1,713
Views
3
CrossRef citations to date
0
Altmetric
Review / Synthèse

Earth’s Climate History from 4.5 Billion Years to One Minute

&
Pages 188-232 | Received 19 Apr 2022, Accepted 16 May 2022, Published online: 18 Jul 2022

References

  • Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., & Benveniste, J. (2015). Improved sea level record over the satellite altimetry era (1993–2010) from the climate change initiative project. Ocean Science, 11(1), 67–82. https://doi.org/10.5194/os-11-67-2015
  • Abraham, K., Hofmann, A., Foley, S. F., Cardinal, D., Harris, C., Barth, M. G., & Andre, L. (2011). Coupled silicon-oxygen isotope fractionation traces Archaean silicification. Earth and Planetary Science Letters, 301(1–2), 222–230. https://doi.org/10.1016/j.epsl.2010.11.002
  • Ackerson, M. R., Mysen, B. O., Tailby, N. D., & Watson, E. B. (2018). Low-temperature crystallization of granites and the implications for crustal magmatism. Nature, 559(7712), 94–97. https://doi.org/10.1038/s41586-018-0264-2
  • Affolter, S., Hauselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., & Leuenberger, M. (2019). Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years. Science Advances, 5(6), eaav3809. https://doi.org/10.1126/sciadv.aav3809
  • Ahn, J., & Brook, E. J. (2008). Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science, 322(5868), 83–85. https://doi.org/10.1126/science.1160832
  • Ahn, J., Brook, E. J., Mitchell, L., Rosen, J., McConnell, J. R., Taylor, K., Etheridge, D., & Rubino, M. (2012). Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Global Biogeochemical Cycles, 26, GB2027. https://doi.org/10.1029/2011GB004247
  • Alley, R. B. (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 19(1–5), 213–226. https://doi.org/10.1016/S0277-3791(99)00062-1
  • Anchukaitis, K., & McKay, N. (2014). PAGES2k: Advances in Climate Field Reconstructions. PAGES Magazine, 22, 98.
  • Andersen, K. K., Svensson, A., Rasmussen, S. O., Steffensen, J. P., Johnsen, S. J., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard- Andersen, M.-L., Dahl-Jensen, D., Vinther, B. M., & Clausen, H. B. (2006). The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quaternary Science Review, 25(23-24), 3246–3257. https://doi.org/10.1016/j.quascirev.2006.08.002
  • Andre, L., Cardinal, D., Alleman, L. Y., & Moorbath, S. (2006). Silicon isotopes in 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth and Planetary Science Letters, 245(1–2), 162–173. https://doi.org/10.1016/j.epsl.2006.02.046
  • Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., … Tans, P. P. (2014). CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmospheric Measurement Techniques, 7(2), 647–687. https://doi.org/10.5194/amt-7-647-2014
  • Angulo, R. J., & Lessa, G. C. (1997). The Brazilian sea-level curves: A critical review with emphasis on the curves from the Paranagua and Cananeia regions. Marine Geology, 140(1–2), 141–166. https://doi.org/10.1016/S0025-3227(97)00015-7
  • Angulo, R. J., Lessa, G. C., & de Souza, M. C. (2005). A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Review, 25(5–6), 486–506. https://doi.org/10.1016/j.quascirev.2005.03.008
  • Anklin, M., Barnola, J.-M., Schwander, J., Stauffer, B., & Raynaud, D. (1995). Processes affecting the CO2 concentrations measured in Greenland ice. Tellus, J7B(4), 461–470. https://doi.org/10.1034/j.1600-0889.47.issue4.6.x
  • Anklin, M., Schwander, J., Stauffer, B., Tschumi, J., Fuchs, A., Barnola, J.-M., & Raynaud, D. (1997). CO2 record between 40 and 8 kyr B.P. from the GRIP ice core. Journal of Geophysical Research, 102(C12), 26539–26545. https://doi.org/10.1029/97JC00182
  • Annan, J. D., & Hargreaves, J. C. (2013). A new global reconstruction of temperature changes at the Last Glacial Maximum. Climate of the Past, 9(1), 367–376. https://doi.org/10.5194/cp-9-367-2013
  • Arrhenius, G., Kjellberg, G., & Libby, W. F. (1951). Age determination of Pacific chalk ooze by radiocarbon and titanium content. Tellus, 3(4), 222–229.  https://doi.org/10.3402/tellusa.v3i4.8662
  • Arz, H. W., Lamy, F., Ganopolski, A., Novaczyk, N., & Patzold, J. (2007). Dominant northern hemisphere climate control over millennial-scale sea-level variability. Quaternary Science Reviews, 26(3–4), 312–321. https://doi.org/10.1016/j.quascirev.2006.07.016
  • Ashkenazy, Y., Gildor, H., Losch, M., Macdonald, F. A., Schrag, D. P., & Tziperman, E. (2013). Dynamics of a Snowball Earth ocean. Nature, 495(7439), 90–93. https://doi.org/10.1038/nature11894
  • Asmerom, Y., Polyak, V., Burns, S., & Rassmussen, J. (2007). Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States. Geology, 35(1), 1–4. https://doi.org/10.1130/G22865A.1
  • Aston, F. W. (1919). A positive ray spectrograph. Philosophical Magazine, 38(228), 707–715. https://doi.org/10.1080/14786441208636004
  • Bacastow, R. (1976). Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature, 261(5556), 116–118. https://doi.org/10.1038/261116a0
  • Bacastow, R., Adams, J., Keeling, C., Moss, D., Whorf, T., & Wong, C. (1980). Atmospheric carbon dioxide, the southern oscillation, and the weak 1975 El Nino. Science, 210(4465), 66–68. https://doi.org/10.1126/science.210.4465.66
  • Bajolle, L., Larocque-Tobler, I., Gandouin, E., Lavoie, M., Bergeron, Y., & Ali, A. (2018). Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages. Journal of Quaternary Science, 33(4), 409–420. https://doi.org/10.1002/jqs.3022
  • Bakwin, P. S., Tans, P. P., Hurst, D. F., & Zhao, C. L. (1998). Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus B-Chemical and Physical Meteorology, 50(5), 401–415. https://doi.org/10.3402/tellusb.v50i5.16216
  • Banjeree, P. K. (2000). Holocene and late Pleistocene relative sea level fluctuations along the east coast of India. Marine Geology, 167(3–4), 243–260. https://doi.org/10.1016/S0025-3227(00)00028-1
  • Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., & Hawkesworth, C. J. (2003). Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta, 67(17), 3181–3199. https://doi.org/10.1016/S0016-7037(02)01031-1
  • Bard, E. (2002). Climate shock: Abrupt climate changes over millennial time scales. Physics Today, 55(12), 32–38. https://doi.org/10.1063/1.1537910
  • Bard, E., Hamelin, B., & Fairbanks, R. G. (1990). U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130000 years. Nature, 346(6283), 456–458. https://doi.org/10.1038/346456a0
  • Barnola, J. M., Anklin, M., Porcheron, J., Raynaud, D., Schwander, J., & Stauffer, B. (1995). CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B: Chemical and Physical Meteorology, 47(1–2), 264–272. https://doi.org/10.3402/tellusb.v47i1-2.16046
  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., & Lorius, C. (1987). Vostok ice cores provides 160,000-year record of atmospheric CO2. Nature, 329(6138), 408–414. https://doi.org/10.1038/329408a0
  • Barnola, J., Raynaud, D., Neftel, A., & Oeschger, H. (1983). Comparison of CO2 measurements by two laboratories on air from bubbles in polar ice. Nature, 303(5916), 410. https://doi.org/10.1038/303410a0
  • Barron, J. A., Heusser, L., Herbert, T., & Lyle, M. (2003). High resolution climatic evolution of coastal northern California during the past 16,000 years. Paleoceanography, 18(1), 1020. https://doi.org/10.1029/2002PA000768
  • Bauska, T. K., Marcott, S. A., & Brook, E. J. (2021). Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 14(2), 91–96. https://doi.org/10.1038/s41561-020-00680-2
  • Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., & Wolff, E. (2013). An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 9(4), 1715–1731. https://doi.org/10.5194/cp-9-1715-2013
  • Beck, E. G. (2007). 180 years of atmospheric CO2 gas analysis by chemical methods. Energy & Environment, 18(2), 259–282. https://doi.org/10.1177/0958305X0701800206
  • Beerling, D. J., & Royer, D. L. (2011). Convergent Cenozoic CO2 history. Nature Geoscience, 4(7), 418–420. https://doi.org/10.1038/ngeo1186
  • Bemis, B. E., & Spero, H. J. (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2), 150–160. https://doi.org/10.1029/98PA00070
  • Bennike, O., Wagner, B., & Richter, A. (2011). Relative sea level changes during the Holocene in the Sisimiut area, south-western Greenland. Journal of Quaternary Science, 26(4), 353–361. https://doi.org/10.1002/jqs.1458
  • Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., & Chappellaz, J. (2015). Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters, 42(2), 542–549. https://doi.org/10.1002/2014GL061957
  • Bereiter, B., Lüthi, D., Siegrist, M., Schüpbach, S., Stocker, T. F., & Fischer, H. (2012). Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proceedings of the National Academy of Sciences, 109(25), 9755–9760. https://doi.org/10.1073/pnas.1204069109
  • Berner, R. A. (1991). A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291(4), 339–376. https://doi.org/10.2475/ajs.291.4.339
  • Berner, R. A. (1994). GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 294(1), 56–91. https://doi.org/10.2475/ajs.294.1.56
  • Berner, R. A. (2006). GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23), 5653–5664. https://doi.org/10.1016/j.gca.2005.11.032
  • Berner, R. A., & Kothavala, Z. (2001). GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2), 182–204. https://doi.org/10.2475/ajs.301.2.182
  • Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C. J., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology and Evolution, 2, 1556–1562. https://doi.org/10.1038/s41559-018-0644-x
  • Bintanja, R., Roderik, S. W., & van de Wal, O. J. (2005). Modeled atmospheric temperatures and global sea levels over the past million years. Nature, 437(7055), 125–128. https://doi.org/10.1038/nature03975
  • Bird, B. W., Abbott, M. B., Rodbell, D. T., & Vuille, M. (2011). Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ18O record. Earth and Planetary Science Letters, 310(3–4), 192–202. https://doi.org/10.1016/j.epsl.2011.08.040
  • Bischof, W. (1960). Periodical variations of the atmospheric CO, content in Scandinavia. Tellus, 12(2), 216–226. https://doi.org/10.1111/j.2153-3490.1960.tb01303.x
  • Bjerknes, J. (1937). Die Theorie der aussertropischen Zyklonenbildung. Meteorologische Zeitschrift, 54, 460–466.
