2,928
Views
4
CrossRef citations to date
0
Altmetric
Review / Synthèse

Atmospheric Observations of Weather and Climate

, &
Pages 149-187 | Received 15 Apr 2022, Accepted 19 May 2022, Published online: 20 Jun 2022

References

  • Aberson, S., & Franklin, J. (1999). Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA gulfstream-IV Jet aircraft. Bulletin of the American Meteorological Society, 80(3), 421–427. https://doi.org/10.1175/1520-0477(1999)080<0421:IOHTAI>2.0.CO;2
  • Ackerman, S. A., Platnick, S., Bhartia, P. K., Duncan, B., L’Ecuyer, T., Heidinger, A., Skofronick-Jackson, G., Loeb, N., Schmit, T., & Smith, N. (2019). Satellites see the world’s atmosphere. Meteorological Monographs, 59, 4.1–4.53. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1
  • Adirosi, E., Baldini, L., & Tokay, A. (2020). Rainfall and DSD parameters comparison between Micro Rain Radar, two-dimensional video and Parsivel disdrometers, and S-band dual-polarization radar. Journal of Atmospheric and Oceanic Technology, 37(4), 621–640. https://doi.org/10.1175/JTECH-D-19-0085.1
  • Anagoustou, E. N., & Krajewski, W. F. (1999). Real-time radar rainfall estimation. Part I: Algorithm formulation. Journal of Atmospheric and Oceanic Technology, 16(2), 189–197. https://doi.org/10.1175/1520-0426(1999)016<0189:RTRREP>2.0.CO;2
  • Apke, J. M., Hilburn, K. A., Miller, S. D., & Peterson, D. A. (2020). Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery. Atmospheric Measurement Techniques, 13(3), 1593–1608. https://doi.org/10.5194/amt-13-1593-2020
  • Apke, J. M., Mecikalski, J. R., & Jewett, C. P. (2016). Analysis of mesoscale atmospheric flows above mature deep convection using super rapid scan geostationary satellite data. Journal of Applied Meteorology and Climatology, 55(9), 1859–1887. https://doi.org/10.1175/JAMC-D-15-0253.1
  • Armijo, L. (1969). A theory for the determination of wind and precipitation velocities with Doppler radars. Journal of the Atmospheric Sciences, 26(3), 570–573. https://doi.org/10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
  • Austin, P. M. (1987). Relation between measured radar reflectivity and surface rainfall. Monthly Weather Review, 115(5), 1053–1070. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  • Ayasse, A. K., Dennison, P. E., Foote, M., Thorpe, A. K., Joshi, S., Green, R. O., Duren, R. M., Thompson, D. R., & Roberts, D. A. (2019). Methane mapping with future satellite imaging spectrometers. Remote Sensing, 11(24), 3054. https://doi.org/10.3390/rs11243054
  • Balsley, B. B., & Gage, K. (1982). On the use of radars for operational wind profiling. Bulletin of the American Meteorological Society, 63(9), 1009–1018. https://doi.org/10.1175/1520-0477(1982)063<1009:OTUORF>2.0.CO;2
  • Banta, R. M. (1995). Sea breezes shallow and deep on the California coast. Monthly Weather Review, 123(12), 3614–3622. https://doi.org/10.1175/1520-0493(1995)123<3614:SBSADO>2.0.CO;2
  • Bartlett, B., Casey, J., Padula, F., Pearlman, A., Pogorzala, D., & Cao, C. (2018). Independent validation of the advanced baseline imager (ABI) on NOAA's GOES-16: Post-launch ABI airborne science field campaign results. Proceedings of the Society of Photo-optical Instrument Engineers, SPIE 10764, Earth Observing Systems XXIII, 107640H, 19-23 August, 2018. https://doi.org/10.1117/12.2323672
  • Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., Gent, J., Eskes, H., Levelt, P. F., Van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., & Zehner, C. (2020). Impact of coronavirus outbreak on NO2 Pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47(11), https://doi.org/10.1029/2020GL087978
  • Bedka, K. M., Murillo, E., Homeyer, C. R., Scarino, B., & Mersiovski, H. (2018). The above anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Journal of Applied Meteorology, 33, 1159–1181. https://doi.org/10.1175/WAF-D-18-0040.1
  • Bell, T. M., Greene, B. R., Klein, P. M., Carney, M., & Chilson, P. B. (2020). Confronting the boundary layer data gap: Evaluating new and existing methodologies of probing the lower atmosphere. Atmospheric Measurement Techniques, 13(7), 3855–3872. https://doi.org/10.5194/amt-13-3855-2020
  • Bilbro, J. W., Fichtl, G., Fitzjarrald, D. E., Krause, M., & Lee, R. W. (1984). Airborne Doppler lidar wind field measurements. Bulletin of the American Meteorological Society, 65(4), 348–359.  . https://doi.org/10.1175/1520-0477(1984)065<0348:ADLWFM>2.0.CO;2
  • Blakeslee, R. J., Lang, T. J., Koshak, W. J., Buechler, D., Gatlin, P., Mach, D. M., Stano, G. T., Virts, K. S., Walker, T. D., Cecil, D. J., Ellett, W., Goodman, S. J., Harrison, S., Hawkins, D. L., Heumesser, M., Lin, H., Maskey, M., Schultz, C. J., Stewart, M., Bateman, M., Chanrion, O., & Christian, H. (2020). Three years of the lightning imaging sensor onboard the International Space Station: Expanded global coverage and enhanced applications. Journal of Geophysical Research – Atmospheres, Earth and Space Science, 125, e2020JD032918. https://doi.org/10.1029/2020JD032918
  • Bluestein, H., Rauber, R. M., Burgess, D. W., Albrecht, B., Ellis, S. M., Richardson, Y. P., Jorgensen, D. P., Frasier, S. J., Chilson, P., Palmer, R. D., Yuter, S. E., Lee, W.-C., Dowell, D. C., Smith, P. L., Markowski, P. M., Friedrich, K., & Weckwerth, T. M. (2014). Radar in the atmospheric sciences and related research: Current systems, emerging technology, and future needs. Bulletin of the American Meteorological Society, 95(12), 1850–1861. https://doi.org/10.1175/BAMS-D-13-00079.1
  • Bluestein, H. B. (1992). Synoptic-dynamic meteorology in Midlatitudes, Vol. I: Principles of kinematics and dynamics. Oxford University Press.
