523
Views
1
CrossRef citations to date
0
Altmetric
Review / Synthèse

Current Challenges in Climate and Weather Research and Future Directions

, , , ORCID Icon, , ORCID Icon, ORCID Icon, , , , , , , , , ORCID Icon, ORCID Icon, , & show all
Pages 506-517 | Received 25 Apr 2022, Accepted 15 May 2022, Published online: 01 Jun 2022

References

  • Abbe, C. (1901). The physical basis of long-range weather forecasts. Monthly Weather Review, 29(12), 551–561. https://doi.org/10.1175/1520-0493(1901)29[551c:TPBOLW]2.0.CO;2
  • Adler, R. F., & Fenn, D. D. (1981). Satellite-observed cloud-top height changes in tornadic thunderstorms. Journal of Applied Meteorology, 20(11), 1369–1375. https://doi.org/10.1175/1520-0450(1981)020<1369:SOCTHC>2.0.CO;2
  • AGU. (2020). AGU strategic plan. https://news.agu.org/files/2020/05/Final_AGU_Strategic_Plan_2020_Final.pdf
  • AMS Council. (2020). Priorities for a new decade: Weather, water, and climate – a policy statement of the American Meteorological Society.
  • Backus, G. (1958). A class of self-sustaining dissipative spherical dynamos. Annals of Physics, 4(4), 372–447. https://doi.org/10.1016/0003-4916(58)90054-X
  • Bjerknes, J. (1937). Die Theorie der aussertropischen Zyklonenbildung. Meteorologische Zeitschrift, 54, 460–466.
  • Bjerknes, V. (1904). Das Problem der Wettervorhersage, betrachtet vom Standpunkt der Mechanik und der Physik. Meteorologische Zeitschrift, 21, 1–7.
  • Bluestein, H. B., Carr, F. H., & Goodman, S. J. (2022). Atmospheric observations of weather and climate. Atmosphere-Ocean, Advance online publication.
  • Camuffo, D., & Bertolin, C. (2012). The earliest temperature observations in the world: The Medici Network (1654–1670). Climatic Change, 111(2), 335–363. https://doi.org/10.1007/s10584-011-0142-5
  • Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women's underrepresentation in science. Proceedings of the National Academy of Sciences, 108(8), 3157–3162. https://doi.org/10.1073/pnas.1014871108
  • Chan, H. F., & Torgler, B. (2020). Gender differences in performance of top cited scientists by field and country. Scientometrics, 125(3), 2421–2447. https://doi.org/10.1007/s11192-020-03733-w
  • Charney, J. G. (1948). On the scale of atmospheric motions. Journal of Meteorology, 4, 135–163. https://link.springer.com/chapter/10. 1007/978-1-944970-35-2_14?noAccess=true
  • Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J., … Zhang, H. (2020). SISALv2: A comprehensive speleothem isotope database with multiple age-depth models. Earth System Science Data, 12(4), 2579–2606. https://doi.org/10.5194/essd-12-2579-2020
  • Davies, G. F. (1977). Whole-mantle convection and plate tectonics. Geophysical Journal International, 49(2), 459–486. https://doi.org/10.1111/j.1365-246X.1977.tb03717.x
  • Davis R. E., et al. (2019). 100 Years of Progress in Ocean Observing Systems. In Greg McFarquhar (Ed.), A Century of Progress in Atmospheric and Related Sciences. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0014.1
  • Ditlevsen, P. (2022). The pleistocene glacial cycles and millennial scale climate variability. Atmospheric observations of weather and climate. Atmosphere-Ocean, Advance online publication.
  • Ekman, V. W. (1905). On the influence of the earth's rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik, 2(11), 52 pp. https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/33989/31151027498728.pdf
  • Eliassen, A. (1949). The quasi-static equations of motion with pressure as independent variable. Geofysiske Publikasjoner, 17(3), 1–44. Utgitt av Det Norske Videnskaps-Akademi, Oslo.
