559
Views
4
CrossRef citations to date
0
Altmetric
Review / Synthèse

Environmental Controls on Tornadoes and Tornado Outbreaks

ORCID Icon
Pages 399-421 | Received 24 Apr 2022, Accepted 12 May 2022, Published online: 09 Jun 2022

References

  • Agee, E. M. (2014). A revised tornado definition and changes in tornado taxonomy. Weather and Forecasting, 29(5), 1256–1258. https://doi.org/10.1175/WAF-D-14-00058.1
  • Allen, J. T., Karoly, D. J., & Mills, G. A. (2011). A severe thunderstorm climatology for Australia and associated thunderstorm environments. Australian Meteorological and Oceanographic Journal, 61(3), 143–158. https://doi.org/10.1002/joc.3667
  • Allen, J. T., Tippett, M. K., & Sobel, A. H. (2015). Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nature Geoscience, 8(4), 278–283. https://doi.org/10.1038/ngeo2385
  • Anderson-Frey, A., Richardson, Y., Dean, A., Thompson, R., & Smith, B. (2016). Investigation of near-storm environments for tornado events and warnings. Weather and Forecasting, 31(6), 1771–1790. https://doi.org/10.1175/WAF-D-16-0046.1
  • Anderson-Frey, A., Richardson, Y., Dean, A., Thompson, R., & Smith, B. (2017). Self-organizing maps for the investigation of tornadic near-storm environments. Weather and Forecasting, 32(4), 1467–1475. https://doi.org/10.1175/WAF-D-17-0034.1
  • Anderson-Frey, A., Richardson, Y., Dean, A., Thompson, R., & Smith, B. (2018). Near-storm environments of outbreak and isolated tornadoes. Weather and Forecasting, 33(5), 1397–1412. https://doi.org/10.1175/WAF-D-18-0057.1
  • Anderson-Frey, A., Richardson, Y., Dean, A., Thompson, R., & Smith, B. (2019). Characteristics of tornado events and warnings in the southeastern United States. Weather and Forecasting, 34(4), 1017–1034. https://doi.org/10.1175/WAF-D-18-0211.1
  • Antonescu, B., & Bell, A. (2015). Tornadoes in Romania. Monthly Weather Review, 143(3), 689–701. https://doi.org/10.1175/MWR-D-14-00181.1
  • Antonescu, B., Schultz, D. M., Holzer, A., & Groenemeijer, P. (2017). Tornadoes in Europe: An underestimated threat. Bulletin of the American Meteorological Society, 98(4), 713–728. https://doi.org/10.1175/BAMS-D-16-0171.1
  • Antonescu, B., Schultz, D. M., Lomas, F., & Kühne, T. (2016). Tornadoes in Europe: A synthesis of the observational datasets. Monthly Weather Review, 144(7), 2445–2480. https://doi.org/10.1175/MWR-D-15-0298.1
  • Apsley, M. L., Mulder, K. J., & Schultz, D. M. (2016). Reexamining the United Kingdom’s greatest tornado outbreak: Forecasting the limited extent of tornadoes along a cold front. Weather and Forecasting, 31(3), 853–875. https://doi.org/10.1175/WAF-D-15-0131.1
  • Ashley, W. S. (2007). Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Weather and Forecasting, 22(6), 1214–1228. https://doi.org/10.1175/2007WAF2007004.1
  • Atkins, N. T., Arnott, J. M., Przybylinski, R. W., Wolf, R. A., & Ketcham, B. D. (2004). Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Monthly Weather Review, 132(9), 2224–2242. https://doi.org/10.1175/1520-0493(2004)1322.0.CO;2
  • Atkins, N. T., Bouchard, C. S., Przybylinski, R. W., Trapp, R. J., & Schmocker, G. (2005). Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Monthly Weather Review, 133(8), 2275–2296. https://doi.org/10.1175/MWR2973.1
  • Bai, L., Meng, Z., Sueki, K., Chen, G., & Zhou, R. (2020). Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Science China Earth Sciences, 63(1), 37–51. https://doi.org/10.1007/s11430-019-9391-1
  • Barrett, B. S., & Gensini, V. A. (2013). Variability of central United States April-May tornado day likelihood by phase of the Madden-Julian oscillation. Geophysical Research Letters, 40(11), 2790–2795. https://doi.org/10.1002/grl.50522
  • Beebe, R. G. (1958). An instability line development as observed by the tornado research airplane. Journal of Meteorology, 15(3), 278–282. https://doi.org/10.1175/1520-0469(1958)0152.0.CO;2
  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)0972.3.CO;2
  • Bluestein, H. B., & Golden, J. H. (1993). A review of tornado observations. The Tornado: Its Structure, dynamics, prediction, and hazards. In C. Church et al. (Eds.), Geophysical monograph (Vol. 79, pp. 319–352). Amer. Geophys. Union. https://doi.org/10.1029/GM079p0319.