  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097%3C0163:ATFTEP%3E2.3.CO;2
  • Bjerknes, V. (1904). Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteorologische Zeitschrift, 21, 1–7.
  • Black, J. (1807). Lectures on the elements of chemistry delivered in the University of Edinburgh. Mathew Carey.
  • Blake, R. E., Chang, S. J., & Lepland, A. (2010). Phosphate oxygen isotope evidence for a temperate and biologically active Archean ocean. Nature, 464(7291), 1029–1032. https://doi.org/10.1038/nature08952
  • Bond, G. C., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294(5549), 2130–2136. https://doi.org/10.1126/science.1065680
  • Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., & Johnsen, S. (1999). The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age. In P. U. Clark, R. S. Webb, & L. D. Keigwin (Eds.), Mechanisms of global climate change at millennial time scales (Geophysical Monograph Series, Vol. 112, pp. 35–68). https://agupubs.onlinelibrary.wiley.com/doi/book/10. 1029/GM112
  • Bony, S., & Dufresne, J.-L. (2005). Marine boundary layer clouds at the heart of cloud feedback uncertainties in climate models. Geophysical Research Letters, 32(20), L20806. https://doi.org/10.1029/2005GL023851
  • Briffa, K. R. (2000). Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quaternary Science Reviews, 19(1–5), 87–105. https://doi.org/10.1016/S0277-3791(99)00056-6
  • Broecker, W. S., Olson, E. A., & Orr, P. C. (1960). Radiocarbon measurement and annual rings in cave formations. Nature, 185, 93–94. https://doi.org/10.1038/185093a0
  • Brooks, C. E. P. (1928). The influence of forests on rainfall and run-off. Quarterly Journal of the Royal Meteorological Society, 54(225), 1–17. https://doi.org/10.1002/qj.49705422501
  • Brown, H., & Escombe, F. (1905). On the variation in the amount of carbon dioxide in the air of Kew during the years 1898–1901. Proceedings of the Royal Society B, 76, 118–121. https://doi.org/10.1098/rspb.1905.0004
  • Buchwitz, M., de Beek, R., Burrows, J. P., Bovensmann, H., Warneke, T., Notholt, J., Meirink, J. F., Goede, A. P. H., Bergamaschi, P., Korner, S., Heimann, M., & Schulz, A. (2005). Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models. Atmospheric Chemistry and Physics, 5(4), 941–962. https://doi.org/10.5194/acp-5-941-2005
  • Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., & Taylor, K. C. (2015). The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age-ice age difference. Climate of the Past, 11(2), 153–173. https://doi.org/10.5194/cp-11-153-2015
  • Byers, H. R., & Braham, R. R. (1948). Thunderstorm circulation and structure. Journal of Meteorology, 5(3), 71–86. https://doi.org/10.1175/1520-0469(1948)005%3C0071:TSAC%3E2.0.CO;2
  • Cacho, I., Grimalt, J. O., Pelejero, C., Canals, M., Sierro, F. J., Flores, J. A., & Shackleton, N. (1999). Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography, 14(6), 698–705. https://doi.org/10.1029/1999PA900044
  • Camuera, J., Jimenez-Moreno, G., Ramos-Roman, M. J., Garcia-Alix, A., Toney, J. L., Anderson, R. S., Jimenez-Espejo, F., Bright, J., Webster, C., Yanes, Y., & Carrion, J. S. (2019). Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quaternary Science Review, 205, 86–105. https://doi.org/10.1016/j.quascirev.2018.12.013
  • Carolin, S. A., Cobb, K. M., Adkins, J. F., Clark, B., Conroy, J. L., Lejau, S., Malang, J., & Tuen, A. A. (2013). Varied response of western Pacific hydrology to climate forcings over the last glacial period. Science, 340(6140), 1564–1566. https://doi.org/10.1126/science.1233797
  • Castellani, B. B., Shupe, M. D., Hudak, D. R., & Sheppard, B. E. (2015). The annual cycle of snowfall at Summit, Greenland. Journal of Geophysical Research, 120(13), 6654–6668. https://doi.org/10.1002/2015JD023072
  • Catling, D. C., & Zahnle, K. J. (2020). The Archean atmosphere. Science Advance, 6, eaax1420. https://doi.org/10.1126/sciadv.aax1420
  • Chahine, M., Chen, L., Dimotakis, P., Jiang, X., Li, Q., Olsen, E. T., Pagano, T., Randerson, J., & Yung, Y. L. (2008). Satellite remote sounding of mid-tropospheric CO2. Geophysical Research Letters, 35(17), L17807. https://doi.org/10.1029/2008GL035022
  • Chakrabarti, R., Knoll, A. H., Jacobsen, S. B., & Fischer, W. W. (2012). Si isotopic variability of Proterozoic cherts. Geochimica et Cosmochimica Acta, 91, 187–201. https://doi.org/10.1016/j.gca.2012.05.025
  • Chappell, J., Omura, A., Ezat, T., McCulloch, M., Pandolfi, J., Ota, Y., & Pillans, B. (1996). Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep-sea oxygen isotope records. Earth and Planetary Science Letters, 141(1–4), 227–236. https://doi.org/10.1016/0012-821X(96)00062-3
  • Chappell, J., & Shackleton, N. J. (1986). Oxygen isotopes and sea level. Nature, 324(6093), 137–140. https://doi.org/10.1038/324137a0
  • Chedin, A., Serrar, S., Scott, N. A., Crevoisier, C., & Armante, R. (2003). First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical zone. Journal of Geophysical Research, 108(D18), 4581. https://doi.org/10.1029/2003JD003439
  • Cheng, H., Edwards, L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X. F., Li, X. L., Kong, X. G., Wang, Y. J., Ning, Y. F., & Zhang, H. W. (2016). The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534(7609), 640–646. https://doi.org/10.1038/nature18591
  • Cheng, H., Springer, G. S., Sinha, A., Hardt, B. F., Yi, L., Li, H., Tian, Y., Li, X., Rowe, H. D., Kathayat, G., Ning, Y., & Edwards, R. L. (2019). Eastern North American climate in phase with fall insolation throughout the last three glacial-interglacial cycles. Earth and Planetary Science Letters, 522, 125–134. https://doi.org/10.1016/j.epsl.2019.06.029
  • Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4–5), 585–602. https://doi.org/10.1007/s10712-011-9119-1
  • Ciais, P., Dolman, A. J., Bombelli, A., Duren, R., Peregon, A., Rayner, P. J., Miller, C., Gobron, N., Kinderman, G., Marland, G., Gruber, N., Chevallier, F., Andres, R. J., Balsamo, G., Bopp, L., Bréon, F.--M., Broquet, G., Dargaville, R., Battin, T. J., Borges, A., Bovensmann, H., Buchwitz, M., Butler, J., Canadell, J. G., Cook, R. B., DeFries, R., Engelen, R., Gurney, K. R., Heinze, C., Heimann, M., Held, A., Henry, M., Law, B., Luyssaert, S., Miller, J., Moriyama, T., Moulin, C., Myneni, R. B., Nussli, C., Obersteiner, M., Ojima, D., Pan, Y., Paris, J.-D., Piao, S. L., Poulter, B., Plummer, S., Quegan, S., Raymond, P., Reichstein, M., Rivier, L., Sabine, C., Schimel, D., Tarasova, O., Valentini, R., Wang, R., van der Werf, G., Wickland, D., Williams, M., & Zehner, C. (2014). Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11(13), 3547–3602. https://doi.org/10.5194/bg-11-3547-2014
  • Clegg, B. F., Kelly, R., Clarke, G. H., Walker, I. R., & Hu, F. S. (2011). Nonlinear response of summer temperature to Holocene insolation forcing in Alaska. Proceedings of National Academy of Sciences, 108(48), 19299–19304. https://doi.org/10.1073/pnas.1110913108
  • Clemens, S., Holbourn, A., Kubota, Y., Lee, K., Liu, Z., Chen, G., Nelson, A., & Fox-Kemper, B. (2018). Precession-band variance missing from East Asian monsoon runoff. Nature Communications, 9(1), 3364. https://doi.org/10.1038/s41467-018-05814-0
  • Coachman, L. K., Hemmingson, E., & Scholader, P. F. (1958). Gases in glaciers. Science, 127(3309), 1288–1289. DOI: 10.1126/science.127.3309.1288
  • Comas-Bru, L., Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Ahmad, S. M., Brahim, Y. A., Baker, A., Bosomworth, M., Breitenbach, S. F. M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Hatvani, I. G., Hu, J., Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat, B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S., Zhang, H., & SISAL Working Group members. (2020). SISALv2: A comprehensive speleothem isotope database with multiple age-depth models. Earth System Science Data, 12(4), 2579–2606. https://doi.org/10.5194/essd-12-2579-2020
  • Conrad, C. P. (2013). The solid Earth’s influence on sea level. GSA Bulletin, 125(7–8), 1027–1052. https://doi.org/10.1130/B30764.1
  • Cook, E. R., & Jacoby, G. C. (1977). Tree-ring–drought relationships in the Hudson Valley, New York. Science, 198(4315), 399–401. DOI: 10.1126/science.198.4315.399
  • Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., & Sano, M. (2013). Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Climate Dynamics, 41(11–12), 2957–2972. https://doi.org/10.1007/s00382-012-1611-x
  • Cooper, J. A. G., Green, A. N., & Compton, J. S. (2018). Sea-level change in southern Africa since the last Glacial Maximum. Quaternary Science Reviews, 201, 303–318. https://doi.org/10.1016/j.quascirev.2018.10.013
  • Cooperative Global Atmospheric Data Integration Project. (2017). Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2016; obspack_co2_1_GLOBALVIEWplus_v3.2_2017_11_02. NOAA Earth System Research Laboratory, Global Monitoring Division. https://doi.org/10.15138/G3704H
  • Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E., & Miller, K. G. (2009). Ocean overturning since the late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography, 24(4), PA4216. https://doi.org/10.1029/2008PA001683
  • Crevoisier, C., Chedin, A., Matsueda, H., Machida, T., Armante, R., & Scott, N. A. (2009). First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmospheric Chemistry and Physics, 9(14), 4797–4810. https://doi.org/10.5194/acp-9-4797-2009
  • Crevoisier, C., Heilliette, S., Chedin, A., Serrar, S., Armante, R., & Scott, N. A. (2004). Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics. Geophysical Research Letters, 31(17), L17106. https://doi.org/10.1029/2004GL020141