  • Gay-Antaki, M., & Liverman, D. (2018). Climate for women in climate science: Women scientists and the intergovernmental panel on climate change. Proceedings of the National Academy of Sciences, 115(9), 2060–2065. https://doi.org/10.1073/pnas.1710271115
  • Herzenberg, A. (1958). Geomagnetic dynamos. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 250(986), 543–583. https://doi.org/10.1098/rsta.1958.0007
  • IAU. (2018). IAU Strategic Plan 2020–2030. https://www.iau.org/static/administration/about/strategic_plan/strategicplan-2020-2030.pdf
  • Joselyn, J. A., Ismail-Zadeh, A., Beer, T., Gupta, H., Kono, M., Shamir, U., Sideris, M., & Whaler, K. (2019). IUGG in the 21st century. History of Geo- and Space Sciences, 10(1), 73–95. https://doi.org/10.5194/hgss-10-73-2019
  • Jouzel, J. (2013). A brief history of ice core science over the last 50 yr. Climate of the Past, 9(6), 2525–2547. https://doi.org/10.5194/cp-9-2525-2013
  • Jutz, S., & Milagro-PÈrez, M. P. (2020). Copernicus: The European Earth Observation programme. Revista de TeledetecciÛn (56).
  • Laplace, P. S. (1775). Recherches sur Quelques Points de Systeme du Monde. Mem. Acad. Roy. Sci, 88.
  • Laplace, P.-S. (1798). Traite de mecanique celeste, vol. 1, 368 pp., Crapelet, Paris.
  • Larmor, J. (1919). How could a rotating body such as the Sun become a magnet? Report of the British Association for the Advance of Science, 87, 159–160.
  • Lin, H. (2022). The Madden-Julian oscillation. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean, Advance online publication.
  • Lin, J. L., & Qian, T. (2022a). The Atlantic multi-decadal oscillation. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean, Advance online publication.
  • Lin, J. L., & Qian, T. (2022b). Earth’s climate history from 4.6 billion years to one minute. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean, Advance online publication.
  • Lin, J. L., Qian, T., & Klotzbach, P. (2022). Tropical cyclones. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean, Advance online publication.
  • Lin, J. L., Qian, T., & Schubert, S. D. (2022). Droughts and mega-droughts. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean, Advance online publication.
  • Locosselli, G. M., Brienen, R. J. W., Leite, M. d. S., Gloor, M., Krottenthaler, S., Oliveira, A. A. d., Barichivich, J., Anhuf, D., Ceccantini, G., Schöngart, J., & Buckeridge, M. (2020). Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences, 117(52), 33358. https://doi.org/10.1073/pnas.2003873117
  • Marion, G. R., Trapp, R. J., & Nesbitt, S. W. (2019). Using overshooting top area to discriminate potential for large, intense tornadoes. Geophysical Research Letters, 46(21), https://doi.org/10.1029/2019GL084099
  • Mashiko, W. (2016). A numerical study of the 6 May 2012 Tsukuba City supercell tornado. Part II: Mechanisms of tornadogenesis. Monthly Weather Review, 144(9), 3077–3098. https://doi.org/10.1175/MWR-D-15-0122.1
  • Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. AAPG Bulletin, 56, 203–213. https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D
  • Mosher, S., & Keane, C. (Eds.). (2021). Vision and change in the geosciences: The future of undergraduate geoscience education. American Geosciences Institute.
  • Munk, W. H. (1950). On the wind driven ocean circulation. Journal of Meteorology, 7, 79–93. https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2
  • NAS. (2016a). Next generation earth system prediction: Strategies for subseasonal to seasonal forecasts. The National Academies Press. https://doi.org/10.17226/21873
  • NAS. (2016b). The future of atmospheric chemistry research: Remembering yesterday, understanding today, anticipating tomorrow. The National Academies Press. https://doi.org/10.17226/23573
  • NAS. (2017). Sustaining ocean observations to understand future changes in earth's climate. The National Academies Press. https://doi.org/10.17226/24919
  • NAS. (2018a). Thriving on our changing planet: A decadal strategy for earth observation from space. The National Academies Press. https://doi.org/10.17226/24938
  • NAS. (2018b). The future of atmospheric boundary layer observing, understanding, and modeling: Proceedings of a workshop. The National Academies Press. https://doi.org/10.17226/25138
  • National Research Council. (2011). Scientific ocean drilling: Accomplishments and challenges. National Academies Press. 145 p.