  • Bluestein, H. B., Lee, W.-C., Bell, M., Weiss, C. C., & Pazmany, A. L. (2003). Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornadovortex structure. Monthly Weather Review, 131(12), 2968–2984. https://doi.org/10.1175/1520-0493(2003)1312.0.CO;2
  • Boustead, J. M., Mayes, B. E., Gargan, W., Leighton, J. L., Phillips, G., & Schumacher, P. N. (2013). Discriminating environmental conditions for significant warm sector and boundary tornadoes in parts of the great plains. Weather and Forecasting, 28(6), 1498–1523. https://doi.org/10.1175/WAF-D-12-00102.1
  • Brooks, H. E. (2013). Severe thunderstorms and climate change. Atmospheric Research, 123, 129–138. https://doi.org/10.1016/j.atmosres.2012.04.002
  • Brooks, H. E., Carbin, G. W., & Marsh, P. T. (2014). Increased variability of tornado occurrence in the United States. Science, 346(6207), 349–352. https://doi.org/10.1126/science.1257460
  • Brooks, H. E., & Doswell III C. A. (2001). Normalized damage from major tornadoes in the United States: 1890-1999. Weather and Forecasting, 16(1), 168–176. https://doi.org/10.1175/1520-0434(2001)016,0168:NDFMTI.2.0.CO;2
  • Brooks, H. E., & Doswell III C. A. (2002). Deaths in the 3 May 1999 Oklahoma city tornado from a historical perspective. Weather and Forecasting, 17(3), 354–361. https://doi.org/10.1175/1520-0434(2002)017,0354:DITMOC.2.0.CO;2
  • Brooks, H. E., Lee, J. W., & Craven, J. P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, 67–68, 73–94. https://doi.org/10.1016/S0169-8095(03)00045-0
  • Browning, K. A., & Golding, B. W. (1995). Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quarterly Journal of Royal Meteorological Society, 121(523), 463–493. https://doi.org/10.1002/qj.49712152302
  • Buban, M. S., Ziegler, C. L., Mansell, E. R., & Richardson, Y. P. (2012). Simulation of dryline misovortex dynamics and cumulus formation. Monthly Weather Review, 140(11), 3525–3551. https://doi.org/10.1175/MWR-D-11-00189.1
  • Buckingham, T. J., & Schultz, D. M. (2020). Synoptic-scale environments and precipitation morphologies of tornado outbreaks from quasi-linear convective systems in the United Kingdom. Weather and Forecasting, 35(5), 1733–1759. https://doi.org/10.1175/WAF-D-20-0021.1
  • Carbone, R. E. (1982). A severe frontal rainband. Part I: Stormwide hydrodynamic structure. Journal of the Atmospheric Sciences, 39(2), 258–279. https://doi.org/10.1175/1520-0469(1982)0392.0.CO;2
  • Carbone, R. E. (1983). A severe frontal rainband. Part II: Tornado parent vortex circulation. Journal of the Atmospheric Sciences, 40(11), 2639–2654. https://doi.org/10.1175/1520-0469(1983)0402.0.CO;2
  • Clark, M. R., & Parker, D. J. (2020). Synoptic-scale and mesoscale controls for tornadogenesis on cold fronts: A generalised measure of tornado risk and identification of synoptic types. Quarterly Journal of the Royal Meteorological Society, 146(733), 4195–4225. https://doi.org/10.1002/qj.3898
  • Coffer, B. E., & Parker, M. D. (2018). Is there a ‘‘tipping point’’ between simulated nontornadic and tornadic supercells in VORTEX2 environments? Monthly Weather Review, 146(8), 2667–2693. https://doi.org/10.1175/MWR-D-18-0050.1
  • Coffer, B. E., Parker, M. D., Thompson, R. L., Smith, B. T., & Jewell, R. E. (2019). Using near-ground storm relative helicity in supercell tornado forecasting. Weather and Forecasting, 34(5), 1417–1435. https://doi.org/10.1175/WAF-D-19-0115.1
  • Coffer, B. E., Taszarek, M., & Parker, M. D. (2020). Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather and Forecasting, 35(6), 2621–2638. Retrieved Mar 2, 2021, from https://journals.ametsoc.org/view/journals/wefo/35/6/waf-d-20-0153.1.xml. https://doi.org/10.1175/WAF-D-20-0153.1
  • Cohen, R. A., & Kreitzberg, C. W. (1997). Airstream boundaries in numerical weather simulations. Monthly Weather Review, 125(1), 168–183. https://doi.org/10.1175/1520-0493(1997)1252.0.CO;2
  • Cohen, R. A., & Schultz, D. M. (2005). Contraction rate and its relationship to frontogenesis, the Lyapunov exponent, fluid trapping, and airstream boundaries. Monthly Weather Review, 133(5), 1353–1369. https://doi.org/10.1175/MWR2922.1
  • Corfidi, S., Weiss, S., Kain, J., Corfidi, S., Rabin, R., & Levit, J. (2010). Revisiting the 3–4 April 1974 super outbreak of tornadoes. Weather and Forecasting, 25(2), 465–510. https://doi.org/10.1175/2009WAF2222297.1
  • Craven, J. P. (2000). A preliminary look at deep layer shear and middle level lapse rates during major tornado outbreaks. Preprints, 20th Conference on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 547–550.
  • Craven, J. P., & Brooks, H. E. (2004). Baseline climatology of sounding derived parameters associated with deep moist convection. National Weather Digest, 28, 13–24. http://www.nssl.noaa.gov/users/brooks/public_html/papers/cravenbrooksnwa.pdf
  • Craven, J. P., Brooks, H. E., & Hart, J. A. (2002a). Baseline climatology of sounding derived parameters associated with deep, moist convection. Preprints, 21st Conference on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 643–646.