  • Bohren, C. F., & Albrecht, B. A. (1998). Atmospheric thermodynamics. Oxford University Press. https://doi.org/10.1119/1.1313524
  • Bouttier, F., & Kelly, G. (2001). Observing-system experiments in the ECMWF 4D-Var data assimilation system. Quarterly Journal of the Royal Meteorological Society, 127(574), 1469–1488. https://doi.org/10.1002/qj.49712757419
  • Brandes, E. A., Zhang, G., & Vivekanandan, J. (2003). An evaluation of a drop distribution-based polarimetric radar rainfall estimator. Journal of Applied Meteorology, 42(5), 652–660. https://doi.org/10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2
  • Brewster, K. A., Bajij, A., Phillips, B. J., Pepyne, D. L., Lyons, E., & Carr, F. (2017). CASA Dallas-Fort Worth urban testbed observations: Networks of networks at work [Special Symposium on Meteorological Observations and Instruments]. 97th American Meteorological Society Annual Meeting, 22-26 January, Seattle, WA.
  • Brock, F. V., & Richardson, S. J. (2001). Meteorological measurement systems. Oxford University Press. https://doi.org/10.1093/oso/9780195134513.001.0001
  • Brotzge, J. A., Wang, J., Thorncroft, C. D., Joseph, E., Bain, N., Bassill, N., Farruggio, N., Freedman, J. M., Hemker, K., Johnston, D., Kane, E., McKim, S., Miller, S. D., Minder, J. R., Naple, P., Perez, S., Schwab, James J., Schwab, M. J., & Sicker, J. (2020). A technical overview of the New York State Mesonet standard network. Journal of Atmospheric and Oceanic Technology, 37(10), 1827–1845. https://doi.org/10.1175/JTECH-D-19-0220.1
  • Brown, R. A., Lemon, L. R., & Burgess, D. W. (1978). Tornado detection by pulsed Doppler radar. Monthly Weather Review, 106(1), 29–38. https://doi.org/10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2
  • Browning, K. A., & Donaldson, R. J., Jr. (1963). Airflow and structure of a tornadic storm. Journal of the Atmospheric Sciences, 20(6), 533–545. https://doi.org/10.1175/1520-0469(1963)020<0533:AASOAT>2.0.CO;2
  • Bruneau, D., Quaglia, P., Flamant, C., & Pelon, J. (2001). Airborne lidar LEANDRE II for water-vapor profiling in the troposphere II first results. Applied Optics, 40(21), 3462–3475. https://doi.org/10.1364/AO.40.003462
  • Cardinali, C. (2018). Forecast sensitivity observation impact with an observation-only based objective function. Quarterly Journal of the Royal Meteorological Society, 144(716), 2089–2098. https://doi.org/10.1002/qj.3305
  • Chan, M.-Y., Zhang, F. Q., Chen, X. C., & Leung, L. R. (2020). Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Monthly Weather Review, 148(8), 3203–3224. https://doi.org/10.1175/MWR-D-19-0343.1
  • Chance, K. V., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., & Janz, S. J. (2013). Tropospheric emissions: Monitoring of pollution (TEMPO). Proceedings Society Photo-Optical Instrumentation Engineers (SPIE) 8866, Earth Observing Systems XVIII, ed. Butler, J. J., Xiong, X., & Gu, X., 88660D. https://doi.org/10.1117/12.2024479
  • Chilson, P. B., Bell, T. M., Brewster, K. A., Britto Hupsel de Azevedo, G., Carr, F. H., Carson, K., Doyle, W., Fiebrich, C. A., Greene, B. R., Grimsley, J. L., Kanneganti, S. T., Martin, J., Moore, A., Palmer, R. D., Pillar-Little, E. A., Salazar-Cerreno, J. L., Segales, A. R., Weber, M. E., Yeary, M., & Droegemeier, K. K. (2019). Moving towards a network of autonomous UAS atmospheric profiling stations for observations in the Earth’s lower atmosphere: The 3D Mesonet concept. Sensors, 19(12), 2720. https://doi.org/10.3390/s19122720
  • Collard, A. D., & McNally, A. P. (2009). Infrared atmospheric sounding interferometer radiances at ECMWF. Quarterly Journal Royal Meteorological Society, 135(641), 1044–1058. https://doi.org/10.1002/qj.410
  • Cotton, J., & Eyre, J. (2019). Forecast sensitivity to observations impact (FSOI) by country or region. Met Office Forecasting Research Technical Report, No. 636.
  • Crum, T. D., & Alberty, R. L. (1993). The WSR-88D and the WSR-88D operational support test facility. Bulletin of the American Meteorological Society, 74(9), 1669–1687. https://journals.ametsoc.org/view/journals/bams/74/9/1520-0477_1993_074_1669_twatwo_2_0_co_2.xml https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2
  • Deepak, A. (1977). Inversion methods in atmospheric remote sensing. Academic Press. https://doi.org/10.1016/B978-0-122-08450-8.X5001-2
  • Degelia, S. K., Wang, X., & Stensrud, D. J. (2019). An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Monthly Weather Review, 147(8), 2739–2764. https://doi.org/10.1175/MWR-D-18-0423.1
  • Diniz, F. L. R., & Todling, R. (2020). Assessing the impact of observations in a multi-year reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(727), 724–747. https://doi.org/10.1002/qj.3705
  • Doviak, R. J., Bringi, V., Ryzhkov, A., Zahrai, A., & Zrnić, D. (2000). Considerations for polarimetric upgrades to operational WSR-88D radars. Journal of Atmospheric and Oceanic Technology, 17(3), 257–278. https://doi.org/10.1175/1520-0426(2000)017<0257:CFPUTO>2.0.CO;2
  • Doviak, R. J., & Zrnić, D. S. (2006). Doppler radar and weather observations (2nd ed.). Dover.
