1,957
Views
3
CrossRef citations to date
0
Altmetric
Review / Synthèse

The Pleistocene Glacial Cycles and Millennial-Scale Climate Variability

ORCID Icon
Pages 233-244 | Received 15 Apr 2022, Accepted 06 May 2022, Published online: 16 Jun 2022

References

  • Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M. E., Okuno, J., Takahashi, K., & Blatter, H. (2013). Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature, 500(7461), 190–193. https://doi.org/10.1038/nature12374.
  • Alley, R. B., Anandakrishnan, S., & Jung, P. (2001). Stochastic resonance in the North Atlantic. Paleoceanography, 16(2), 190–198. https://doi.org/10.1029/2000PA000518.
  • Ashkenazy, Y., & Tziperman, E. (2004). Are the 41 kyr oscillations a linear response to Milankovitch forcing? Quaternary Science Reviews, 23(18-19), 1879–1890. https://doi.org/10.1016/j.quascirev.2004.04.008.
  • Ashwin, P., & Ditlevsen, P. (2015). The middle Pleistocene transition as a generic bifurcation on a slow manifold. Climate Dynamics, 45, 2683. https://doi.org/10.1007/s00382-015-2501-9.
  • Benzi, R., Parisi, G., Sutera, A., & Vulpiani, A. (1982). Stochastic resonance in climate change. Tellus, 34(1), 10–16. https://doi.org/10.1111/j.2153-3490.1982.tb01787.x.
  • Berger, A., Loutre, M.-F., & Yin, Q. (2010). Total irradiation during any time interval of the year using elliptic integrals. Quaternary Science Reviews, 29(17-18), 1968–1982. https://doi.org/10.1016/j.quascirev.2010.05.007.
  • Berglund, N., & Gentz, B. (2006). Noise-induced phenomena in slow-fast dynamical systems: a sample-paths approach. Springer. https://doi.org/10.1007/1-84628-186-5.
  • Boers, N. (2018). Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nature Communications, 9, 2556. https://doi.org/10.1038/s41467-018-04881-7.
  • Broecker, W. S. (2000). Was changes in the thermohaline circulation responsible for the little ice age?. PNAS, 97(4), 1339–1342. https://doi.org/10.1073/pnas.97.4.1339.
  • Cessi, P. (1994). A simple box model of stochastically forced thermohaline flow. Journal of Physical Oceanography, 24(9), 1911–1920. https://doi.org/10.1175/1520-0485(1994)024¡1911:ASBMOS¿2.0.CO;2.
  • Clark, P. U., & Pollard, D. (1998). Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography, 13(1), 1–9. https://doi.org/10.1029/97PA02660.
  • Crucifix, M. (2012). Oscillators and relaxation phenomena in Pleistocene climate theory. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 37(1962), 1140–1165. https://doi.org/10.1098/rsta.2011.0315.
  • Da, J., Zhang, Y., Li, G., Meng, X., & Ji, J. (2019). Low CO2 levels of the entire Pleistocene epoch. Nature Communications, 10, 4342. https://doi.org/10.1038/s41467-019-12357-5.
  • Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220. https://doi.org/10.1038/364218a0.
  • Ditlevsen, P., Mitsui, T., & Crucifix, M. (2020). Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models. Climate Dynamics, 54, 1801–1818. https://doi.org/10.1007/s00382-019-05087-3.
  • Ditlevsen, P. D. (1999). Observation of alpha-stable noise and a bistable climate potential in an ice-core record. Geophysical Research Letters, 26(10), 1441–1444. https://doi.org/10.1029/1999GL900252.
  • Ditlevsen, P. D. (2009). The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles. Paleoceanography, 24, PA3204. https://doi.org/10.1029/2008PA001673.
  • Ditlevsen, P. D., Andersen, K. K., & Svensson, A. (2007). The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Climate of the Past, 3(1), 129–134. https://doi.org/10.5194/cp-3-129-2007.
  • Ditlevsen, P. D., & Ashwin, P. (2018). Complex climate response to astronomical forcing: The Middle-Pleistocene transition in glacial cycles and changes in frequency locking. Frontiers of Physics June. https://doi.org/10.3389/fphy.2018.00062.
  • Ditlevsen, P. D., & Johnsen, S. (2010). Tipping points: Early warning and wishful thinking. Geophysical Research Letters, 37(19), L19703. https://doi.org/10.1029/2010GL044486.
