of Midlatitude weather? Journal of the Atmospheric Sciences, 76(4), 1077–1091. https://doi.org/10.1175/JAS-D-18-0269.1
  • Zhang, G., Xue, M., Cao, Q., & Dawson, D. (2008). Diagnosing the intercept parameter for exponential Raindrop size distribution based on video disdrometer observations: Model development. Journal of Applied Meteorology and Climatology, 47(11), 2983–2992. https://doi.org/10.1175/2008JAMC1876.1
  • Zhang, M., Bretherton, C. S., Blossey, P. N., Austin, P. H., Bacmeister, J. T., Bony, S., Brient, F., Cheedela, S. K., Cheng, A., Genio, A. D. D., Roode, S. R. D., Endo, S., Franklin, C. N., Golaz, J.-C., Hannay, C., Heus, T., Isotta, F. A., Dufresne, J.-L., Kang, I.-S., … Zhao, M. (2013). CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. Journal of Advances in Modeling Earth Systems, 5(4), 826–842. https://doi.org/10.1002/2013MS000246
  • Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., … Guo, Y. (2020a). Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform. Geoscientific Model Development, 13(10), 4809–4829. https://doi.org/10.5194/gmd-13-4809-2020
  • Zhang, Y., Li, J., Yu, R., Liu, Z., Zhou, Y., Li, X., & Huang, X. (2020b). A Multiscale dynamical Model in a Dry-mass Coordinate for Weather and Climate Modeling: Moist Dynamics and Its coupling to physics. Monthly Weather Review, 148(7), 2671–2699. https://doi.org/10.1175/MWR-D-19-0305.1
  • Zhang, Y., Li, J., Yu, R., Zhang, S., Liu, Z., Huang, J., & Zhou, Y. (2019b). A layer-averaged Nonhydrostatic dynamical framework on an Unstructured Mesh for Global and regional Atmospheric Modeling: Model description, baseline evaluation, and sensitivity exploration. Journal of Advances in Modeling Earth Systems, 11(6), 1685–1714. https://doi.org/10.1029/2018MS001539
  • Zhou, L., Lin, S.-J., Chen, J.-H., Harris, L. M., Chen, X., & Rees, S. L. (2019). Toward Convective-Scale prediction within the Next Generation Global prediction system. Bulletin of the American Meteorological Society, 100(7), 1225–1243. https://doi.org/10.1175/BAMS-D-17-0246.1
  • Zhou, Y., Zhang, Y., Li, J., Yu, R., & Liu, Z. (2020). Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach. Geoscientific Model Development, 13(12), 6325–6348. https://doi.org/10.5194/gmd-13-6325-2020