  • Crisp, D., Fisher, B. M., O'Dell, C., Frankenberg, C., Basilio, R., Bösch, H., Brown, L. R., Castano, R., Connor, B., Deutscher, N. M., Eldering, A., Griffith, D., Gunson, M., Kuze, A., Mandrake, L., McDuffie, J., Messerschmidt, J., Miller, C. E., Morino, I., Natraj, V., Notholt, J., O'Brien, D., Oyafuso, F., Polonsky, I., Robinson, J., Salawitch, R., Sherlock, V., Smyth, M., Suto, H., Taylor, T., Thompson, D. R., Wennberg, P. O., Wunch, D., & Yung, Y. L. (2012). The ACOS XCO2 retrieval algorithm. Part 2: Global XCO2 data characterization. Atmospheric Measurement Techniques, 5(4), 687–707. https://doi.org/10.5194/amt-5-687-2012
  • Cruz, F. W., Jr., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M., Cardoso, A. O., Ferrari, J. A., Silva Dias, P. L., & Viana, O., Jr. (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature, 434(7029), 63–66. https://doi.org/10.1038/nature03365
  • Cuffey, K. M., Clow, G. D., Alley, R. B., Stuiver, M., Waddington, E. D., & Saltus, R. W. (1995). Large Arctic temperature change at the glacial-Holocene transition. Science, 270(5235), 455–458. https://doi.org/10.1126/science.270.5235.455
  • Dahl-Jensen, D., Mosegaard, K., Gundestrup, N., Clow, G. D., Johnsen, S. J., Hansen, A. W., & Balling, N. (1998). Past temperatures directly from the Greenland Ice Sheet. Science, 282(5387), 268–271. https://doi.org/10.1126/science.282.5387.268
  • Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K., & Jensen, J. (2019). Persistent acceleration in global sea-level rise since the 1960s. Nature Climate Change, 9(9), 705–710. https://doi.org/10.1038/s41558-019-0531-8
  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.3402/tellusa.v16i4.8993
  • Dansgaard, W., Johnsen, S., Clausen, H., & Langway, C. C., Jr. (1971). Climatic record revealed by the Camp Century ice core. In K. K. Turekian (Ed.), The late Cenozoic glacial ages (pp. 37–56). Yale University Press.
  • Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahljensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218–220. https://doi.org/10.1038/364218a0
  • Dansgaard, W., Johnsen, S. J., Møller, J., & Langway, C. C. (1969). One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet. Science, 166(3903), 377–380. https://doi.org/10.1126/science.166.3903.377
  • Davis, B. A. S., Brewer, S., Stevenson, A. C., & Guiot, J. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 22(15–17), 1701–1716. https://doi.org/10.1016/S0277-3791(03)00173-2
  • de Boer, B., Lourens, L. J., & van de Wal, R. S. W. (2014). Persistent 400,000-year variability of Antarctic ice volume and the carboncycle is revealed throughout the Plio-Pleistocene. Nature Communications, 5(1), 2999. https://doi.org/10.1038/ncomms3999
  • Delmas, R. J. (1993). A natural artefact in Greenland ice-core CO2 measurements. Tellus, 45B, 391–396. https://doi.org/10.1034/j.1600-0889.1993.t01-3-00006.x
  • Delmas, R. J., Ascencio, J. M., & Legrand, M. (1980). Polar ice evidence that atmospheric CO2 29,000 BP was 50% of present. Nature, 284(5752), 155–157. https://doi.org/10.1038/284155a0
  • DelSole, T., Tippett, M. K., & Shukla, J. (2011). A significant component of unforced multidecadal variability in the recent acceleration of global warming. Journal of Climate, 24(3), 909–926. https://doi.org/10.1175/2010JCLI3659.1
  • Dempster, A. J. (1918). A new method of positive ray analysis. Physical Review, 11, 316–325. https://doi.org/10.1103/PhysRev.11.316
  • Denniston, R. F., Asmerom, Y., Polyak, V. J., Wanamaker, A. D., Ummenhofer, C. C., Humphreys, W. F., Cugley, J., Woods, D., & Lucker, S. (2017). Decoupling of monsoon activity across the northern and southern Indo-Pacific during the late Glacial. Quaternary Science Reviews, 176, 101–105. https://doi.org/10.1016/j.quascirev.2017.09.014
  • Ding, T., Gao, J., Tian, S., Fan, C., Zhao, Y., Wan, D., & Zhou, J. (2017). The δ30Si peak value discovered in middle Proterozoic chert and its implication for environmental variations in the ancient ocean. Scientific Report, 7(1), 44000. https://doi.org/10.1038/srep44000
  • Dirmeyer, P. A., Cash, B. A., Kinter, J. L., III, Stan, C., Jung, T., Marx, L., Towers, P., Wedi, N., Adams, J. M., Altshuler, E. L., & Huang, B. (2012). Evidence for enhanced land-atmosphere feedback in a warming climate. Journal of Hydrometeorology, 13(3), 981–995. https://doi.org/10.1175/JHM-D-11-0104.1
  • Ditlevsen, P., Mitsui, T., & Michel Crucifix, M. (2020). Crossover and peaks in the Pleistocene climate spectrum; understanding from simple ice age models. Climate Dynamics, 54(3–4), 1801–1818. https://doi.org/10.1007/s00382-019-05087-3
  • Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O'Neil, J., & Little, C. T. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543(7643), 60–64. https://doi.org/10.1038/nature21377
  • Dorale, J. A., Edwards, R. L., Ito, E., & Gonzalez, L. A. (1998). Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science, 282(5395), 1871–1874. https://doi.org/10.1126/science.282.5395.1871
  • Douglass, A. E. (1909). Weather cycles in the growth of big trees. Monthly Weather Review, 37(6), 225–237. https://doi.org/10.1175/1520-0493(1909)37[225d:WCITGO]2.0.CO;2
  • Driese, S. G., Jirsa, M. A., Ren, M., Brantley, S. L., Sheldon, N. D., Parker, D., & Schmitz, M. (2011). Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Researchearch, 189(1–2), 1–17. https://doi.org/10.1016/j.precamres.2011.04.003
  • Dubois, N., Kienast, M., Kienast, S. S., & Timmermann, A. (2014). Millennial-scale Atlantic/East Pacific sea surface temperature linkages during the last 100,000 years. Earth and Planetary Science Letters, 396, 134–142. https://doi.org/10.1016/j.epsl.2014.04.008
  • Duplessy, J.-C., Labeyrie, L., & Waelbroeck, C. (2002). Constraints on the ocean oxygen isotopic enrichment between the last Glacial Maximum and the Holocene. Paleoceanographic implications. Quaternary Science Reviews, 21(1–3), 315–330. https://doi.org/10.1016/S0277-3791(01)00107-X
  • Dyez, K. A., Zahn, R., & Hall, I. R. (2014). Multicentennial Agulhas leakage variability and links to North Atlantic climate during the past 80,000 years. Paleoceanography, 29(12), 1238–1248. https://doi.org/10.1002/2014PA002698
  • Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 192(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019%3C0183:EIMOBO%3E2.0.CO;2
  • Egyed, L. (1956). Determination of changes in the dimensions of the Earth from palaeogeographical data. Nature, 178(4532), 534. https://doi.org/10.1038/178534a0
  • Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean-currents. Arkiv for Matematik, Astronomi och Fysik, 2(11), 52. https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/33989/31151027498728.pdf
  • Eldering, A., O’Dell, C. W., Wennberg, P. O., Crisp, D., Gunson, M. R., Viatte, C., Avis, C., Braverman, A., Castano, R., Chang, A., & Chapsky, L. (2017). The orbiting carbon observatory-2: First 18 months of science data products. Atmospheric Measurement Techniques Discussions, 10(2), 549–563. https://doi.org/10.5194/amt-10-549-2017
  • Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R., Chatterjee, A., Liu, J., Schwandner, F. M., Sun, Y., O'Dell, C. W., Frankenberg, C., Taylor, T., Fisher, B., Osterman, G. B., Wunch, D., Hakkarainen, J., Tamminen, J., & Weir, B. (2017). The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360), eaam5745. https://doi.org/10.1126/science.aam5745
  • Emery, K. O., & Garrison, L. E. (1967). Sea levels 7000 to 20000 years ago. Science, 157(3789), 684–687. https://doi.org/10.1126/science.157.3789.684
  • Emiliani, C. (1955). Pleistocene temperatures. The Journal of Geology, 63(6), 538–578. https://doi.org/10.1086/626295
  • Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10), 2077–2080. https://doi.org/10.1029/2000GL012745
  • Engelhart, S. E., & Horton, B. P. (2012). Holocene sea level database for the Atlantic coast of the United States. Quaternary Science Review, 54, 12–25. https://doi.org/10.1016/j.quascirev.2011.09.013
  • Engelhart, S. E., Vacchi, M., Horton, B. P., Nelson, A. R., & Kopp, R. E. (2015). A sea-level database for the Pacific coast of central North America. Quaternary Science Review, 113, 78–92. https://doi.org/10.1016/j.quascirev.2014.12.001
  • England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222–227. https://doi.org/10.1038/nclimate2106
  • EPICA Community Members. (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623–628. https://doi.org/10.1038/nature02599
  • EPICA Community Members. (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444(7116), 195–198. https://doi.org/10.1038/nature05301
  • Epstein, S., Buchsbaum, R., Lowenstam H, A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. GSA Bulletin, 64(11), 1315–1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
  • Eriksson, P. G. (1999). Sea level changes and the continental freeboard concept: General principles and application to the Precambrian. Precambrian Research, 97(3–4), 143–154. https://doi.org/10.1016/S0301-9268(99)00029-7
  • Eriksson, P. G., Catuneanu, O., Nelson, D. R., & Popa, M. (2005). Controls on Precambrian sea level change and sedimentary cyclicity. Sedimentary Geology, 176(1–2), 43–65. https://doi.org/10.1016/j.sedgeo.2004.12.008
  • Eriksson, P. G., Mazumder, R., Sarkar, S., Bose, P. K., Altermann, W., & van der Merwe, R. (1999). The 2.7-2.0 Ga volcano-sedimentary record of Africa, India and Australia: Evidence for global and local changes in sea level and continental freeboard. Precambrian Research, 97(3–4), 269–302. https://doi.org/10.1016/S0301-9268(99)00035-2
  • Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250–2253. https://doi.org/10.1126/science.1066208
  • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M., & Morgan, V. I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101(D2), 4115–4128. https://doi.org/10.1029/95JD03410
  • Evans, D. A., Beukes, N. J., & Kirschvink, J. L. (1997). Low-latitude glaciation in the Palaeoproterozoic era. Nature, 386(6622), 262–266. https://doi.org/10.1038/386262a0
  • EXXON Petroleum Company. (1988). The EXXON global sea-level curve. Unpublished internal report.