  • Ditlevsen, P. D., Kristensen, M. S., & Andersen, K. K. (2005). The recurrence time of Dansgaard-Oeschger events and limits on the possible periodic component. Journal of Climate, 18(14), 2594–2603. https://doi.org/10.1175/JCLI3437.1.
  • EPICA Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628. https://doi.org/10.1038/nature02599.
  • Ganopolski, A., Calov, R., & Claussen, M. (2010). Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Climate of the Past, 6(2), 229–244. https://doi.org/10.5194/cp-6-229-2010.
  • Gent, P. R. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991. https://doi.org/10.1175/2011JCLI4083.1.
  • Gildor, H., & Tziperman, E. (2000). Sea ice as the glacial cycles' climate switch: Role of seasonal and orbital forcing. Paleoceanography, 15(6), 605–615. https://doi.org/10.1029/1999PA000461.
  • Hasselmann, K. (1976). Stochastic climate models Part I. Theory. Tellus, 28(6), 473–485. https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.
  • Hays, J., Imbrie, J., & Shackleton, N. (1976). Variations in Earth's orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132. https://doi.org/10.1126/science.194.4270.1121.
  • Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130000 years. Quaternary Research, 29(2), 143–152. https://doi.org/10.1016/0033-5894(88)90057-9.
  • Huybers, P., & Wunsch, C. (2005). Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434, 491–494. https://doi.org/10.1038/nature03401.
  • Imbrie, J., & Imbrie, K. P. (1979). Ice ages, solving the mystery. MacMillan Press. ISBN 9780674440753.
  • Imbrie, J., & Imbrie, J. Z. (1980). Modeling the climate response to orbital variations. Science, 207(4434), 943–953. https://doi.org/10.1126/science.207.4434.943.
  • Källen, E., Crafoord, C., & Ghil, M. (1979). Free oscillations in a climate model with ice-sheet dynamics. Journal of the Atmospheric Sciences, 36(12), 2292–2303. https://doi.org/10.1175/1520-0469(1979)036¡2292:FOIACM¿2.0.CO;2.
  • Katz, M., Miller, K., & Wright, J. E. A. (2008). Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience, 1, 329–334. https://doi.org/10.1038/ngeo179.
  • Kubo, R. (1966). The fluctuation-dissipation theorem. Reports on Progress in Physics, 29, 255–284. https://doi.org/10.1088/0034-4885/29/1/306.
  • Laskar, J., Robutel, P., Joutel, F., Boudin, F., Gastineau, M., Correia, A. C. M., & Levrard, B. (2004). A long-term numerical solution for the insolation quantities of the earth. Astronomy and Astrophysics, 428, 261–285. https://doi.org/10.1051/0004-6361:20041335.
  • Li, C., & Born, A. (2019). Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quaternary Science Reviews, 203 (January), 1–20. https://doi.org/10.1016/j.quascirev.2018.10.031.
  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20(1), PA1003. https://doi.org/10.1029/2004PA001071.
  • Lohmann, J., & Ditlevsen, P. (2019a). Objective extraction and analysis of statistical features of Dansgaard-Oeschger events. Climate of the Past, 15, 1771–1792. https://doi.org/10.5194/cp-15-1771-2019.
  • Lohmann, J., & Ditlevsen, P. (2019b). A consistent statistical model selection for abrupt glacial climate changes. Climate Dynamics, 52, 6411–6426. https://doi.org/10.1007/s00382-018-4519-2.
  • Lüthi, D. E. A. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379. https://doi.org/10.1038/nature06949.
  • MacAyeal, D. (1979). A catastrophe model of the paleoclimate. Journal of Glaciology, 24(90), 245–257. https://doi.org/10.3189/S0022143000014775.
  • MacAyeal, D. R. (1993). Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic's Heinrich events. Paleoceanography, 8(6), 775–783. https://doi.org/10.1029/93PA02200.
  • Manabe, S., & Stouffer, R. J. (1988). Two stable equilibria of a coupled ocean-atmosphere model. Journal of Climate, 1(9), 841–866. https://doi.org/10.1175/1520-0442(1988)001¡0841:TSEOAC¿2.0.CO;2.