  • Craven, J. P., Jewell, R. E., & Brooks, H. E. (2002b). Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Weather and Forecasting, 17(4), 885–890. https://doi.org/10.1175/1520-0434(2002)0172.0.CO;2
  • Dahl, N. A., Nolan, D. S., Bryan, G. H., & Rotunno, R. (2017). Using high-resolution simulations to quantify underestimates of tornado intensity from in situ observations. Monthly Weather Review, 145(5), 1963–1982. https://doi.org/10.1175/MWR-D-16-0346.1
  • Davies-Jones, R. P., Burgess, D. W., & Foster, M. P. (1990). Test of helicity as a tornado forecast parameter. Preprints, 16th Conference on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.
  • Diffenbaugh, N. S., Scherer, M., & Trapp, R. J. (2013). Proceedings of the National Academy of Sciences, 110(41), 16361–16366. https://doi.org/10.1073/pnas.1307758110
  • Doswell III C. A. (2007). Small sample size and data quality issues illustrated using tornado occurrence data. Electronic Journal of Severe Storms Meteorology, 2, 1–16.
  • Doswell III C. A., Brooks, H. E., & Dotzek, N. (2009). On the implementation of the enhanced Fujita scale in the USA. Atmospheric Research, 93(1-3), 554–563. https://doi.org/10.1016/j.atmosres.2008.11.003
  • Doswell III C. A., Carbin, G. W., & Brooks, H. E. (2012). The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67(4), 88–94. https://doi.org/10.1002/wea.1902
  • Doswell III C. A., Moller, A. R., Brooks, H. E., & E, H. (1999). Storm spotting and public awareness since the first tornado forecasts of 1948. Weather and Forecasting, 14(4), 544–557. https://doi.org/10.1175/1520-0434(1999)0142.0.CO;2
  • Dotzek, N., Groenemeijer, P., Feuerstein, B., & Holzer, A. (2009). Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmospheric Research, 93(1–3), 575–586. https://doi.org/10.1016/j.atmosres.2008.10.020
  • Edwards, R. (2012). Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electronic Journal of Severe Storms Meteorology, 7, 6. www.ejssm.org/ojs/index.php/ejssm/issue/view/39
  • Eichler, T., & Higgins, W. (2006). Climatology and ENSO-related variability of North American extratropical cyclone activity. Journal of Climate, 19(10), 2076–2093. https://doi.org/10.1175/JCLI3725.1
  • Fujita, T. (1958). Structure and movement of a dry front. Bulletin of American Meteorological Society, 39(11), 574–582. https://doi.org/10.1175/1520-0477-39.11.574
  • Fujita, T. (1971). Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago SMRP Research Paper 91, 42 pp.
  • Fujita, T. (1974). Jumbo tornado outbreak of 3 April 1974. Weatherwise, 27(3), 116–126. https://doi.org/10.1080/00431672.1974.9931693
  • Fujita, T. (1978). Manual of downburst identification for Project NIMROD. University of Chicago, Satellite and Mesometeorology Research Project Paper 156, 104 pp.
  • Fujita, T. (1981). Tornadoes and downbursts in the context of generalized planetary scales. Journal of Atmospheric Sciences, 38(8), 1511–1534. https://doi.org/10.1175/1520-0469(1981)038,1511:TADITC.2.0.CO;2
  • Gaffin, D. M., & Parker, S. S. (2006). A climatology of synoptic conditions associated with significant tornadoes over the southern Appalachian region. Weather and Forecasting, 21(5), 735–751. https://doi.org/10.1175/WAF951.1
  • Garinger, L. P., & Knupp, K. R. (1993). Seasonal tornado climatology for the southeastern United States. The Tornado: Its structure, dynamics, prediction, and hazards. In C. Church et al. (Eds.), Geophysical Monograph (Vol. 79, pp. 445–452). Amer. Geophys. Union.
  • Gayà, M. (2011). Tornadoes and severe storms in Spain. Atmospheric Research, 100(4), 334–343. https://doi.org/10.1016/j.atmosres.2010.10.019
  • Graf, M. A., Sprenger, M., & Moore, R. W. (2011). Central European tornado environments as viewed from a potential vorticity and Lagrangian perspective. Atmospheric Research, 101(1-2), 31–45. https://doi.org/10.1016/j.atmosres.2011.01.007
  • Groenemeijer, P., & Kühne, T. (2014). A climatology of tornadoes in Europe: Results from the European Severe Weather database. Monthly. Weather Review, 142(12), 4775–4790. https://doi.org/10.1175/MWR-D-14-00107.1
  • Halpert, M. S., & Ropelewski, C. F. (1992). Surface temperature patterns associated with the southern oscillation. Journal of Climate, 5(6), 577–593. https://doi.org/10.1175/1520-0442(1992)0052.0.CO;2
  • Hamill, T. M., Schneider, R. S., Brooks, H. E., Forbes, G. S., Bluestein, H. B., Steinberg, M., Melendez, D., & Dole, R. M. (2005). The May 2003 extended tornado outbreak. Bulletin of American Meteorological Society, 86(4), 531–542. https://doi.org/10.1175/BAMS-86-4-531
  • Hart, J. A., & Korotky, W. (1991). The SHARP workstation v1.50 users guide (30 pp). NOAA/National Weather Service.