  • Dowell, D. C., Bluestein, H. B., & Jorgensen, D. P. (1997). Airborne Doppler radar analysis of supercells during COPS-91. Monthly Weather Review, 125(3), 365–383. https://doi.org/10.1175/1520-0493(1997)125<0365:ADRAOS>2.0.CO;2
  • Ecklund, W. L., Carter, D. A., & Balsley, B. B. (1988). A UHF wind profiler for the boundary layer: Brief description and initial results. Journal of Atmospheric and Oceanic Technology, 5(3), 432–441. https://doi.org/10.1175/1520-0426(1988)005<0432:AUWPFT>2.0.CO;2
  • Emeis, S. (2010). Measurement methods in atmospheric sciences. Borntraeger Science Publishers. https://doi.org/10.1002/met.250
  • Esmaili, R., Smith, N., Berndt, E. B., Dostalek, J. F., Kahn, B. H., White, K., Barnet, C. D., Sjoberg, W., & Goldberg, M. (2020). Adapting satellite soundings for operational forecasting within the hazardous weather testbed. Remote Sensing, 12(5), 886. https://doi.org/10.3390/rs12050886
  • Eyre, J. (1997). Variational assimilation of remotely-sensed observations of the atmosphere. Journal of the Meteorological Society of Japan, 75, 331–338. https://doi.org/10.2151/jmsj1965.75.1B_331
  • Fabry, F. (2015). Radar meteorology: Principles and practice. Cambridge University Press.
  • Farrell, S. L., Duncan, K., Buckley, E. M., Richter-Menge, J., & Li, R. (2020). Mapping sea ice surface topography in high fidelity With ICESat-2. Geophysical Research Letters, 47(21), https://doi.org/10.1029/2020GL090708
  • Ferraro, R. R., Weng, F., Grody, N. C., Zhao, L., Meng, H., Kongoli, C., Pellegrino, P., Qiu, S., & Dean, C. (2005). NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Transactions on Geoscience and Remote Sensing, 43(5), 1036–1049. https://ieeexplore.ieee.org/document/1424280. https://doi.org/10.1109/TGRS.2004.843249
  • Fiebrich, C. A., Brinson, K. R., Mahmood, R., Foster, S. A., Schargorodski, M., Edwards, N. L., Redmond, C. A., Atkins, J. R., Andresen, J. A., & Lin X. (2020). Toward the standardization of mesoscale meteorological networks. Journal of Atmospheric and Oceanic Technology, 37(11), 2033–2049. https://doi.org/10.1175/JTECH-D-20-0078.1
  • Fletcher, J. O., Swingle, D. M., Katz, I., Harney, P. J., Austin, P. M., Geotis, S. G., Metcalf, J. I., Glover, K. M., Kessler, E., Probert-Jones, J. R., Douglas, R. H., Kodaira, N., Aoyagi, J., Kulshrestha, S. M., Xu, Y.-M., Atlas, D., Ulbirch, C. W., Dennis, A. S., Hitschfeld, W. F., … Wilson, J. (1990). Radar in meteorology (D. Atlas, Ed.) American Meteorological Society.
  • Foken, T. (2017). Micrometeorology (2nd ed.). Springer-Verlag GmbH. https://doi.org/10.1007/978-3-642-25440-6
  • Foken, T. (Ed.). (2021). Springer handbook of atmospheric measurements. Springer. https://doi.org/10.1007/978-3-030-52171-4
  • Gage, K. S., & Balsley, B. B. (1978). Doppler radar probing of the clear atmosphere. Bulletin of the American Meteorological Society, 59(9), 1074–1093. https://doi.org/10.1175/1520-0477(1978)059<1074:DRPOTC>2.0.CO;2
  • Geer, A. J., Baordo, F., Bormann, N., & English, S. (2014). All-sky assimilation of microwave humidity sounders, Technical Memo 741, ECMWF.
  • Geer, A. J., Migliorini, S., & Matricardi, M. (2019). All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmospheric Measurement Techniques, 12(9), 4903–4929. https://doi.org/10.5194/amt-12-4903-2019
  • Gelaro, R., Langland, R. H., Pellerin, S., & Todling, R. (2010). The THORPEX observation impact intercomparison experiment. Monthly Weather Review, 138(11), 4009–4025. https://doi.org/10.1175/2010MWR3393.1
  • Gelaro, R., & Zhu, Y. (2009). Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus A: Dynamic Meteorology and Oceanography, 61(2), 179–193. https://doi.org/10.1111/j.1600-0870.2008.00388.x
  • Goldberg, M. D., Cikanek, H., Zhou, L., & Price, J. (2018). 1.04 -The joint polar satellite system. Comprehensive Remote Sensing, 1, 91–118. https://doi.org/10.1016/B978-0-12-409548-9.10314-8
  • Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E., & Stano, G. (2013). The GOES-R geostationary lightning mapper (GLM). Atmospheric Research, 125-126, 34–49. https://doi.org/10.1016/j.atmosres.2013.01.006
  • Goodman, S. J., Schmit, T. J., Daniels, J., Denig, W., & Metcalf, K. (2018). GOES: Past, present and future. Comprehensive Remote Sensing, 1, 119–149. https://doi.org/10.1016/B978-0-12-409548-9.10315-X
  • Goodman, S. J., Schmit, T. J., Daniels, J., & Redmon, R. (Eds.). (2019). The GOES-R series: A new generation of geostationary environmental satellites. Academic Press. Print and e-book, ISBN-13: 978-0128143278, ISBN-10: 0128143274.
  • Graf, M., Chwala, C., Polz, J., & Kunstmann, H. (2020). Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for 1 year of data. Hydrology and Earth System Sciences, 24(6), 2931–2950. https://doi.org/10.5194/hess-24-2931-2020
  • Halley, E. (1686). An historical account of the trade winds, and monsoons, observable in the seas between and near the tropics, with an attempt to assign the physical cause of the said winds. Philosophical Transactions of the Royal Society of London, 16(183), 153–168. https://doi.org/10.1098/rstl.1686.0026
  • Han, Y., van Delst, P., Liu, Q., Weng, F., Yan, B., Treadon, R., & Derber, J. (2006). JCSDA community radiative transfer model (CRTM)—Version 1. NOAA Tech. Rep. 122.