  • Fairbanks, R. G. (1989). A 17000-year glacio-eustatic sea-level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature, 342(6250), 637–642. https://doi.org/10.1038/342637a0
  • Farnsworth, A., Lunt, D. J., O'Brien, C., Foster, G. L., Inglis, G. N., Markwick, P., Pancost, R. D., & Robinson, S. A. (2019). Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophysical Research Letters, 46, 9880–9889. https://doi.org/10.1029/2019GL083574
  • Feulner, G. (2012). The faint young Sun problem. Review of Geophysics, 50(2), RG2006. https://doi.org/10.1029/2011RG000375
  • Finsinger, W., & Wagner-Cremer, F. (2009). Stomatal-based inference models for reconstruction of atmospheric CO2 concentration: A method assessment using a calibration and validation approach. The Holocence, 19(5), 757–764. https://doi.org/10.1177/0959683609105300
  • Fletcher, B. J., Brentnall, S. J., Anderson, C. W., Berner, R. A., & Beerling, D. J. (2008). Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience, 1(1), 43–48. https://doi.org/10.1038/ngeo.2007.29
  • Fohlmeister, J., Vollweiler, N., Spatl, C., & Mangini, A. (2013). COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. The Holocene, 23(5), 749–754. https://doi.org/10.1177/0959683612465446
  • Fonselius, S., & Koroleff, F. (1955). Microdetermination of CO2 in the air, with current data for Scandinavia. Tellus, 7(2), 259–265. https://doi.org/10.3402/tellusa.v7i2.8779
  • Foster, G. L., Royer, D. L., & Lunt, D. J. (2017). Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8(1), 1–8. https://doi.org/10.1038/ncomms14845
  • Francois, L., & Walker, J. (1992). Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science, 292(2), 81–135. https://doi.org/10.2475/ajs.292.2.81
  • Frank, D. C., Esper, J., Raible, C., Buntgen, U., Trouet, V., Stocker, B., & Joos, F. (2010). Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 463(7280), 527–530. https://doi.org/10.1038/nature08769
  • Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H., Laepple, T., Lambert, F., Nilsen, T., Rypdal T., Rypdal, M., Scotto, M., Vannitsem, S., Watkins, N., Yang, L., & Yuan, N. (2020). The structure of climate variability across scales. Reviews of Geophysics, 58, e2019RG000657. https://doi.org/10.1029/2019RG000657
  • Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G., & Smith, S. R. (2017). ICOADS release 3.0: A major update to the historical marine climate record. International Journal of Climatology, 37(5), 2211–2232. https://doi.org/10.1002/joc.4775
  • Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U., & Stauffer, B. (1986). Ice core record of the 13C/12C radio of atmospheric CO2 in the past two centuries. Nature, 324(6094), 237–238. https://doi.org/10.1038/324237a0
  • Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., & Knutti, R. (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27(2), 511–526. https://doi.org/10.1175/JCLI-D-12-00579.1
  • Friedrich, O., Norris, R. D., & Erbacher, J. (2012). Evolution of middle to late Cretaceous oceans – a 55 m y record of Earth’s temperature and carbon cycle. Geology, 40(2), 107–110. https://doi.org/10.1130/G32701.1
  • Fritts, H. C. (1965). Tree-ring evidence for climatic changes in western North America. Monthly Weather Review, 93(7), 421–443. https://doi.org/10.1175/1520-0493(1965)093<0421:TREFCC>2.3.CO;2
  • Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6(3), 224–228. https://doi.org/10.1038/nclimate2938
  • Garcia-Artola, A., Stephan, P., Cearreta, A., Kopp, R. E., Khan, N. S., & Horton, B. P. (2018). Holocene sea-level database from the Atlantic coast of Europe. Quaternary Science Reviews, 196, 177–192. https://doi.org/10.1016/j.quascirev.2018.07.031
  • Garrett, E., Melnick, D., Dura, T., Cisternas, M., Ely, L. L., Wesson, R. L., Jara- Muñoz, J., & Whitehouse, P. L. (2020). Holocene relative sea-level change along the tectonically active Chilean coast. Quaternary Science Reviews, 236, 1–18. https://doi.org/10.1016/j.quascirev.2020.106281
  • Gaucher, E. A., Govindarajan, S., & Ganesh, O. K. (2008). Paleotemperature trend for Precambrian life inferred from resurrected proteins. Nature, 451(7179), 704–707. https://doi.org/10.1038/nature06510
  • GEOROC. (2020). Geochemistry of Rocks of the Oceans and Continents Data Archive, accessed June 2020. https://georoc.eu/georoc/new-start.asp
  • Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., & Grainger, C. A. (2003). Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. Journal of Geophysical Research-Atmosphere, 108, 2156–2202. https://doi.org/10.1029/2002JD003018
  • Gergis, J., Neukom, R., Gallant, A. J. E., & Karoly, D. J. (2016). Australasian temperature reconstructions spanning the last millennium. Journal of Climate, 29(15), 5365–5392. https://doi.org/10.1175/JCLI-D-13-00781.1
  • Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V., & Nardin, E. (2014). The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews, 128, 122–138. https://doi.org/10.1016/j.earscirev.2013.11.004
  • Goslin, J., Fruergaard, M., Sander, L., Gaka, M., Menviel, L., Monkenbusch, J., Thibault, N., & Clemmensen, L. B. (2018). Holocene centennial to millennial shifts in North-Atlantic storminess and ocean dynamics. Scientific Report, 8(1), 12778. https://doi.org/10.1038/s41598-018-29949-8
  • Gradstein, F., Ogg, J., & Smith, A. (Eds.). (2004). Geological time scale. Cambridge University Press. 589 pp.
  • Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H., & Mulvaney, R. (2002). Stable isotope records from Dronning Maud Land, Antarctica. Annals of Glaciology, 35, 195–201. https://doi.org/10.3189/172756402781816492
  • Grant, K. M., Rohling, E. J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., & Roberts, A. P. (2012). Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature, 491(7426), 744–747. https://doi.org/10.1038/nature11593
  • Grant, K. M., Rohling, E. J., Bronk Ramsey, C., Cheng, H., Edwards, R. L., Florindo, F., Heslop, D., Marra, F., Roberts, A. P., Tamisiea, M. E., & Williams, F. (2014). Sea-level variability over five glacial cycles. Nature Communications, 5(1), 5076. https://doi.org/10.1038/ncomms6076
  • Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A., Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G., Labeyrie, L., Lea, D. W., Marchitto, T., Martínez-Botí, M. A., Mortyn, P. G., Ni, Y., Nuernberg, D., Paradis, G., Pena, L., Quinn, T., Rosenthal, Y., Russell, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., & Wilson, P. A. (2008). Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophysics, Geosystems, 9(8), Q08010. https://doi.org/10.1029/2008GC001974
  • Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A., & Rayner, N. A. (2002). An observationally based estimate of the climate sensitivity. Journal of Climate, 15(22), 3117–3121. https://doi.org/10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2
  • Griffith, H., Panofsky, H., & Van der Hoven, I. (1956). Power-spectrum analysis over large ranges of frequency. Journal of Meteorology, 13(3), 279–282. https://doi.org/10.1175/1520-0469(1956)013%3C0279:PSAOLR%3E2.0.CO;2
  • Grossman, E. L. (2012). Oxygen isotope stratigraphy. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The geological time scale 2012 (pp. 181–206). Elsevier.