  • Navier, C. L. M. H. (1822). On the laws of motion of fluids taking into consideration the adhesion of the molecules. Ann. Chim. Phys, 19, 234–245.
  • Pekeris, C. (1935). Thermal convection in the interior of the earth, Monthly Notices Roy. Astron. Soc., Geophys. Suppl, 3, 343–367. https://doi.org/10.1111/j.1365-246X.1935.tb01742.x
  • Poincare, H. (1901). Sur une forme nouvelle des equations de la m echanique. CR Acad. Sci., 132, 369–371.
  • Randall, D. A., Bitz, C. M., Danabasoglu, G., Denning, A. S., Gent, P. R., Gettelman, A., Griffies, S. M., Lynch, P., Morrison, H., Pincus, R., & Thuburn, J. (2019). 100 years of Earth system model development. Meteorological Monographs, 59, 12.1–12.66. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0018.1
  • Rossby, C. G. (1939). Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research, 2(1), 38–55. https://doi.org/10.1357/002224039806649023
  • Rossby, C. G. (1940). Planetary flow patterns in the atmosphere. Quarterly Journal of the Royal Meteorological Society, 66(Suppl.), 68–87.
  • Runcorn, S. (1962). Towards a theory of continental drift. Nature, 193(4813), 311–314. https://doi.org/10.1038/193311a0
  • Sandmæl, T. N., Homeyer, C. R., Bedka, K. M., Apke, J. M., Mecikalski, J. R., & Khlopenkov, K. (2019). Evaluating the ability of remote sensing observations to identify significantly severe and potentially tornadic storms. Journal of Applied Meteorology and Climatology, 58(12), 2569–2590. https://doi.org/10.1175/JAMC-D-18-0241.1
  • Seiki, T., Roh, W., & Satoh, M. (2022). Cloud microphysics in global cloud-resolving models. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean. Advance online publication.
  • Snook, N., Xue, M., & Jung, Y. (2019). Tornado-resolving ensemble and probabilistic predictions of the 20 May 2013 Newcastle–Moore EF5 tornado. Monthly Weather Review, 147(4), 1215–1235. https://doi.org/10.1175/MWR-D-18-0236.1
  • Stokes, G. G. (1842). On the steady motion of incompressible fluids. Transactions of the Cambridge Philosophical Society, 7, 439–453.
  • Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Eos, Transactions American Geophysical Union, 29(2), 202–206. https://doi.org/10.1029/TR029i002p00202
  • Sverdrup, H. U. (1947). Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proceedings of the National Academy of Sciences, 33(11), 318–326. https://doi.org/10.1073/pnas.33.11.318
  • Thepaut, J.-N., Dee, D., Engelen, R., & Pinty, B. (2018). The Copernicus programme and its climate change service. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1591–1593.ou).
  • Tierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C., Kilbourne, K. H., Saenger, C. P., Wu, H. C., & Zinke, J. (2015). Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30(3), 226–252. https://doi.org/10.1002/2014PA002717
  • Tochimoto, E. (2022). Environmental controls of Tornadoes and Tornado Outbreaks. Atmospheric Observations of Weather and Climate. Atmosphere-Ocean. Advance online publication.
  • WCRP. (2019). World Climate Research Programme Strategic Plan 2019–2028. WCRP Publication 1/2019, 28 pp., https://www.wcrp-climate.org/wcrp-sp
  • WMO. (2015). Guide to the Implementation of Education and Training Standards in Meteorology and Hydrology. Vol. 1 – Meteorology. WMO-No. 1083.
  • WMO. (2019). Vision for the WMO Integrated Global Observing System in 2040. WMO-No. 1243.
  • Xue, M., Hu, M., & Schenkman, A. D. (2014). Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data. Weather and Forecasting, 29(1), 39–62. https://doi.org/10.1175/WAF-D-13-00029.1
  • Yokota, S., Niino, H., Seko, H., Kunii, M., & Yamauchi, H. (2018). Important factors for tornadogenesis as revealed by highresolution ensemble forecasts of the Tsukuba supercell tornado of 6 May 2012 in Japan. Monthly Weather Review, 146(4), 1109–1132. https://doi.org/10.1175/MWR-D-17-0254.1