  • Hardesty, R. M., Cupp, R. E., Post, M. J., Lawrence, T. R., Intrieri, J. M., & Neiman, P. J. (1988). A ground-based, injection-locked, pulsed TEA laser for atmospheric wind measurements. Society of Photo-optical Instrument Engineers (SPIE), 889, 23–28.
  • Harrison, R. G. (2015). Meteorological measurements and instrumentation. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118745793
  • Hildebrand, P. H., Lee, W.-C., Walther, C. A., Frush, C., Randall, M., Loew, E., Neitzel, R., Parsons, R., Testud, J., Baudin, F., & LeCornec, A. (1996). The ELDORA/ASTRAIA airborne Doppler weather radar: High resolution observations from TOGA COARE. Bulletin of the American Meteorological Society, 77(2), 213–232. https://doi.org/10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2
  • Hillger, D. W., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., & Rink, T. (2013). First-light imagery from Suomi NPP VIIRS. Bulletin of the American Meteorological Society, 94(7), 1019–1029. https://doi.org/10.1175/BAMS-D-12-00097.1
  • Hoffman, R. N., & Atlas, R. (2016). Future observing system simulation experiments. Bulletin of the American Meteorological Society, 97(9), 1601–1616. https://doi.org/10.1175/BAMS-D-15-00200.1
  • Holmlund, K., Grandell, J., Schmetz, J., Stuhlmann, R., Bojkov, B., Munro, R., Lekouara, M., Coppens, D., Viticchie, B., August, T., Theodore, B., Watts, P., Dobber, M., Fowler, G., Bojinski, S., Schmid, A., Salonen, K., Tjemkes, S., Aminou, D., Blythe, P. (2021). Meteosat third generation (MTG): Continuation and innovation of observations from geostationary orbit. Bulletin of the American Meteorological Society, 102(3), E990–E1015. https://doi.org/10.1175/BAMS-D-19-0304.1
  • Homeyer, C. R. (2014). Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. Journal of the Atmospheric Sciences, 71(1), 332–348. https://doi.org/10.1175/JAS-D-13-079.1
  • Horton, T., Bolt, M., Prather, C., Manobianco, J., & Adams, M. L. (2018). Airborne sensor network for atmospheric profiling. Wireless Sensor Network, 10((04|4)), 93–101. https://doi.org/10.4236/wsn.2018.104005
  • Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., & Xie, P. (2018). NASA global precipitation measurement integrated multi-satellite retrievals for GPM (IMERG). Technical Report version 5.2. https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf
  • Illingworth, A. J., Cimini, D., Haefele, A., Haeffelin, M., Hervo, M., Kotthaus, S., Löhnert, U., Martinet, P., Mattis, I., O’Connor, E. J., & Potthast, R. (2019). How can existing ground-based profiling instruments improve European weather forecasts?. Bulletin of the American Meteorological Society, 100(4), 605–619. https://doi.org/10.1175/BAMS-D-17-0231.1
  • Illston, B., Basara, J. B., Fisher, D., Elliott, R., Fiebrich, C., Crawford, K., Humes, K., & Hunt, E. (2008). Mesoscale monitoring of soil moisture across a statewide network. Journal of Atmospheric and Oceanic Technology, 25(2), 167–182. https://doi.org/10.1175/2007JTECHA993.1
  • Im, E., Chandrasekar, V., Chen, S., Holland, G., Kakar, R., Lewis, W. E., Marks, F., Smith, E., Tanelli, S., & Tripoli, G. (2007). Workshop report on NEXRAD-in-Space – a geostationary satellite Doppler weather radar for hurricane studies, AGU Fall Meeting Abstracts.
  • Ingleby, B., Rodwell, M., & Isaksen, L. (2016). Global radiosonde network under pressure. ECMWF Newsletter, No. 14.
  • Isom, B., Palmer, R., Kelley, R., Meier, J., Bodine, D., Yeary, M., Cheong, B.-L., Zhang, Y., Yu, T.-Y., & Biggerstaff, M. I. (2013). The atmospheric imaging radar: Simultaneous volumetric observations using a phased-array weather radar. Journal of Atmospheric and Oceanic Technology, 30(4), 655–675. https://doi.org/10.1175/JTECH-D-12-00063.1
  • James, E. P., & Benjamin, S. G. (2017). Observation system experiments with the hourly updating rapid refresh model using GSI hybrid ensemble-variational data assimilation. Monthly Weather Review, 145(8), 2897–2918. https://doi.org/10.1175/MWR-D-16-0398.1
  • Janssen, M. A. (1993). Atmospheric remote sensing by microwave radiometry. John Wiley and Sons, Inc. http://hdl.handle.net/2014/34527
  • Joo, S., Eyre, J., & Marriott, R. (2013). The impact of MetOp and other satellite data within the met office global NWP system using an adjoint-based sensitivity method. Monthly Weather Review, 141(10), 3331–3342. https://doi.org/10.1175/MWR-D-12-00232.1
  • Kaimal, J. C., & Finnigan, J. J. (1994). Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press. https://doi.org/10.1002/qj.49712152512
  • Kalnay, E., Ota, Y., Miyoshi, T., & Liu, J. (2012). A simpler formulation of forecast sensitivity to observations: Application to ensemble Kalman filters. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 18462. https://doi.org/10.3402/tellusa.v64i0.18462
  • Key, J. R., Mahoney, R., Liu, Y., Romanov, P., Tschudi, M., Appel, I., Maslanik, J., Baldwin, D., Wang, X., & Meade, P. (2013). Snow and ice products from Suomi NPP VIIRS. Journal Geophysical Research Atmospheres, 118, doi:10.1002/2013JD020459
  • Key, J. R., Liu, Y., Wang, X., Letterly, A., & Painter, T. (2019). Chapter 14 – snow and ice products from ABI on the GOES-R series. In S. Goodman, T. Schmit, J. Daniels, & R. Redmond (Eds.), The GOES-R series: A new generation of geostationary environmental satellites. Elsevier. https://doi.org/10.1016/B978-0-12-814327-8.00014-7
  • Kidder, S. Q., & Vonder Haar, T. H. (1995). Satellite meteorology: An introduction. Academic Press. ISBN 0-12-406430-2.