  • GSFC. (2017). Global mean sea level trend from integrated multi-mission ocean altimeters TOPEX/Poseidon, Jason-1, OSTM/Jason-2 Version 4 [Dataset]. PO.DAAC. Retrieved October 1, 2017, from https://doi.org/10.5067/GMSLM-TJ124
  • Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P., Eckert, N., Sielenou, P. D., Daux, V., Davi, N., & Edouard, J. L. (2017). Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nature Geoscience, 10(2), 123–128. https://doi.org/10.1038/ngeo2875
  • Hails, J. R. (1965). A critical review of sea-level changes in eastern Australia since the last glacial. Australian Geographical Studies, 3(2), 63–78. https://doi.org/10.1111/j.1467-8470.1965.tb00038.x
  • Hakim, G. J., Emile-Geay, J., Steig, E., Noone, D., Anderson, D., Tardif, R., Steiger, N., & Perkins, W. (2016). The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research-Atmosphere, 121, 6745–6764. https://doi.org/10.1002/2016JD024751
  • Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B. R., Salomonsen, G. R., Sarnthein, M., Sejrup, H. P., & Telford, R. J. (2007). Variations in temperature and extent of Atlantic water in the northern North Atlantic during the Holocene. Quaternary Science Reviews, 26(25–28), 3423–3440. https://doi.org/10.1016/j.quascirev.2007.10.005
  • Hallam, A. (1971). Re-evaluation of the palaeogeographm argument for an expanding earth. Nature, 232(5307), 180–182. https://doi.org/10.1038/232180a0
  • Hallam, A. (1984). Pre-Quaternary sea-level changes. Annual Review of Earth and Planetary Sciences, 12(1), 205–243. https://doi.org/10.1146/annurev.ea.12.050184.001225
  • Hallam, A. (1989). The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates [and discussion]. Philosophical Transactions of the Royal Society B (Biological Sciences), London, 325(1228), 437–455. https://doi.org/10.1098/rstb.1989.0098
  • Halverson, G. P., Dudas, F. O., Maloof, A. C., & Bowring, S. A. (2007). Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3–4), 103–129. https://doi.org/10.1016/j.palaeo.2007.02.028
  • Hammerling, D. M., Michalak, A. M., O'Dell, C., & Kawa, S. R. (2012). Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophysical Research Letters, 39(8), L008804. https://doi.org/10.1029/2012GL051203
  • Hansen, J., & Lebedeff, S. (1987). Global trends of measured surface air temperature. Journal of Geophysical Research, 92(D11), 13345–13372. https://doi.org/10.1029/JD092iD11p13345
  • Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Review of Geophysics, 48(4), RG4004. https://doi.org/10.1029/2010RG000345
  • Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level, and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A, 371, 120–294. https://doi.org/10.1098/rsta.2012.0294
  • Haq, B., Hardenbol, J., & Vail, P. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
  • Haq, B., & Schutter, S. (2008). A chronology of Paleozoic sea-level changes. Science, 322(5898), 64–68. https://doi.org/10.1126/science.1161648
  • Harada, N., Ahagon, N., Sakamoto, T., Uchida, M., Ikehara, M., & Shibata, Y. (2006). Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Global and Planetary Change, 53(1–2), 29–46. https://doi.org/10.1016/j.gloplacha.2006.01.010
  • Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711
  • Hawkesworth, C. J., Cawood, P. A., & Dhuime, B. (2016). Tectonics and crustal evolution. GSA Today, 26(9), 4–11. https://doi.org/10.1130/GSATG272A.1
  • Hay, C. C., Morrow, E., Kopp, R. E., & Mitrovica, J. X. (2015). Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517(7535), 481–484. https://doi.org/10.1038/nature24466
  • Hay, W. W. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29(5–6), 725–753. https://doi.org/10.1016/j.cretres.2008.05.025
  • Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in Earth’s orbit – Pacemaker of ice ages. Science, 194(4270), 1121–1132. https://doi.org/10.1126/science.194.4270.1121
  • Hays, J. D., & Pitman, W. C. (1973). Lithospheric plate motion, sea level changes and climatic and ecological consequences. Nature, 24(5427), 18–22. https://doi.org/10.1038/246018a0
  • Heck, P. R., Huberty, J. M., Kita, N. T., Ushikubo, T., Kozdon, R., & Valley, J. W. (2011). SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75(20), 5879–5894. https://doi.org/10.1016/j.gca.2011.07.023
  • Hegerl, G. C., Crowley, T. J., Hyde, W. T., & Frame, D. J. (2006). Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440(7087), 1029–1032. https://doi.org/10.1038/nature04679
  • Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29(2), 142–152. https://doi.org/10.1016/0033-5894(88)90057-9
  • Hellstrom, J., McCulloch, M., & Stone, J. (1998). A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research, 50(2), 167–178. https://doi.org/10.1006/qres.1998.1991
  • Herbert, T. D., Peterson, L. C., Lawrence, K. T., & Liu, Z. (2010). Tropical ocean temperatures over the past 3.5 Myr. Science, 328(5985), 1530–1534. https://doi.org/10.1126/science.1185435
  • Herbert, T. D., Schuffert, J. D., Andreasen, D., Heusser, L., Lyle, M., Mix, A., Ravelo, A. C., Stott, L. D., & Herguera, J. C. (2001). Collapse of the California current during glacial maxima linked to climate change on land. Science, 293(5527), 71–76. https://doi.org/10.1126/science.1059209
  • Herzenberg, A. (1958). Geomagnetic dynamos. Philosophical Transactions of the Royal Society A, 250, 543–583. https://doi.org/10.1098/rsta.1958.0007
  • Hessler, A. M., Lowe, D. R., Jones, R. L., & Bird, D. K. (2004). A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature, 428(6984), 736–738. https://doi.org/10.1038/nature02471
  • von der Heydt, A., Ashwin, S. P., Camp, C. D., Crucifix, M., Dijkstra, H. A., Ditlevsen, P., & Lenton, T. M. (2021). Quantification and interpretation of the climate variability record. Global and Planetary Change, 197, 103399. https://doi.org/10.1016/j.gloplacha.2020.103399
  • Hirahara, S., Ishii, M., & Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27(1), 57–75. https://doi.org/10.1175/JCLI-D-12-00837.1
  • Hodell, D. A., Evans, H. F., Channell, J. E. T., & Curtis, J. H. (2010). Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period. Quaternary Science Reviews, 29(27–28), 3875–3886. https://doi.org/10.1016/j.quascirev.2010.09.006
  • Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., Benn, D. I., Brocks, J. J., Cohen, P. A., Cox, G. M., Creveling, J. R., Donnadieu, Y., & Erwin, D. H. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advance, 3(11), e1600983. https://doi.org/10.1126/sciadv.1600983
  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. A. (1998). A Neoproterozoic snowball. Science, 281(5381), 1342–1346. https://doi.org/10.1126/science.281.5381.1342
  • Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., & Pugh, J. (2013). New data systems and products at the permanent service for mean sea level. Journal of Coastal Research, 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1
  • Holmes, A. (1946). An estimate of the age of the Earth. Nature, 157(3995), 680–684. https://doi.org/10.1038/159127b0
  • Holmes, A. (1947). The construction of a geological time-scale. Transactions Geological Society of Glasgow, 21(1), 117–152. https://doi.org/10.1144/transglas.21.1.117
  • Holmes, A. (1956). How old is the Earth? Transactions of the Edinburgh Geological Society, 16(3), 313–333. https://doi.org/10.1144/transed.16.3.313
  • Holmes, A. (1960). A revised geological time-scale. Transactions of the Edinburgh Geological Society, 17(3), 183–216. https://doi.org/10.1144/transed.17.3.183
  • Holmgren, K., KarlÈn, W., Lauritzen, S. E., Lee-Thorp, J. A., Partridge, T. C., Piketh, S., Repinski, P., Stevenson, C., Svanered, O., & Tyson, P. D. (1999). A 3000-year high-resolution record of Palaeoclimate for north-eastern South Africa. The Holocene, 9(3), 295–309. https://doi.org/10.1191/095968399672625464
  • Horne, D. J. (1999). Ocean circulation modes of the Phanerozoic: Implications for the antiquity of deep-sea benthonic invertebrates. Crustaceana, 72(8), 999–1018. https://doi.org/10.1163/156854099503906
  • Horton, B. P., Kopp, R. E., Garner, A. J., Hay, C. C., Khan, N. S., Roy, K., & Shaw, T. A. (2018). Mapping sea-level change in time, space, and probability. Annual Review of Environment and Resources, 43(1), 481–521. https://doi.org/10.1146/annurev-environ-102017-025826
  • Hren, M. T., Tice, M. M., & Chamberlain, C. P. (2009). Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature, 462(7270), 205–208. https://doi.org/10.1038/nature08518
  • Hu, Y., & Tian, F. (2015). Three important issues of Precambrian climate evolution. Advances in Climate Change Research, 11, 44–53.
  • Huang, B., Thorne, P., Smith, T., Liu, W., Lawrimore, J., Banzon, V., Zhang, H., Peterson, T., & Menne, M. (2015). Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). Journal of Climate, 29(9), 3119–3142. https://doi.org/10.1175/JCLI-D-15-0430.1
  • Huang, Y., Clemens, S. C., Liu, W., Wang, Y., & Prell, W. L. (2007). Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology, 35(6), 531–534. https://doi.org/10.1130/G23666A.1
  • Huybers, P., & Curry, W. (2006). Links between annual, Milankovitch and continuum temperature variability. Nature, 441(7091), 329–332. https://doi.org/10.1038/nature04745
  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., & Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the marine d18O record. In A. Berger, J. Imbrie, J. Hays, G. Kukla, & B. Saltzman (Eds.), Milankovitch and climate (pp. 269–305). Reidel.