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Sceper, Simmons, R., Soc, C., Abdalla, S., Abellan X., Balsamo, G., Bechtold, P., Dee, D., Diamantakis, M., Dragani, R., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Hill, E. L., Malkin, W., & Schulz Jr, W. A. (1966). Tornadoes associated with cyclones of tropical origin-practical features. Journal of Applied Meteorology, 5(6), 745–763. https://doi.org/10.1175/1520-0450(1966)0052.0.CO;2
  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate change (2007). The physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (987 pp.). Cambridge, UK: Cambridge University Press. http://www.ipcc.ch
  • Johns, R. H., & Doswell, C. A. (1992). Severe local storms forecasting. Weather and Forecasting, 7(4), 588–612. https://doi.org/10.1175/1520-0434(1992)0072.0.CO;2
  • Kelly, D. L., Schaefer, J. T., McNulty, R. P., Doswell III, C. A., & AbbeyJr.R. F. (1978). An augmented tornado climatology. Monthly Weather Review, 106(8), 1172–1183. https://doi.org/10.1175/1520-0493(1978)106<1172:AATC>2.0.CO;2
  • Knupp, K. R., Murphy, T. A., Coleman, T. A., Wade, R. A., Mullina S. A, Schultz, C. J., Schultz, E. V, Carey, L., Sherrer A., McCaul Jr, E. W., Carcione, B., Latimer, S., Kula, A., Laws. K., Marsh, P., & Klockow, K. (2014). Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bulletin of the American Meteorological Society, 95(7), 1041–1062. https://doi.org/10.1175/BAMS-D-11-00229.1
  • Kobayashi, F., Sugawara, Y., Imai, M., Matsui, M., Yoshida, A., & Tamura, Y. (2007). Tornado generation in a narrow cold frontal rainband—Fujisawa tornado on April 20, 2006. SOLA, 3, 21–24. https://doi.org/10.2151/sola.2007-006
  • Kosiba, K., & Wurman, J. (2010). Three-dimensional axisymmetric wind field structure of the spencer, South Dakota, 1998 tornado. Journal of the Atmospheric Sciences, 67(9), 3074–3083. https://doi.org/10.1175/2010JAS3416.1
  • Krocak, M., & Brooks, H. (2018). Climatological estimates of hourly tornado probability for the United States. Weather and Forecasting, 33(1), 59–69. https://doi.org/10.1175/WAF-D-17-0123.1
  • Lee, B. D., & Wilhelmson, R. B. (1997a). The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. Journal of the Atmospheric Sciences, 54(1), 32–60. https://doi.org/10.1175/1520-0469(1997)0542.0.CO;2
  • Lee, B. D., & Wilhelmson, R. B. (1997b). The numerical simulation of non-supercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. Journal of the Atmospheric Sciences, 54(19), 2387–2415. https://doi.org/10.1175/1520-0469(1997)0542.0.CO;2
  • Lee, S.-K., Mapes, B. E., Wang, C., Enfield, D. B., & Weaver, S. J. (2014). Springtime ENSO phase evolution and its relation to rainfall in the continental U.S. Geophysical Research Letters, 41(5), 1673–1680. https://doi.org/10.1002/2013GL059137
  • Lemon, L. R., & Doswell III C. A. (1979). Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Monthly Weather Review, 107(9), 1184–1197. https://doi.org/10.1175/1520-0493(1979)107,1184:STEAMS.2.0.CO;2
  • Li, F., Chavas, D. R., Reed, K. A., & Dawson, D. T. (2020). Climatology of severe local storm environments and synopticscale features over North America in ERA5 reanalysis and CAM6 simulation. Journal of Climate, 33(19), 8339–8365. https://doi.org/10.1175/JCLI-D-19-0986.1
  • Locatelli, J. D., Martin, J. E., Castle, J. A., & Hobbs, P. V. (1995). Structure and evolution of winter cyclones in the central United States and their effects on the distribution of precipitation. Part III: The development of a squall line associated with weak cold frontogenesis aloft. Monthly Weather Review, 123(9), 2641–2662. https://doi.org/10.1175/1520-0493(1995)1232.0.CO;2
  • Maddox, R. A. (1976). An evaluation of tornado proximity wind and stability data. Monthly Weather Review, 104(2), 133–142. https://doi.org/10.1175/1520-0493(1976)104,0133:AEOTPW.2.0.CO;2.
  • Maddox, R. A., & Crisp, C. A. (1999). The Tinker AFB tornadoes of March 1948. Weather and Forecasting, 14(4), 492–499. https://doi.org/10.1175/1520-0434(1999)014,0492:TTATOM.2.0.CO;2
  • Markowski, P. M., Hannon, C., Frame, J., Lancaster, E., Pietrycha, A., Edwards, R., & Thompson, R. L. (2003). Characteristics of vertical wind profiles near supercells obtained from the rapid update cycle. Weather and Forecasting, 18(6), 1262–1272. https://doi.org/10.1175/1520-0434(2003)018,1262:COVWPN.2.0.CO;2
  • Markowski, P. M., & Richardson, Y. P. (2010). Mesoscale meteorology in midlatitudes (424 pp.). Wiley-Blackwell.