  • Klaes, K. D., Ackermann, J., Anderson, C., Andres, Y., August, T., Borde, R., Bojkov, B., Butenko, L., Cacciari, A., Coppens, D., Crapeau, M., Guedj, S., Hautecoeur, O., Hultberg, T., Lang, R., Linow, S., Marquardt, C., Munro, R., Pettirossi, C., … Vazquez-Navarro, M. (2021). The EUMETSAT polar system: 13+ successful years of global observations for operational weather prediction and climate monitoring. Bulletin of the American Meteorological Society, 102(3), E1224–E1238. https://doi.org/10.1175/BAMS-D-20-0082.1
  • Kotsuki, S., Kurosawa, K., & Miyoshi, T. (2019). On the properties of ensemble forecast sensitivity to observations. Quarterly Journal of the Royal Meteorological Society, 145(722), 1897–1914. https://doi.org/10.1002/qj.3534
  • Kumjian, M. R., & Ryzhkov, A. V. (2008). Polarimetric signatures in supercell thunderstorms. Journal of Applied Meteorology and Climatology, 47(7), 1940–1961. https://doi.org/10.1175/2007JAMC1874.1
  • Kurdzo, J. M., Cheong, B. L., Palmer, R. D., Zhang, G., & Meier, J. B. (2014). A pulse compression waveform for improved-sensitivity weather radar observations. Journal of Atmospheric and Oceanic Technology, 31(12), 2713–2731. https://doi.org/10.1175/JTECH-D-13-00021.1
  • Lai, Y.-R., & Wang, L. (2021). Monthly surface elevation changes of the Greenland ice sheet from ICESat-1, CryoSat-2, and ICESat-2 altimetry missions. IEEE Geoscience and Remote Sensing Letters, https://doi.org/10.1109/LGRS.2021.3058956
  • Langland, R. H., & Baker, N. (2004). Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus A: Dynamic Meteorology and Oceanography, 56A(3), 189–201. https://doi.org/10.3402/tellusa.v56i3.14413
  • Lanicci, J. M., Carlson, T. B., & Warner, T. T. (1987). Sensitivity of the great plains severe-storm environment to soil-moisture distribution. Monthly Weather Review, 115(11), 2660–2673. https://doi.org/10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2
  • Levizzani, V., Kidd, C., Kirschbaum, D. B., Kummerow, C. D., Nakamura, K., & Turk, J. (Eds.) (2020). Satellite precipitation measurement volume 1, advances in global change research. Springer. https://doi.org/10.1007/978-3-030-24568-9
  • Lewis, J., Phillips, J. M., Menzel, W. P., Vonder Haar, T. H., Moosmüller, H., House, F. B., & Fearon, M. G. (2016). Verner Suomi: The life and work of the founder of satellite meteorology. American Meteorological Society. ISBN: 978-1-944970-22-2.
  • Liang, S. (2017). Comprehensive remote sensing (1st ed.). Elsevier. ISBN-13: 978-0128032206.
  • Liou, Y.-C., Bluestein, H. B., French, M. M., & Wienhoff, Z. B. (2018). Single-Doppler velocity retrieval of the wind field in a tornadic supercell using mobile, phased-array, Doppler radar data. Journal of Atmospheric and Oceanic Technology, 35(8), 1649–1663. https://doi.org/10.1175/JTECH-D-18-0004.1
  • Little, G. (1969). Acoustic methods for the remote probing of the lower atmosphere. Proceedings of the IEEE, 57(4), 571–578. https://doi.org/10.1109/PROC.1969.7010
  • Madaus, L. E., & Mass, C. F. (2017). Evaluating smartphone pressure observations for mesoscale analyses and forecasts. Weather and Forecasting, 32(2), 511–531. https://doi.org/10.1175/WAF-D-16-0135.1
  • Maier, M. W., Gallagher, F. W. III, St. Germain, K., Anthes, R., Zuffada, C., Menzies, R., Piepmeier, J., Di Pietro, D., Coakley, M. M., & Adams, E. (2021). Architecting the future of weather satellites. Bulletin of the American Meteorological Society, https://journals.ametsoc.org/view/journals/bams/102/3/BAMS-D-19-0258.1.xml. doi:10.1175/BAMS-D-19-0258.1
  • Markowski, P. M., Richardson, Y. P., Richardson, S. J., & Petersson, A. (2018). Aboveground thermodynamic observations in convective storms from balloonborne probes acting as pseudo-Lagrangian drifters. Bulletin of the American Meteorological Society, 99(4), 711–724. https://doi.org/10.1175/BAMS-D-17-0204.1
  • Marks, F. D., & Houze, R. A. (1984). Airborne Doppler radar observations of hurricane Debby. Bulletin of the American Meteorological Society, 65(6), 569–582. https://doi.org/10.1175/1520-0477(1984)065<0569:ADROIH>2.0.CO;2
  • McCaul, E. W., Jr., Bluestein, H. B., & Doviak, R. J. (1987). Airborne Doppler lidar observations of convective phenomena in Oklahoma. Journal of Atmospheric and Oceanic Technology, 4(3), 479–497. https://doi.org/10.1175/1520-0426(1987)004<0479:ADLOOC>2.0.CO;2
  • McFarquhar, G. M., Smith, E., Pillar-Little, E. A., Brewster, K., Chilson, P. B., Lee, T. R., Waugh, S., Yussouf, N., Wang, X., Xue, M., de Boer, G., Gibbs, J. A., Fiebrich, C., Baker, B., Brotzge, J., Carr, F., Christophersen, H., Fengler, M., Hall, P., … Hawk, D. (2020). Current and future uses of UAS for improved forecasts/warnings and scientific studies. Bulletin of the American Meteorological Society, 101(8), E1322–E1328. https://doi.org/10.1175/BAMS-D-20-0015.1
  • McLaughlin, D., Pepyne, D., Chandrasekar, V., Philips, B., Kurose, J., Zink, M., Droegemeier, K., Cruz-Pol, S., Junyent, F., Brotzge, J., Westbrook, D., Bharadwaj, N., Wang, Y., Lyons, E., Hondl, K., Liu, Y., Knapp, E., Xue, M., Hopf, A., … Carr, F. (2009). Short-wavelength technology and the potential for distributed networks of small radar systems. Bulletin of the American Meteorological Society, 90(12), 1797–1818. https://doi.org/10.1175/2009BAMS2507.1