  • Imbrie, J., & Imbrie, J. Z. (1980). Modeling the climatic response to orbital variations. Science, 207(4434), 943–953. https://doi.org/10.1126/science.207.4434.943
  • Imbrie, J., Van Donk, J., & Kipp, N. G. (1973). Paleoclimatic investigation of a late Pleistocene Caribbean deep-sea core: Comparison of isotopic and faunal methods. Quaternary Research, 3(1), 10–38. https://doi.org/10.1016/0033-5894(73)90051-3
  • Indermuhle, A., Monnin, E., Stauffer, B., Stocker, T. F., & Wahlen, M. (2000). Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters, 27(5), 735–738. https://doi.org/10.1029/1999GL010960
  • Indermuhle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Seck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., & Stauffer, B. (1999). Holocene carbon-cycle dynamics based on CO2 trapped at Taylor Dome. Nature, 398(6723), 121–126. https://doi.org/10.1038/18158
  • Inglis, G. N., Bragg, F., Burls, N., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., de Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., & Pancost, R. D. (2020). Global mean surface temperature and climate sensitivity of the EECO, PETM and latest Paleocene. Climate of the Past, 16(5), 1953–1968. https://doi.org/10.5194/cp-2019-167
  • IPCC. (1990). Climate change: The IPCC scientific assessment. First assessment report of Working Group 1, Intergovernmental Panel on Climate Change. WMO/UNEP. https://www.ipcc.ch/report/ar1/wg1/
  • IPCC. (1995). Climate change 1995: The science of climate change. Cambridge University Press. https://www.ipcc.ch/report/ar2/wg1/
  • IPCC. (2001). Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar3/wg1/
  • IPCC. (2007). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar4/wg1/
  • IPCC. (2013). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/wg1/
  • IPCC. (2021). Climate change 2021: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
  • Jevrejeva, S., Grinsted, A., Moore, J. C., & Holgate, S. (2006). Nonlinear trends and multi-year cycle in sea level records. Journal of Geophysical Research, 111(2005JC003229), C09012. https://doi.org/10.1029/2005JC003229
  • Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., & Spada, G. (2014). Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11–22. https://doi.org/10.1016/j.gloplacha.2013.12.004
  • Jevrejeva, S., Moore, J. C., Grinsted, A., & Woodworth, P. L. (2008). Recent global sea level acceleration started over 200 years ago? Geophysical Research Letters, 35(8), L08715. https://doi.org/10.1029/2008GL033611
  • Jiang, X., Crisp, D., Olsen, E., Kulawik, S., Miller, C., Pagano, T., Liang, M., & Yung, Y. (2016). CO2 annual and semiannual cycles from multiple satellite retrievals and models. Earth and Space Science, 3. https://doi.org/10.1002/2014EA000045
  • Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W., & Gundestrup, N. (1995). Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B(5), 624–629. https://doi.org/10.3402/tellusb.v47i5.16077
  • Johnson, T. C., Werne, J. P., Brown, E. T., Abbott, A., Berke, M., Steinman, B. A., Halbur, J., Contreras, S., Grosshuesch, S., Deino, A., Scholz, C. A., Lyons, R. P., Schouten, S., & Damste, J. S. (2016). A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature, 537(7619), 220–224. https://doi.org/10.1038/nature19065
  • Jones, C. D., Collins, M., Cox, P. M., & Spall, S. A. (2001). The carbon cycle response to ENSO: A coupled climate-carbon cycle model study. Journal of Climate, 14(21), 4113–4129. https://doi.org/10.1175/1520-0442(2001)014%3C4113:TCCRTE%3E2.0.CO;2
  • Jones, P. D., Briffa, K. R., Barnett, T. P., & Tett, S. F. B. (1998). High-resolution palaeoclimatic records for the past millennium – Interpretation, integration and comparison with general circulation model control-run temperatures. The Holocene, 8(4), 455–471. https://doi.org/10.1191/095968398667194956
  • Jones, P. D., Raper, C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., & Wigley, T. M. L. (1986). Northern hemisphere surface air temperature variations: 1851–1984. Journal of Applied Meteorology and Climatology, 25(2), 161–179. https://doi.org/10.1175/1520-0450(1986)025%3C0161:NHSATV%3E2.0.CO;2
  • Jouzel, J. (2013). A brief history of ice core science over the last 50 yr. Climate of the Past, 9(6), 2525–2547. https://doi.org/10.5194/cp-9-2525-2013
  • Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., & Wolff, E. W. (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793–796. https://doi.org/10.1126/science.1141038
  • Kah, L. C., & Riding, R. (2007). Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35(9), 799–802. https://doi.org/10.1130/G23680A.1
  • Kaiser, J., Lamy, F., & Hebbeln, D. (2005). A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography, 20(4), PA4009. https://doi.org/10.1029/2005PA001146
  • Kanzaki, Y., & Murakami, T. (2015). Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochimica et Cosmochimica Acta, 159, 190–219. https://doi.org/10.1016/j.gca.2015.03.011
  • Kapteyn, J. C. (1914). Tree-growth and meteorological factors. Receuil des travaux botaniques néerlandais, 11, 70–93.
  • Karhu, J., & Epstein, S. (1986). The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochimica et Cosmochimica Acta, 50(8), 1745–1756. https://doi.org/10.1016/0016-7037(86)90136-5
  • Kaufman, A. J., & Xiao, S. (2003). High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature, 425(6955), 279–282. https://doi.org/10.1038/nature01902
  • Kaufman, D., McKay, N., Routson, C., Erb, M., Datwyler, C., Sommer, P. S., Heiri, O., & Davis, B. (2020). Holocene global mean surface temperature, a multi-method reconstruction approach. Scientific Data, 7(1), 1–13. https://doi.org/10.1038/s41597-020-0530-7
  • Kawamura, K., Nakazawa, T., Aoki, S., Sugawara, S., Fujii, Y., & Watanabe, O. (2003). Atmospheric CO2 variations over the last three glacial’interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique. Tellus B: Chemical and Physical Meteorology, 55(2), 126–137. https://doi.org/10.3402/tellusb.v55i2.16730
  • Keeling, C. D. (1958). The concentration and isotopic abundance8 of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13(4), 322–334. https://doi.org/10.1016/0016-7037(58)90033-4
  • Keeling, C. D., Bacastow, R., Bainbridge, A., Ekdahl, C., Jr., Guenther, P., Waterman, L., & Chin, J. (1976). Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28(6), 538–551. https://doi.org/10.3402/tellusa.v28i6.11322
  • Keeling, C. D., Whorf, T., Whalen, M., & der Plicht, J. V. (1995). Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375(6533), 666–670. https://doi.org/10.1038/375666a0
  • Kemp, A. C., Wright, A. J., Edwards, R. J., Barnett, R. L., Brain, M. J., Kopp, R. E., Cahill, N., Horton, B. P., Charman, D. J., Hawkes, A. D., Hill, T. D., & van de Plassche, O. (2018). Relative sea-level change in Newfoundland, Canada during the past ∼3000 years. Quaternary Science Reviews, 201, 89–10. https://doi.org/10.1016/j.quascirev.2018.10.012
  • Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M., & Parker, D. E. (2011). Reassessing biases and other uncertainties in sea-surface temperature observations since 1850 part 1: Measurement and sampling errors. Journal of Geophysical Research, 116(D14), D14103. https://doi.org/10.1029/2010JD015218
  • Khan, N. S., Ashe, E., Shaw, T. A., Vacchi, M., Walker, J., Peltier, W. R., Kopp, R. E., & Horton, B. P. (2015). Holocene relative sea-level changes from near-, intermediate-, and far-field locations. Current Climate Change Reports, 1(4), 247–262. https://doi.org/10.1007/s40641-015-0029-z
  • Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E. L., Tornqvist, T. E., Dutton, A., Hijma, M. P., & Shennan, I. (2019). Inception of a global atlas of sea levels since the last glacial maximum. Quaternary Science Reviews, 220, 359–371. https://doi.org/10.1016/j.quascirev.2019.07.016
  • Kienast, M., Kienast, S., Calvert, S., Eglinton, T., Mollenhauer, G., FranÁois, R., & Mix, A. C. (2006). Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature, 443(7113), 846–849. https://doi.org/10.1038/nature05222
  • Kim, J.-H., Rimbu, N., Lorenz, S. J., Lohmann, G., Nam, S.-I., Schouten, S., Ru hlemann, C., & Schneider, R. R. (2004). North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quaternary Science Reviews, 23(20–22), 2141–2154. https://doi.org/10.1016/j.quascirev.2004.08.010
  • Kindler, P., Guillevic, M., Baumgartner, M., Schwander, J., Landais, A., & Leuenberger, M. (2014). Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate of the Past, 10(2), 887–902. https://doi.org/10.5194/cp-10-887-2014
  • Kirschvink, J. L. (1992). Late Proterozoic low-latitude global glaciation: The snowball earth. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere (pp. 51–52). Cambridge University Press, Cambridge.
  • Knauth, L. P. (2005). Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2), 53–69. https://doi.org/10.1016/B978-0-444-52019-7.50007-3
  • Knauth, L. P., & Epstein, S. (1976). Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta, 40(9), 1095–1108. https://doi.org/10.1016/0016-7037(76)90051-X
  • Knauth, L. P., & Lowe, D. R. (1978). Oxygen isotope geochemistry of cherts from the Onverwacht group (3.4 Ga), Transvaal, South Africa, with implications for secular variations in the isotopic compositions of cherts. Earth and Planetary Science Letters, 41(2), 209–222. https://doi.org/10.1016/0012-821X(78)90011-0
  • Knauth, L. P., & Lowe, D. R. (2003). High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bulletin, 115, 566–580. https://doi.org/10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2
  • Knoll, A. H., & Nowak, M. A. (2017). The timetable of evolution. Science Advances, 3(5), e1603076. https://doi.org/10.1126/sciadv.1603076
  • Köhler, P., de Boer, B., von der Heydt, A. S., Stap, L. B., & van de Wal, R. (2015). On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Climate of the Past, 11(12), 1801–1823. https://doi.org/10.5194/cp-11-1801-2015
  • Kohler, P., Stap, L. B., von der Heydt, A. S., de Boer, B., van deWal, R. S. W., & Bloch-Johnson, J. (2017). A state-dependent quantification of climate sensitivity based on paleodata of the last 2.1 million years. Paleoceanography, 32(11). https://doi.org/10.1002/2017PA003190
  • Kominz, M. A., Miller, K. G., & Browning, J. V. (1998). Long-term and short-term global Cenozoic sea-level estimates. Geology, 26(4), 311–314. https://doi.org/10.1130/0091-7613(1998)026%3C0311:LTASTG%3E2.3.CO;2
  • Konrad, W., Royer, D., Franks, P. J., & Roth-Nebelsick, A. (2020). Quantitative critique of leaf-based paleo-CO2 proxies: Consequences for their reliability and applicability. Geological Journal, 1–17. https://doi.org/10.1002/gj.3807
  • Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P., Gehrels, W. R., Hay, C. C., Mitrovica, J. X., Morrow, E. D., & Rahmstorf, S. (2016). Temperature-driven global sea-level variability in the Common Era. Proceedings of National Academy of Sciences, 113(11), E1434–E1441. https://doi.org/10.1073/pnas.1517056113
  • Koster, R. D., Dirmeyer, P. A., Guo, Z. C., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y. K., & Yamada, T. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140. https://doi.org/10.1126/science.1100217
  • Koutavas, A., & Sachs, J. P. (2008). Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry. Paleoceanography, 23(4), PA4205. https://doi.org/10.1029/2008PA001593
  • Kouwenberg, L. (2004). Application of conifer needles in the reconstruction of Holocene CO2 levels [PhD thesis]. University of Utrecht.