  • Milankovitch, M. (1930). Mathematiche Klimalehre und Astronomiche Theorie der Klimaschwankungen, Handbuch der Klimalogie Band 1 Teil A, Borntrager Berlin. https://d-nb.info/811073149/04.
  • Milankovitch, M. (1941). Kanon der Erdbestrahlung und seine Anwendung auf des Eiszeitenproblem. Special Publication 132, Section of Mathematical and Natural Sciences, Vol. 33, p. 633, 1941. Belgrade: Royal Serbian Academy of Sciences (‘Canon of Insolation and the Ice Age Problem’) (trans. Israel 385 Program for the US Department of Commerce and the National Science Foundation, Washington DC, 1969, and by Zavod za udzbenike i nastavna sredstva in cooperation with Muzej nauke i tehnike Srpske akademije nauka i umetnosti, Beograd, 1998). http://hdl.handle.net/123456789/702.
  • Mitsui, T., & Crucifix, M. (2017). Influence of external forcings on abrupt millennial-scale climate changes: A statistical modelling study. Climate Dynamics, 48, 2729–2749. https://doi.org/10.1007/s00382-016-3235-z.
  • North GRIP Members (2004). High resolution climate record of the Northern hemisphere reaching into the last glacial interglacial period. Nature, 431, 147–151. https://doi.org/10.1038/nature02805.
  • Nyman, K., & Ditlevsen, P. (2019). The middle Pleistocene transition by frequency locking and slow ramping of internal period. Climate Dynamics, 53, 3023–3038. https://doi.org/10.1007/s00382-019-04679-3.
  • Paillard, D. (1998). The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391, 378–381. https://doi.org/10.1038/34891.
  • Peltier, W. R., & Vettoretti, G. (2014). Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A ‘kicked’ salt oscillator in the Atlantic. Geophysical Research Letters, 41(20), 7306–7313. https://doi.org/10.1002/2014GL061413.
  • Saltzman, B. (1990). Three basic problems of paleoclimatic modeling: A personal perspective and review. Climate Dynamics, 5, 67–78. https://doi.org/10.1007/BF00207422.
  • Saltzman, B., & Maasch, K. A. (1991). A first-order global model of late Cenozoic climatic change. Climate Dynamics, 5, 201–210. https://doi.org/10.1007/BF00210005.
  • Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461, 53–59. https://doi.org/10.1038/nature08227.
  • Schulz, M. (2002). On the 1470-year pacing of Dansgaard-Oeschger warm events. Paleoceanography, 17(2), 571. https://doi.org/10.1029/2000PA000571.
  • Shackleton, N. J., Hall, M. A., & Vincent, E. (2000). Phase relationships between millennial-scale events 64000 to 24000 years ago. Paleoceanography, 15(6), 565–56. https://doi.org/10.1029/2000PA000513.
  • Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13(2), 224–230. https://doi.org/10.1111/j.2153-3490.1961.tb00079.x.
  • Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., S. M. Davies, Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., & Vinther, B. M. (2008). A 60000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4(1), 1–11. https://doi.org/10.1111/j.2153-3490.1961.tb00079.x Citations: 176.
  • Tzedakis, P. C., Crucifix, M., Mitsui, T., & Wolff, E. W. (2017). A simple rule to determine which insolation cycles lead to interglacials. Nature, 542, 427–432. https://doi.org/10.1038/nature21364.
  • Tziperman, E., & Gildor, H. (2003). On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography, 18(1), 1–8. https://doi.org/10.1029/2001pa000627.
  • Vettoretti, G., Ditlevsen, P., Jochum, M., & Rasmussen, S. O. (2022). Atmospheric CO2 control of spontaneous millennial-scale ice age climate oscillations. Nature Communications, 15, 300–306. https://doi.org/10.1038/s41561-022-00920-7.
  • Weertman, J. (1976). Milankovich solar radiation variations and ice age ice sheet sizes. Nature, 261(5555), 17–20. https://doi.org/10.1038/261017a0.
  • Willeit, M., Ganopolski, A., Calov, R., & Brovkin, V. (2019). Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Science Advances, 5(4), 22. https://doi.org/10.1126/sciadv.aav7337.
  • Wunsch, C. (2003). The spectral description of climate change including the 100 ky energy. Climate Dynamics, 20(4), 353–363. https://doi.org/10.1007/s00382-002-0279-z.
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412.