  • McPherson, R. A., Fiebrich, C. A., Crawford, K. C., Kilby, J. R., Grimsley, D. L., Martinez, J. E., Basara, J. B., Illston, B. G., Morris, D. A., Kloesel, K. A., Melvin, A. D., Shrivastava, H., Wolfinbarger, J. M., Bostic, J. P., Demko, D. B., Elliott, R. L., Stadler, S. J., Carlson, J. D., & Sutherland, A. J. (2007). Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. Journal of Atmospheric and Oceanic Technology, 24(3), 301–321. https://doi.org/10.1175/JTECH1976.1
  • Meier, W. N., Stewart, J. S., Liu, Y., Key, J., & Miller, J. (2017). Operational implementation of sea ice concentration estimates from the AMSR2 sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 3904–3911. https://ieeexplore.ieee.org/document/7916905. https://doi.org/10.1109/JSTARS.2017.2693120
  • Meinig, C., Burger, Eugene F., Cohen, Nora, Cokelet, Edward D., Cronin, Meghan F., Cross, Jessica N., de Halleux, Sebastien, Jenkins, Richard, Jessup, Andrew T., Mordy, Calvin W., Lawrence-Slavas, Noah, Sutton, Adrienne J., Zhang, Dongxiao, & Zhang, C. (2019). Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Frontiers in Marine Science, 6, 448. https://doi.org/10.3389/fmars.2019.00448
  • Menzel, W. P. (2019). History of geostationary satellites. In S. J. Goodman, T. J. Schmit, J. Daniels, & R. J. Redmon (Eds.), The GOES-R series: A new generation of geostationary environmental satellites. Academic Press. Print and e-book, ISBN-13: 978-0128143278, ISBN-10: 0128143274.
  • Menzel, W. P., Schmit, T. J., Zhang, P., & Li, J. (2018). Satellite-based atmospheric infrared sounder development and applications. Bulletin of the American Meteorological Society, 99(3), 583–603. https://doi.org/10.1175/BAMS-D-16-0293.1
  • Middleton, W. E. K., & Spilhaus, A. F. (1953). Meteorological instruments (3rd ed.). Univ. of Toronto Press. https://doi.org/10.1002/qj.49708034532
  • Miller, S. D., Lindsey, D. T., Seaman, C. J., & Solbrig, J. E. (2020). Geocolor: A blending technique for satellite imagery. Journal of Atmospheric and Oceanic Technology, 37(3), 429–448. https://doi.org/10.1175/JTECH-D-19-0134.1
  • Miller, S. D., Straka, W. C., Yue, J., Smith, S. M., Alexander, M. J., Hoffmann, L., Setvák, M., & Partain, P. T. (2015). Low-light satellite sees glowing atmospheric waves. Proceedings of the National Academy of Sciences, 112(49), E6728–E6735. https://www.pnas.org/doi/10. 1073/pnas.1508084112. https://doi.org/10.1073/pnas.1508084112
  • Morss, R. E., Emanuel, K. A., & Snyder, C. (2001). Idealized adaptive observation strategies for improving numerical weather prediction. Journal of the Atmospheric Sciences, 58(2), 210–232. https://doi.org/10.1175/1520-0469(2001)058<0210:IAOSFI>2.0.CO;2
  • Nag, A., Murphy, M. J., Schulz, W., & Cummins, K. L. (2015). Lightning locating systems: Insights on characteristics and validation techniques. Earth and Space Science, 2(4), 65–93. https://doi.org/10.1002/2014EA000051
  • National Research Council. (1999). Adequacy of climate observing systems. National Academies Press. https://doi.org/10.17226/6424
  • National Research Council. (2002). Weather radar technology beyond NEXRAD. National Academies Press. https://doi.org/10.17226/10394
  • National Research Council. (2009). Observing weather and climate from the ground up: A nationwide network of networks. National Academies Press. https://doi.org/10.17226/12540
  • National Research Council. (2018). The future of atmospheric boundary layer observing, understanding, and modeling. National Academies Press. https://doi.org/10.17226/25138
  • National Research Council. (2018). Thriving on our changing planet: A decadal strategy for earth observation from space. National Academies Press. https://doi.org/10.17226/24938
  • National Research Council. (2021). Airborne platforms to advance NASA earth system science priorities. National Academies Press. https://doi.org/10.17226/26079
  • NOAA, Climate Program Office. (2020). A value assessment of an atmospheric composition capability on the NOAA next-generation Geostationary and Extended Observations (GeoXO). NOAA Technical Report OAR CPO-8. https://doi.org/10.25923/1s4s=t405
  • NOAA-NASA. (2019). GOES-R series data book, Revision A, May 2019, CDRL PM-14. https://www.goes-r.gov/downloads/resources/documents/GOES-RSeriesDataBook.pdf
  • Nystuen, J. A. (1999). Relative performance of automatic rain gauges under different rainfall conditions. Journal of Atmospheric and Oceanic Technology, 16(8), 1025–1043. https://doi.org/10.1175/1520-0426(1999)016<1025:RPOARG>2.0.CO;2
  • Nystuen, J. A., Proni, J. R., Black, P. G., & Wilkerson, J. C. (1996). A comparison of automatic rain gauges. Journal of Atmospheric and Oceanic Technology, 13(1), 62–73. https://doi.org/10.1175/1520-0426(1996)013<0062:ACOARG>2.0.CO;2
  • Padula, F., Pearlman, A. J., Cao, C., & Goodman, S. (2016). Towards post-launch validation of GOES-R ABI SI traceability with high-altitude aircraft, small near surface UAS, and satellite reference measurements. Proceedings Society Photo-Optical Instrumentation Engineers (SPIE), 9972, Earth Observing Systems XXI, 99720V (19 September 2016). https://doi.org/10.1117/12.2238181
  • Peterson, M. J., Lang, T. J., Bruning, E. C., Albrecht, R., Blakeslee, R. J., Lyons, W. A., Pédeboy, S., Rison, W., Zhang, Y., Brunet, M., & Cerveny, R. S. (2020). New WMO certified megaflash lightning extremes for flash distance (709 km) and duration (16.73 seconds) recorded from space. Geophysical Research Letters, https://agupubs.onlinelibrary.wiley.com/doi/10. 1029/2020GL088888
  • Rauber, R. J., & Nesbitt, S. W. (2018). Radar meteorology: A first course. Wiley.