  • Markowski, P. M., Straka, J. M., Rasmussen, E. N., & Blanchard, D. O. (1998). Variability of storm-relative helicity during VORTEX. Monthly Weather Review, 126(11), 2959–2971. https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2
  • Mashiko, W. (2016a). A numerical study of the 6 May 2012 Tsukuba City Supercell Tornado. Part I: Vorticity sources of low-level and midlevel mesocyclones. Monthly Weather Review, 144(3), 1069–1092. https://doi.org/10.1175/MWR-D-15-0123.1
  • Mashiko, W. (2016b). A numerical study of the 6 May 2012 Tsukuba City Supercell Tornado. Part II: Mechanisms of tornadogenesis. Monthly Weather Review, 144(9), 3077–3098. https://doi.org/10.1175/MWR-D-15-0122.1
  • McCaul, E. W., Jr.(1991). Buoyancy and shear characteristics of hurricane-tornado environments. Monthly Weather Review, 119(8), 1954–1978. https://doi.org/10.1175/1520-0493(1991)1192.0.CO;2
  • Mercer, A. E., Shafer, C. M., Doswell, C. A., Leslie, L. M., & Richman, M. B. (2009). Objective classification of tornadic and nontornadic severe weather outbreaks. Monthly Weather Review, 137(12), 4355–4368. https://doi.org/10.1175/2009MWR2897.1
  • Mercer, A. E., Shafer, C. M., Doswell, C. A., Leslie, L. M., & Richman, M. B. (2012). Synoptic composites of tornadic and nontornadic outbreaks. Monthly Weather Review, 137(12), 4355–4368. https://doi.org/10.1175/2009MWR2897.1
  • Miglietta, M. M., & Matsangouras, I. T. (2018). An updated climatology of tornadoes and waterspouts in Italy. International Journal of Climatology, 1–17. https://doi.org/10.1002/joc.5526
  • Miglietta, M. M., Mazon, J., Motola, V., & Pasini, A. (2017). Effect of a positive sea surface temperature anomaly on a Mediterranean tornadic supercell. Scientific Reports, 7(1), 12828. https://doi.org/10.1038/s41598-017-13170-0
  • Miglietta, M. M., & Rotunno, R. (2016). An EF3 multivortex tornado over the Ionian region: Is it time for a dedicated warning system over Italy? Bulletin of the American Meteorological Society, 97(3), 337–344. https://doi.org/10.1175/BAMS-D-14-00227.1
  • Miller, R. (1972). Notes on analysis & severe-storm forecasting procedures of the Air Force Global Weather Center. Air Weather Service Tech. Rep. 200, rev. ed. Air Weather Service, Scott Air Force Base, IL, 184 pp.
  • Mitchell, T., & Schultz, D. M. (2020). A synoptic climatology of spring dryline convection in the southern great plains. Weather and Forecasting, 35(4), 1561–1582. Retrieved March 2, 2021, from https://journals.ametsoc.org/view/journals/wefo/35/4/- wafD190160.xml. https://doi.org/10.1175/WAF-D-19-0160.1
  • Molina, M. J., & Allen, J. T. (2019). On the moisture origins of tornadic thunderstorms. Journal of Climate, 32(14), 4321–4346. https://doi.org/10.1175/JCLI-D-18-0784.1
  • Molinari, J., Romps, D. M., Vollaro, D., & Nguyen, L. (2012). CAPE in tropical cyclones. Journal of the Atmospheric Sciences, 69(8), 2452–2463. https://doi.org/10.1175/JAS-D-11-0254.1
  • Moncrieff, M., & Miller, M. J. (1976). The dynamics and simulation of tropical cumulonimbus and squall lines. Quarterly Journal of the Royal Meteorological Society, 102(432), 373–394. https://doi.org/10.1002/qj.49710243208
  • Monteverdi, J. P., Doswell, C. A., & Lipari, G. S. (2003). Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Weather and Forecasting, 18(2), 357–370. https://doi.org/10.1175/1520-0434(2003)0182.0.CO;2
  • Mulder, K. J., & Schultz, D. M. (2015). Climatology, storm morphologies, and environments of tornadoes in the British isles: 1980–2012. Monthly Weather Review, 143(6), 2224–2240. https://doi.org/10.1175/MWR-D-14-00299.1
  • Muramatsu, T., Kato, T., Nakazato, M., Endo, H., & Kitoh, A. (2016). Future change of tornadogenesis: Favorable environmental conditions in Japan estimated by a 20-km-mesh atmospheric general circulation model. Journal of the Meteorological Society of Japan, 94A, 105–120. https://doi.org/10.2151/jmsj.2015-053
  • Newton, C. W. (1967). Severe convective storms. In H. E. Landsberg & J. Van Mieghem (Eds.), Advances in geophysics (Vol. 12, pp. 257–303). Academic Press. https://doi.org/10.1016/S0065-2687(08)60377-5
  • Niino, H., Fujitani, T., & Watanabe, N. (1997). A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993. Journal of Climate, 10(7), 1730–1752. https://doi.org/10.1175/1520-0442(1997)0102.0.CO;2