  • Kouwenberg, L., Wagner, R., Kurschner, W., & Visscher, H. (2005). Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology, 33(1), 33–36. https://doi.org/10.1130/G20941.1
  • Krapez, B. (1993). Sequence stratigraphy of the Archaean supracrustal belts of the Pilbara Block, Western Australia. Precambrian Research, 60(1–4), 1–45. https://doi.org/10.1016/0301-9268(93)90043-2
  • Kreutz, W. (1941). Kohlensaure Gehalt der unteren Luftschichten in Abhangigkeit von Witterungsfaktoren. Angewandte Botanik, 2, 89–117.
  • Kullenberg, B. (1947). The piston core sampler. Svenska Hydrografisk, Biologiska Kommissionens Skrifter, 46 pp.
  • Kutzbach, J. E., & Bryson, R. A. (1974). Variance spectrum of Holocene climatic fluctuations in the North Atlantic sector. Journal of Atmospheric Sciences, 31(8), 1958–1963. https://doi.org/10.1175/1520-0469(1974)031%3C1958:VSOHCF%3E2.0.CO;2
  • Lachniet, M., Asmerom, Y., Polyak, V., & Denniston, R. (2017). Arctic cryosphere and Milankovitch forcing of Great Basin paleoclimate. Scientific Reports, 7(1), 12955. https://doi.org/10.1038/s41598-017-13279-2
  • Lachniet, M. S. (2009). Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews, 28(5–6), 412–432. https://doi.org/10.1016/j.quascirev.2008.10.021
  • Lambeck, K., & Chappell, J. (2001). Sea level change through the last glacial cycle. Science, 292(5517), 679–686. https://doi.org/10.1126/science.1059549
  • Lambeck, K., Rouby, H., Purcell, A., Sun, Y., & Sambridge, M. (2014). Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of National Academy of Sciences USA, 111(43), 15296–15303. https://doi.org/10.1073/pnas.1411762111
  • Landwehr, J. M., Sharp, W. D., Coplen, T. B., Ludwig, K. R., & Winograd, I. J. (2011). The chronology for the δ18O record from Devils Hole, Nevada, extended into the mid-Holocene. U.S. Geological Survey Open-File Report 2011–1082, 5 p. http://pubs.usgs.gov/of/2011/1082/
  • Langway, Jr., C. C., Oeschger, H., Alder, B., & Renaud, A. (1965). Sampling polar ice for radiocarbon dating. Nature, 206, 500–501. https://doi.org/10.1038/206500a0
  • Laplace, P. S. (1775). Recherches sur Quelques Points de Systeme du Monde. Mmoires de l'Acadmie royale des sciences, 88.
  • Laplace, P. S. (1798). Traite de mecanique celeste (Vol. 1, 368 pp.). Crapelet.
  • Larmor, J. (1919). How could a rotating body such as the Sun become a magnet? In K. R. Lang & O. Gingerich (Eds.), A source book in astronomy and astrophysics 1900–1975 (pp. 159–160). https://doi.org/10.4159/harvard.9780674366688.c20
  • Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E., & Haywood, A. M. (2009). High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography, 24(2), PA2218. https://doi.org/10.1029/2008PA001669
  • Lawrimore, J. H., Menne, M. J., Gleason, B. E., Williams, C. N., Wuertz, D. B., Vose, R. S., & Rennie, J. (2011). An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research, 116(D19), D19121. https://doi.org/10.1029/2011JD016187
  • Lea, D. W., Martin, P. A., Pak, D. K., & Spero, H. J. (2002). Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos ridge core. Quaternary Science Review, 21(1–3), 283–293. https://doi.org/10.1016/S0277-3791(01)00081-6
  • Lea, D. W., Pak, D. K., Belanger, C. L., Spero, H. J., Hall, M. A., & Shackleton, N. J. (2006). Paleoclimate history of Galpagos surface waters over the last 135,000 yr. Quaternary Science Reviews, 25(11–12), 1152–1167. https://doi.org/10.1016/j.quascirev.2005.11.010
  • Lea, D. W., Pak, D. K., & Spero, H. J. (2000). Climate impact of late Quaternary equatorial Pacific sea-surface temperature variations. Science, 289(5485), 1719–1724. https://doi.org/10.1126/science.289.5485.1719
  • Lear, C. H., Elderfield, H., & Wilson, P. (2000). Cenozoic deep-sea temperature and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287(5451), 269–272. https://doi.org/10.1126/science.287.5451.269
  • Lemieux-Dudon, B., Blayo, E., Petit, J. R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J. M., Narcisi, B. M., & Parrenin, F. (2010). Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Review, 29(1–2), 8–20. https://doi.org/10.1016/j.quascirev.2009.11.010
  • Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23(7–8), 811–831. https://doi.org/10.1016/j.quascirev.2003.06.012
  • Letts, E., & Blake, R. (1902). The carbonic anhydride of the atmosphere. The Scientific Proceedings of the Royal Dublin Society, 9(1899–1902), 107–270. https://www.jstor.org/stable/30056581
  • Lewis, N., & Curry, J. A. (2015). The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Climate Dynamics, 45(3–4), 1009–1023. https://doi.org/10.1007/s00382-014-2342-y
  • Lewis, N., & Curry, J. A. (2018). The impact of recent forcing and ocean heat uptake data on estimates of climate sensitivity. Journal of Climate, 31(15), 6051–6071. https://doi.org/10.1175/JCLI-D-17-0667.1
  • Lewis, S. E., Sloss, C. R., Murray-Wallace, C. V., Woodroffe, C. D., & Smithers, S. G. (2013). Post-glacial sea-level changes around the Australian margin: A review. Quaternary Science Review, 74, 115–138. https://doi.org/10.1016/j.quascirev.2012.09.006
  • Lichtenegger, H. I. M., Lammer, H., Grieflmeier, J.-M., Kulikov, Y. N., von Paris, P., Hausleitner, W., Krauss, S., & Rauer, H. (2010). Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch. Icarus, 210(1), 1–7. https://doi.org/10.1016/j.icarus.2010.06.042
  • Lin, J. L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. Journal of Climate, 20(18), 4497–4525. https://doi.org/10.1175/JCLI4272.1
  • Lin, J. L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Del Genio, A., Donner, L. J., & Emori, S. (2006). Tropical intraseasonal variability in 14 IPCC AR4 climate models. I. Convective signals. Journal of Climate, 19(12), 2665–2690. https://doi.org/10.1175/JCLI3735.1
  • Lin, J. L., Qian, T., & Shinoda, T. (2014). Stratocumulus clouds in south-eastern Pacific simulated by eight CMIP5-CFMIP global climate models. Journal of Climate, 27(8), 3000–3022. https://doi.org/10.1175/JCLI-D-13-00376.1
  • Lin, J. L., Qian, T., Shinoda, T., & Li, S. (2015). Is the tropical atmosphere in convective quasi-equilibrium? Journal of Climate, 28(11), 4357–4372. https://doi.org/10.1175/JCLI-D-14-00681.1
  • Lisiecki, L. E. (2010). A benthic δ13C-based proxy for atmospheric pCO2 over the last 1.5 Myr. Geophysical Research Letters, 37(21), L21708. https://doi.org/10.1029/2010GL045109
  • Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography, 20(1), A1003. https://doi.org/10.1029/2004PA001071
  • Lisiecki, L. E., & Stern, J. V. (2016). Regional and global benthic d18O stacks for the last glacial cycle. Paleoceanography, 31(10), 1–27. https://doi.org/10.1002/2016PA003002
  • Ljungqvist, F. C. (2010). A new reconstruction of temperature variability in the extra-tropical northern hemisphere during the last two millennia. Geografiska Annaler: Physical Geography, 92A(3), 339–351. https://doi.org/10.1111/j.1468-0459.2010.00399.x
  • Long, A. J., Roberts, D. H., & Rasch, M. (2003). New observations on relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt. Quaternary Research, 60(2), 162–171. https://doi.org/10.1016/S0033-5894(03)00085-1
  • Lovejoy, S. (2015). A voyage through scales, a missing quadrillion and why the climate is not what you expect. Climate Dynamics, 44(11-12), 3187–3210. https://doi.org/10.1007/s00382-014-2324-0
  • Lowenstein, T. K., & Demicco, R. V. (2006). Elevated Eocene atmospheric CO2 and its subsequent decline. Science, 313(5795), 1928. https://doi.org/10.1126/science.1129555
  • Luo, X., Keenan, T. F., Fisher, J. B., Jiménez-Muñoz, J.-C., Chen, J. M., Jiang, C., Ju, W., Perakalapudi, N.-V., Ryu, Y., & Tadic, J. M. (2018). The impact of the 2015/2016 El Nino on global photosynthesis using satellite remote sensing. Philosophical Transaction of the Royal Society B, 373(1760), 20170409. https://doi.org/10.1098/rstb.2017.0409
  • Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D., Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brázdil, R., Camuffo, D., Dobrovolný, P., Gagen, M., García-Bustamante, E., Ge, Q., Gómez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K., Klimenko, V. V., Martín- Chivelet, J., Pfister, C., Roberts, N., Schindler, A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter, O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., & Zerefos, C. (2016). European summer temperatures since Roman times. Environmental Research Letters, 11(2), 024001. https://doi.org/10.1088/1748-9326/11/2/024001
  • Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., & Stocker, T. F. (2008). High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453(7193), 379–382. https://doi.org/10.1038/nature06949
  • Lynch-Stieglitz, J. (2017). The Atlantic meridional overturning circulation and abrupt climate change. Annual Review of Marine Sciences, 9(1), 83–104. https://doi.org/10.1146/annurev-marine-010816-060415
  • MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., van Ommen, T., Smith, A., & Elkins, J. (2006). Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophysical Research Letters, 33(14), L14810. https://doi.org/10.1029/2006GL026152