  • Robock, A. (2002). The climatic aftermath. Science, 295(5558), 1242–1244. https://www.science.org/doi/full/10. 1126/science.1069903. https://doi.org/10.1126/science.1069903
  • Rudlosky, S., Goodman, S., Calhoun, K., Schultz, C., Back, A., Kuligowski, B., Stevenson, S., & Gravelle, C. (2020). Geostationary lightning mapper value assessment (NOAA Technical Report NESDIS 153). https://doi.org/10.25923/2616-3v73
  • Rudlosky, S. D., & Virts, K. S. (2021). Dual geostationary lightning mapper observations. Monthly Weather Review, 149(4), 979–998. https://doi.org/10.1175/MWR-D-20-0242.1
  • Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., & Zrnić, D. S. (2005). Polarimetric tornado detection. Journal of Applied Meteorology, 44(5), 557–570. https://doi.org/10.1175/JAM2235.1
  • Sadeghi, S., Gao, L., Ebtehaj, A., Wigneron, J.-P., Crow, W. T., Reager, J. T., & Warrick, A. W. (2020). Retrieving global surface soil moisture from GRACE satellite gravity data. Journal of Hydrology, 584, 124717. https://doi.org/10.1016/j.jhydrol.2020.124717
  • Salazar, J. L., Yu, T.-Y., McCord, M., Diaz, J., Ortiz, J. A., Fulton, C., Yeary, M., Palmer, R., Cheong, B.-L., Bluestein, H., Kurdzo, J. M., & Isom, B. (2019). An ultra-fast scan C-band polarimetric atmospheric imaging radar (PAIR), Institute of Electrical and Electronics Engineers (IEEE), International Symposium on Phased Array Systems & Technology (PAS), 5 pp. https://doi.org/10.1109/PAST43306.2019.9021042
  • Saunders, R. W., Matricardi, M., & Brunel, P. (1999). An improved fast radiative transfer model for assimilation of satellite radiance observations. Quarterly Journal of the Royal Meteorological Society, 125(556), 1407–1425. https://doi.org/10.1002/qj.1999.49712555615
  • Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., & Lebair, W. J. (2017). A closer look at the ABI on the GOES-R series. Bulletin of the American Meteorological Society, 98(4), 681–698. https://doi.org/10.1175/BAMS-D-15-00230.1
  • Schmit, T. J., Lindstrom, S. S., Gerth, J. J., & Gunshor, M. M. (2018). Applications of the 16 spectral bands on the advanced baseline imager (ABI). Journal of Operational Meteorology, 6((04|4)), 33–46. https://doi.org/10.15191/nwajom.2018.0604
  • Schumann, G. J.-P. (2020). Grand challenges in microwave remote sensing. Frontiers Remote Sensing, https://www.frontiersin.org/articles/10. 3389/frsen.2020.603650/full
  • Serafin, R. J., Carbone, R. E., Browning, K. A., Marks, F. D. Jr., Jorgensen, D. P., Weckwerth, T. M., Bluestein, H. B., Wakimoto, R. M., Gage, K. S., Gossard, E. E., Sun, J., Wilson, J. W., Fabry, F., Keeler, R. J., Chandrasekar, V., Meneghini, R., Zawadzki, I., Rosenfeld, D., Ulbrich, C. W., … Chandrasekar, V. (2003). Radar and atmospheric science: A collection of essays in Honor of David atlas (R. M. Wakimoto and R. C. Srivastava, Eds.) American Meteorological Society.
  • Smith, W. L., Bishop, W. P., Dvorak, V. F., Hayden, C. M., McElroy, J. H., Mosher, F. R., Oliver, V. J., Purdom, J. F., & Wark, D. Q. (1986). The meteorological satellite: Overview of 25 years of operation. Science, 231(4737), 455–462. https://doi.org/10.1126/science.231.4737.455
  • Snyder, J. C., Bluestein, H. B., Zhang, G., & Frasier, S. J. (2010). Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. Journal of Atmospheric and Oceanic Technology, 27(12), 1979–2001. https://doi.org/10.1175/2010JTECHA1356.1
  • Spuler, S. M., Repasky, K. S., Morley, B., Moen, D., Hayman, M., & Nehrir, A. R. (2015). Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor. Atmospheric Measurement Techniques, 8(3), 1073–1087. https://doi.org/10.5194/amt-8-1073-2015
  • Stephens, G., Winker, David, Pelon, Jacques, Trepte, Charles, Vane, Deborah, Yuhas, Cheryl, L’Ecuyer, Tristan, & Lebsock M. (2018). Cloudsat and CALIPSO within the A-Train: Ten years of actively observing the Earth system. Bulletin of the American Meteorological Society, 99(3), 569–581. https://doi.org/10.1175/BAMS-D-16-0324.1
  • Stickler, A., Grant, A. N., Ewen, T., Ross, T. F., Vose, R. S., Comeaux, J., Bessemoulin, P., Jylhä, K., Adam, W. K., Jeannet, P., Nagurny, A., Sterin, A. M., Allan, R., Compo, G. P., Griesser, T., & Brönnimann, S. (2010). The comprehensive historical upper-air network. Bulletin of the American Meteorological Society, 91(6), 741–752. https://doi.org/10.1175/2009BAMS2852.1
  • Stith, J. L., Baumgardner, D., Haggerty, J., Hardesty, R. M., Lee, W., Lenschow, D., Pilewskie, P., Smith, P. L., Steiner, M., & Vömel, H. (2019). 100 years of progress in atmospheric observing systems. In G. McFarquhar (Ed.), Meteorological monographs, 59 (pp. 2.1–2.55). American Meteorlogical Society. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1
  • Teixeira, J., Piepmeier, R., Nehrir, A. R., Ao, C. O., Chen, S. S., Clayson, C. A., Fridlind, A. M., Lebsock, M., McCarty, W., Salmun, H., Santanello, J. A., Turner, D. D., Wang, Z., & Zeng, X. (2021). Toward a global planetary boundary layer observing system: The NASA PBL Incubation Study Team Report. NASA PBL Incubation Study Team.