  • Niino, H., Suzuki, O., Nirasawa, H., Fujitani, T., Ohno, H., Takayabu, I., & Kinoshita, N. (1993). Tornadoes in chiba prefecture on 11 December 1990. Monthly Weather Review, 121(11), 3001–3018. https://doi.org/10.1175/1520-0493(1993)121<3001:TICPOD>2.0.CO;2
  • Nolan, D. S., Dahl, N. A., Bryan, G. H., & Rotunno, R. (2017). Tornado vortex structure, intensity, and surface wind gusts in large eddy simulations with fully developed turbulence. Journal of the Atmospheric Sciences, 74(5), 1573–1597. https://doi.org/10.1175/JAS-D-16-0258.1
  • Nolan, D. S., & Farrell, B. F. (1999). The structure and dynamics of tornado-like vortices. Journal of Atmospheric Sciences, 56(16), 2908–2936. https://doi.org/10.1175/1520-0469(1999)056,2908:TSADOT.2.0.CO;2
  • Novlan, D. J., & Gray, W. M. (1974). Hurricane-spawned tornadoes. Monthly Weather Review, 102(7), 476–488. https://doi.org/10.1175/1520-0493(1974)1022.0.CO;2
  • Orton, R. (1970). Tornadoes associated with Hurricane Beulah on September 19–23, 1967. Monthly Weather Review, 98(7), 541–547. https://doi.org/10.1175/1520-0493(1970)0982.3.CO;2
  • Peltier, J. C. A. (1840). Météorologie: Observations et recherches expérimentales sur les causes qui concourent à la formation des trombes (Meteorology: Observations and Experimental Research on the Causes that Contribute to the Formation of Tornadoes). H. Cousin, Librare-Editeur, 444 pp.
  • Philander, S. G. H. (1990). El Niño, La Niña and the Southern Oscillation (293 pp.). San Diego, CA: Academic.
  • Rasmussen, E. N., & Blanchard, D. O. (1998). A baseline climatology of sounding-derived supercell and tornado forecast parameters. Weather and Forecasting, 13(4), 1148–1164. https://doi.org/10.1175/1520-0434(1998)0132.0.CO;2
  • Rasmussen, E. N. (2003). Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530–535. https://doi.org/10.1175/1520-0434(2003)18,530:RSATFP.2.0.CO;2
  • Rauhala, J., Brooks, H. E., & Schultz, D. M. (2012). Tornado climatology of Finland. Monthly Weather Review, 140(5), 1446–1456. https://doi.org/10.1175/MWR-D-11-00196.1
  • Rauhala, J., & Schultz, D. M. (2009). Severe thunderstorm and tornado warnings in Europe. Atmospheric Research, 93(1-3), 369–380. https://doi.org/10.1016/j.atmosres.2008.09.026
  • Renko, T., Kuzmic, J., & Mahovic, N. S. (2013). Synoptic and mesoscale analysis of waterspouts in the Adriatic (2001–2011 preliminary climatology). Seventh European Conference on Severe Storms, Helsinki, Finland, European Severe Storm Laboratory, 14. http://www.essl.org/ECSS/2013/programme/abstracts/14.pdf
  • Reynolds, D. J. (1999). European tornado climatology, 1960–1989. Journal of Meteorology. (UK), 24, 376–403.
  • Rhea, J. O. (1966). A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 58–63. https://doi.org/10.1175/1520-0450(1966)005,0058:ASOTFA.2.0.CO;2
  • Rodriguez, O., & Bech, J. (2017). Sounding-derived parameters associated with tornadic storms in Catalonia. International Journal of Climatology, 38(5), 2400–2414. https://doi.org/10.1002/joc.5343
  • Roebber, P. J., Schultz, D. M., & Romero, R. (2002). Synoptic regulation of the 3 May 1999 tornado outbreak. Weather and Forecasting, 17(3), 399–429. https://doi.org/10.1175/1520-0434(2002)0172.0.CO;2
  • Romps, D. M., & Kuang, Z. (2010). Do undiluted convective plumes exist in the upper tropical troposphere? Journal of the Atmospheric Sciences, 67(2), 468–484. https://doi.org/10.1175/2009JAS3184.1
  • Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8), 1606–1626. https://doi.org/10.1175/1520-0493(1987)1152.0.CO;2
  • Rotunno, R. (1979). A study in tornado-like vortex dynamics. Journal of Atmospheric Sciences, 36(1), 140–155. https://doi.org/10.1175/1520-0469(1979)036,0140:ASITLV.2.0.CO;2
  • Rotunno, R. (2013). The fluid dynamics of tornadoes. Annual Review of Fluid Mechanics, 45(1), 59–84. https://doi.org/10.1146/annurev-fluid-011212-140639
  • Rotunno, R., Bryan, G. H., Nolan, D. S., & Dahl, N. A. (2016). Axisymmetric tornado simulations at high Reynolds number. Journal of Atmospheric Sciences, 73(10), 3843–3853. https://doi.org/10.1175/JAS-D-16-0038
  • Schaefer, J. T. (1974). The life cycle of the dryline. J. Appl. Meteor., 13, 444–449. https://doi.org/10.1175/1520-0450(1974)013,0444:TLCOTD.2.0.CO;2.
  • Schaefer, J. T. (1986). The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.