  • Tsai, Y.-L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12), 1456. https://www.mdpi.com/2072-4292/11/12/1456. https://doi.org/10.3390/rs11121456
  • Turner, D. D., & Goldsmith, J. E. M. (1999). Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods. Journal of Atmospheric and Oceanic Technology, 16(8), 1062–1076. https://doi.org/10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2
  • Van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., & Veefkind, J. P. (2020). S5p TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmospheric Measurement Techniques, 13(3), 1315–1335. https://doi.org/10.5194/amt-13-1315-2020
  • Vasiloff, S. V. (2001). Improving tornado warnings with the Federal Aviation Administration’s Terminal Doppler Weather Radar. Bulletin of the American Meteorological Society, 82(5), 861–874. https://doi.org/10.1175/1520-0477(2001)082<0861:ITWWTF>2.3.CO;2
  • VonderHaar, T. H., Dittberner, G., & Forsythe, J. (2020). History of science discoveries and weather forecasting advances from early weather satellites, an introduction. 16th Annual Symposium on New Generation Operational Environmental Satellite Systems, 2020 AMS Centennial Annual Meeting, American Meteorological Society.
  • Wakimoto, R. M., Lee, W.-C., Bluestein, H. B., Liu, C.-H., & Hildebrand, P. H. (1996). ELDORA observations during VORTEX 95. Bulletin of the American Meteorological Society, 77(7), 1465–1481. https://doi.org/10.1175/1520-0477(1996)077<1465:EODV>2.0.CO;2
  • Weber, B. L., Wuertz, D. B., Strauch, R. G., Merritt, D. A., Moran, K. P., Law, D. C., van de Kamp, D., Chadwick, R. B., Ackley, M. H., Barth, M. F., Abshire, N. L., Miller, P. A., & Schlatter, T. W. (1990). Preliminary evaluation of the first NOAA demonstration network wind profiler. Journal of Atmospheric and Oceanic Technology, 7(6), 909–918. https://doi.org/10.1175/1520-0426(1990)007<0909:PEOTFN>2.0.CO;2
  • Weckwerth, T. M., Weber, K. J., Turner, D. D., & Spuler, S. (2016). Validation of a water vapor micropulse differential absorption lidar (DIAL). Journal of Atmospheric and Oceanic Technology, 33(11), 2353–2372. https://doi.org/10.1175/JTECH-D-16-0119.1
  • Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., III, Smith, G. L., & Cooper, J. E. (1996). Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bulletin of the American Meteorological Society, 77(5), 853–868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
  • Wilson, J. W., Weckwerth, T. M., Vivekanadan, J., Wakimoto, R. M., & Russell, R. W. (1994). Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. Journal of Atmospheric and Oceanic Technology, 11(5), 1184–1206. https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2
  • World Meteorological Organization. (2018). Guide to instruments and methods of observation, Volume III: Observing systems. https://library.wmo.int/doc_num.php?explnum_id=9872
  • World Meteorological Organization. (2019). Vision for the WMO Integrated Global Observing System in 2040, WMO-1243, 47 pp., Annex 4 to draft Resolution 6.1(1).
  • World Meteorological Organization Space Programme. (2020). https://public.wmo.int/en/programmes/wmo-space-programme
  • Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M., Di Girolamo, P., Schluessel, P., van Baelen, J., & Zus, F. (2015). A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and simulation of water and energy cycles. Reviews of Geophysics, 53(3), 819–895. https://doi.org/10.1002/2014RG000476
  • Wurman, J. (1994). Vector winds from a single-transmitter Bistatic dual-Doppler radar network. Bulletin of the American Meteorological Society, 75(6), 983–994. https://doi.org/10.1175/1520-0477(1994)075<0983:VWFAST>2.0.CO;2
  • Yang, J., Zhang, Z., Wei, C., Lu, F., & Guo, Q. (2017). Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bulletin of the American Meteorological Society, 98(8), 1637–1658. https://doi.org/10.1175/BAMS-D-16-0065.1
  • Zakhvatkina, N., Smirnov, V. R., & Bychkova, I. (2019). Satellite SAR data-based sea ice classification: An overview. Geosciences, 9(4), 152. https://doi.org/10.3390/geosciences9040152
  • Zeng, X., Atlas, R., Birk, R. J., Carr, F. H., Carrier, M. J., Cucurull, L., Hooke, W. H., Kalnay, E., Murtugudde, R., Posselt, D. J., Russell, J. L., Tyndall, D. P., Weller, R. A., & Zhang, F. (2020). Use of observing system simulation experiments in the United States. Bulletin of the American Meteorological Society, 101(8), E1427–E1438. https://doi.org/10.1175/BAMS-D-19-0155.1
  • Zhang, G. (2016). Weather radar polarimetry. CRC Press. https://doi.org/10.1201/9781315374666
  • Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., & Kitzmiller, D. (2016). Multi-radar multi-sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bulletin of the American Meteorological Society, 97(4), 621–638. https://doi.org/10.1175/BAMS-D-14-00174.1
  • Zrnić, D. S., & Ryzhkov, A. V. (1999). Polarimetry for weather surveillance radars. Bulletin of the American Meteorological Society, 80(3), 389–406. https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2