  • Schemm, S., Rivière, G., Ciasto, L. M., & Li, C. (2018). Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: Role of stationary and transient waves. Journal of the Atmospheric Sciences, 75(11), 3943–3964. https://doi.org/10.1175/JAS-D-17-0340.1
  • Schenkman, A. D., & Xue, M. (2016). Bow-echo mesovortices: A review. Atmospheric Research, 170, 1–13. https://doi.org/10.1016/j.atmosres.2015.11.003
  • Schneider, R. S., & Dean, A. R. (2008). A comprehensive 5-year severe storm environment climatology for the continental United States. Preprints, 24th Conference on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.4. https://ams.confex.com/ams/24SLS/techprogram/paper_141748.htm
  • Schultz, D. M., Weiss, C. C., & Hoffman, P. M. (2007). The synoptic regulation of dryline intensity. Monthly Weather Review, 135(5), 1699–1709. https://doi.org/10.1175/MWR3376.1
  • Schultz, L. A., & Cecil, D. J. (2009). Tropical cyclone tornadoes, 1950–2007. Monthly Weather Review, 137(10), 3471–3484. https://doi.org/10.1175/2009MWR2896.1
  • Shafer, C. M., Doswell III C. A., Leslie, L. M., & Richman, M. B. (2010a). On the use of areal coverage of parameters favorable for severe weather to discriminate major outbreaks. Electronic Journal of Severe Storms Meteorology, 5(7), 1–44. http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/72
  • Shafer, C. M., Doswell III C. A., Leslie, L. M., Richman, M. B., & Doswell, C. A. (2010b). Evaluation of WRF model simulations of tornadic and nontornadic outbreaks that occur in the spring and fall. Monthly Weather Review, 138(11), 4098–4119. https://doi.org/10.1175/2010MWR3269.1
  • Shafer, C. M., Mercer, A. E., Doswell, C. A., Richman, M. B., & Leslie, L. M. (2009). Evaluation of WRF forecasts of tornadic and nontornadic outbreaks when initialized with synopticscale input. Monthly Weather Review, 137(4), 1250–1271. https://doi.org/10.1175/2008MWR2597.1
  • Sherburn, K. D., & Parker, M. D. (2014). Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Weather and Forecasting, 29(4), 854–877. https://doi.org/10.1175/WAF-D-13-00041.1
  • Sherburn, K. D., Parker, M. D., King, J. R., & Lackmann, G. M. (2016). Composite environments of severe and nonsevere high shear, low-CAPE convective events. Weather and Forecasting, 31(6), 1899–1927. https://doi.org/10.1175/WAF-D-16-0086.1
  • Simmons, K. M., & Sutter, D. (2011). Economic and societal impacts of tornadoes. American Meteorological Society. http://www.spc.noaa.gov/wcm/index.html#data
  • Simmons, K. M., Sutter, D., & PielkeJr.R. (2013). Normalized tornado damages in the United States: 1950–2011. Environmental Hazards, 12(2), 132–147. https://doi.org/10.1080/17477891.2012.738642
  • Smart, D. J., & Browning, K. A. (2009). Morphology and evolution of cold-frontal misocyclones. Quarterly Journal of the Royal Meteorological Society, 135(639), 381–393. https://doi.org/10.1002/qj.399
  • Smith, B., R., Thompson, J., Grams, C., Broyles, & H. Brooks. (2012). Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 1114–1135. https://doi.org/10.1175/WAF-D-11-00115.1
  • Stensrud, D. J., Cortinas, J. V., & Brooks, H. E. (1997). Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Weather and Forecasting, 12(3), 613–632. https://doi.org/10.1175/1520-0434(1997)0122.0.CO;2
  • Sueki, K., & Niino, H. (2016). Toward better assessment of tornado potential in typhoons: Significance of considering entrainment effects for CAPE. Geophysical Research Letters, 43(24), 12–597. https://doi.org/10.1002/2016GL070349
  • Szilárd, S. (2007). A systematic approach to synoptic tornado climatology of Hungary for the recent years (1996–2001) based on official damage reports. Atmospheric Research, 83(2-4), 263–271. https://doi.org/10.1016/j.atmosres.2005.10.025
  • Taszarek, M., Allen, J. T., Púcik, T., Hoogewind, K., & Brooks, H. E. (2020). Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind and tornadoes. Journal of Climate, 33(23), 10263–10286. https://doi.org/10.1175/JCLI-D-20-0346.1
  • Thompson, D. B., & Roundy, P. E. (2013). The relationship between the Madden-Julian Oscillation and US violent tornado outbreaks in the spring. Monthly Weather Review, 141(6), 2087–2095. https://doi.org/10.1175/MWR-D-12-00173.1
  • Thompson, R. L., & Edwards, R. (2000). An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Weather and Forecasting, 15(6), 682–699. https://doi.org/10.1175/1520-0434(2000)0152.0.CO;2
  • Thompson, R. L., Edwards, R., & Hart, J. A. (2002). Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center. Preprints, 21st Conference on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J11–J14.
  • Thompson, R. L., Hart, J. A., Elmore, K. L., & Markowski, P. (2003). Close proximity soundings within supercell environments obtained from the rapid update cycle. Weather and Forecasting, 18(6), 1243–1261.
  • Thompson, R. L., Mead, C. M., & Edwards, R. (2007). Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Weather and Forecasting, 22(1), 102–115. https://doi.org/10.1175/WAF969.1
  • Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., & Broyles, C. (2012). Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Weather and Forecasting, 27(5), 1136–1154. https://doi.org/10.1175/WAF-D-11-00116.1
  • Tippett, M. K. (2018). Robustness of relations between the MJO and U. S. Tornado occurrence. Monthly Weather Review, 146(11), 3873–3884. https://doi.org/10.1175/MWR-D-18-0207.1
  • Tochimoto, E., Miglietta, M. M., Bagaglini, L., Ingrosso, R., & Niino, H. (2021). Characteristics of extratropical cyclones that cause tornadoes in Italy: A preliminary study. Atmosphere, 12(2), 180. https://doi.org/10.3390/atmos12020180
  • Tochimoto, E., & Niino, H. (2016). Structural and environmental characteristics of extratropical cyclones that cause tornado outbreaks in the warm sector: A composite study. Monthly Weather Review, 144(3), 945–969. https://doi.org/10.1175/MWR-D-15-0015.1
  • Tochimoto, E., & Niino, H. (2017). Structural and environmental characteristics of extratropical cyclones associated with tornado outbreaks in the warm sector: An idealized numerical study. Monthly Weather Review, 145(1), 117–136. https://doi.org/10.1175/MWR-D-16-0107.1
  • Tochimoto, E., & Niino, H. (2018). Structure and environment of tornado-spawning extratropical cyclones around Japan. Journal of the Meteorological Society of Japan. Ser. II, 96(4), 355–380. https://doi.org/10.2151/jmsj.2018-043
  • Tochimoto, E., Sueki, K., & Niino, H. (2019). Entraining CAPE for better assessment of tornado outbreak potential in the warm sector of extra- tropical cyclones. Monthly Weather Review, 147(3), 913–930. https://doi.org/10.1175/MWR-D-18-0137.1
  • Trapp, R. J., Tessendorf, S. A., Godfrey, E. S., & Brooks, H. E. (2005). Tornadoes from squall lines and bow echoes. Part I: Climatological Distribution. Weather and Forecasting, 20(2), 23–34. https://doi.org/10.1175/WAF-835.1
  • Uccellini, L. W. & D. R. Johnson. (1979). The coupling of upper- and lower- tropospheric jet streaks and implications for development of severe convective storms. Monthly Weather Review, 107(6), 682–703. https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2
  • Wakimoto, R. M., & Atkins, N. T. (1996). Observations on the origins of rotation: The Newcastle tornado during VORTEX 94. Monthly Weather Review, 124(3), 384–407. https://doi.org/10.1175/1520-0493(1996)1242.0.CO;2
  • Wakimoto, R. M., Liu, C., & Cai, H. (1998). The garden city, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Monthly Weather Review, 126(2), 372–392. https://doi.org/10.1175/1520-0493(1998)1262.0.CO;2
  • Wakimoto, R. M., & Murphey, H. V. (2009). Analysis of a dryline during IHOP: Implications for convection initiation. Monthly Weather Review, 137(3), 912–936. https://doi.org/10.1175/2008MWR2584.1
  • Wakimoto, R. M., & Wilson, J. W. (1989). Non-supercell tornadoes. Monthly Weather Review, 117(6), 1113–1140. https://doi.org/10.1175/1520-0493(1989)1172.0.CO;2
  • Wegener, A. (1917). Wind und Wasserhosen in Europa (Tornadoes and Waterspouts in Europe) (301 pp.) Vieweg.
  • Weisman, M. L., & Klemp, J. B. (1982). The dependence of numerically simulated convective storms on wind shear and buoyancy. Monthly Weather Review, 110(6), 504–520. https://doi.org/10.1175/1520-0493(1982)1102.0.CO;2
  • Wernli, H., Fehlmann, R., & Lüthi, D. (1998). The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. Journal of the Atmospheric Sciences, 55(11), 2080–2094. https://doi.org/10.1175/1520-0469(1998)0552.0.CO;2
  • Wurman, J., Kosiba, K., & Robinson, P. (2013). In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bulletin of American Meteorological Society, 94(6), 835–846. https://doi.org/10.1175/BAMS-D-12-00114.1
  • Yokota, S., Niino, H., Seko, H., Kunii, M., & Yamauchi, H. (2018). Important factors for tornadogenesis as revealed by highresolution ensemble forecasts of the Tsukuba supercell tornado of 6 May 2012 in Japan. Monthly Weather Review, 146(4), 1109–1132. https://doi.org/10.1175/MWR-D-17-0254.1
  • Yokota, S., Seko, H., Kunii, M., Yamauchi, H., & Niino, H. (2016). The tornadic supercell on the Kanto Plain on 6 May 2012: Polarimetric radar and surface data assimilation with EnKF and ensemble-based sensitivity analysis. Monthly Weather Review, 144(9), 3133–3157. https://doi.org/10.1175/MWR-D-15-0365.1
  • Ziegler, C. L., Rasmussen, E. N., Shepherd, T. R., Watson, A. I., & Straka, J. M. (2001). The evolution of low-level rotation in the 29 May 1994 Newcastle–Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 1339–1368. https://doi.org/10.1175/1520-0493(2001)129<1339:TEOLLR>2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.