  • Madden, R. A., & Julian, P. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028%3C0702:DOADOI%3E2.0.CO;2
  • Mangini, A., Spotl, C., & Verdes, P. (2005). Reconstruction of temperature in the Central Alps during the past 2000 yr from a d18O stalagmite record. Earth and Planetary Science Letters, 235(3–4), 741–751. https://doi.org/10.1016/j.epsl.2005.05.010
  • Mann, M. E., Bradley, R. S., & Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters, 26(6), 759–762. https://doi.org/10.1029/1999GL900070
  • Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science, 326(5957), 1256–1260. https://doi.org/10.1126/science.1177303
  • Mann, T., Bender, M. M., Lorscheid, T., Stocchi, P., Vacchi, M., Switzer, A. D., & Rovere, A. (2019). Holocene sea levels in Southeast Asia, Maldives, India and Sri Lanka: The SEAMIS database. Quaternary Science Reviews, 219, 112–125. https://doi.org/10.1016/j.quascirev.2019.07.007
  • Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124), 1198–1201. https://doi.org/10.1126/science.1228026
  • Marin-Carbonne, J., Chaussidon, M., & Robert, F. (2012). Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochim Cosmochim Acta, 92, 129–147. https://doi.org/10.1016/j.gca.2012.05.040
  • Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., & Brewer, S. (2018). Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 554(7690), 92. https://doi.org/10.1038/nature25464
  • MartÌnez-Garcia, A., Rosell-MelÈ, A., McClymont, E. L., Gersonde, R., & Haug, G. H. (2010). Subpolar link to the emergence of the modern Equatorial Pacific cold tongue. Science, 328(5985), 1550–1553. https://doi.org/10.1126/science.1184480
  • Martinson, D. G., Pisias, N. H., Hays, H. D., Imbrie, J., Moore, T. C., & Shackleton, N. J. (1987). Age, dating, and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 27(1), 1–29. https://doi.org/10.1016/0033-5894(87)90046-9
  • Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., & Stocker, T. F. (2007). Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science, 317(5837), 502–507. https://doi.org/10.1126/science.1139994
  • Matthaus, W. (1972). On the history of recording tide gauges. Proceedings of the Royal Society of Edinburgh B, 73, 26–34. doi:10.1017/S0080455X00002083
  • McElwain, J. C., Mayle, F. E., & Beerling, D. J. (2002). Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: A comparison with Antarctic ice core records. Journal of Quaternary Science, 17(1), 21–29. https://doi.org/10.1002/jqs.664
  • McElwain, J. C., & Steinthorsdottir, M. (2017). Paleoecology, ploidy, paleoatmospheric composition, and developmental biology: A review of the multiple uses of fossil stomata. Plant Physiology, 174(2), 650–664. https://doi.org/10.1104/pp.17.00204
  • Meckler, A. N., Clarkson, M. O., Sodemann, H., & Adkins, J. F. (2012). Interglacial hydroclimate in the tropical west Pacific through the late Pleistocene. Science, 336(6086), 1301–1304. https://doi.org/10.1126/science.1218340
  • Medina-Elizalde, M., & Lea, D. W. (2005). The mid-Pleistocene transition in the tropical pacific. Science, 310(5750), 1009–1012. https://doi.org/10.1126/science.1115933
  • Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J., & Trenberth, K. E. (2013). Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. Journal of Climate, 26(18), 7298–7310. https://doi.org/10.1175/JCLI-D-12-00548.1
  • Meehl, G. A., Teng, H., & Arblaster, J. M. (2014). Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4(10), 898–902. https://doi.org/10.1038/nclimate2357
  • Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., & Weiss, R. (2017). Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10(5), 2057–2116. https://doi.org/10.5194/gmd-10-2057-2017
  • Merrifield, M. A., Merrifield, S. T., & Mitchum, G. T. (2009). An anomalous recent acceleration of global sea level rise. Journal of Climate, 22(21), 5772–5781. https://doi.org/10.1175/2009JCLI2985.1
  • Milankovitch, M. M. (1941). Canon of Insolation and the Ice-Age Problem. Beograd: Koniglich Serbische Akademie.
  • Miles, N. L., Richardson, S. J., Davis, K. J., Lauvaux, T., Andrews, A. E., West, T. O., Bandaru, V., & Crosson, E. R. (2012). Large amplitude spatial and temporal gradients in atmospheric boundary layer CO2 mole fractions detected with a tower-based network in the US upper Midwest. Journal of Geophysical Research-Biogeosciences, 117(G1), 01019. https://doi.org/10.1029/2011JG001781
  • Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
  • Miller, K. G., Fairbanks, R. G., & Mountain, G. S. (1987). Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2(1), 1–19. https://doi.org/10.1029/PA002i001p00001
  • Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-black, N., & Pekar, S. F. (2005). The Phanerozoic record of global sea-level change. Science, 310(5752), 1293–1298. https://doi.org/10.1126/science.1116412
  • Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christie-Blick, N., Katz, M. E., & Wright, J. D. (1998). Cenozoic global sea-level, sequences, and the New Jersey Transect: Results from coastal plain and slope drilling. Review of Geophysics, 36(4), 569–601. https://doi.org/10.1029/98RG01624
  • Mills, B. J. W., Krause, A. J., Scotese, C. R., Hill, D. J., Shields, G. A., & Lenton, T. M. (2019). Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present-day. Gondwana Research, 67, 172–186. https://doi.org/10.1016/j.gr.2018.12.0011342-937
  • Mitchell, J. M. (1976). An overview of climatic variability and its causal mechanisms. Quaternary Research, 6(4), 481–493. https://doi.org/10.1016/0033-5894(76)90021-1
  • Mitchell, R. L., & Sheldon, N. D. (2010). The 1100 Ma Sturgeon Falls Paleosol revisited: Implications for Mesoproterozoic weathering environments and atmospheric CO2 levels. Precambrian Research, 183(4), 738–748. https://doi.org/10.1016/j.precamres.2010.09.003
  • Moberg, A., Sonechkln, D. M., Holmgren, K., Datsenko, N. M., & KarlÈn, W. (2005). Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433(7026), 613–617. https://doi.org/10.1038/nature03265
  • Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., & Luckge, A. (2014). North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76–80. https://doi.org/10.1038/nature13196
  • Mojzsis, S. J., Harrison, T. M., & Pidgeon, R. T. (2001). Oxygen isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature, 409(6817), 178–181. https://doi.org/10.1038/35051557
  • Montafiez, I. P., Banner, J. L., Osleger, D. A., Borg, L. E., & Bosserman, P. J. (1996). Integrated Sr isotope variations and sea level history of middle to upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 8Sr/86Sr. Geology, 24, 917–920. https://doi.org/10.1130/0091-7613(1996)024%3C0917:ISIVAS%3E2.3.CO;2
  • Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. Journal of Geophysical Research, 117(D8), D08101. https://doi.org/10.1029/2011JD017187
  • Mosblech, N. A. S., Bush, M. B., Gosling, W. D., Hodell, D. A., Thomas, L., van Calsteren, P., Correa-Metrio, A., Valencia, B. G., Curtis, J., & van Woesik, R. (2012). North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience, 5(11), 817–820. https://doi.org/10.1038/ngeo1588
  • Mosbrugger, V., Utescher, T., & Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences, 102(42), 14964–14969. https://doi.org/10.1073/pnas.0505267102
  • Moseley, G. E., Edwards, R. L., Wendt, K. A., Cheng, H., Dublyanska, Y., Lu, Y., Boch, R., & Spotl, C. (2016). Reconciliation of the Devils Hole climate record with orbital forcing. Science, 351(6269), 165–168. https://doi.org/10.1126/science.aad4132
  • Mudelsee, M., Bickert, T., Lear, C. H., & Lohmann, G. (2014). Cenozoic climate changes: A review based on time series analysis of marine benthic 18O records. Review of Geophysics, 52(3), 333–374. https://doi.org/10.1002/2013RG000440
  • Muller, P. J., Kirst, G., Ruhland, G., von Storch, I., & Rosell-Mele, A. (1998). Calibration of the alkenone paleotemperature index U37 based on core-tops from the eastern South Atlantic and the global ocean (60N-60S). Geochimica et Cosmochimica Acta, 62(10), 1757–1772. https://doi.org/10.1016/S0016-7037(98)00097-0
  • Nance, R. D., Murphy, J. B., & Santosh, M. (2014). The supercontinent cycle: A retrospective essay. Gondwana Research, 25(1), 4–29. https://doi.org/10.1016/j.gr.2012.12.026
  • Nance, R. D., Worsley, T. R., & Moody, J. B. (1986). Post-Archean biogeochemical cycles and long-term episodicity in tectonic process. Geology, 14(6), 514–518. https://doi.org/10.1130/0091-7613(1986)14%3C514:PBCALE%3E2.0.CO;2
  • Navier, C. L. M. H. (1822). On the laws of motion of fluids taking into consideration the adhesion of the molecules. Annales de chimie et de physique, 19, 234–245.
  • Neftel, A., Moor, E., Oeschger, H., & Stauffer, B. (1985). Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature, 315(6014), 45–47. https://doi.org/10.1038/315045a0
  • Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., & Zumbrunn, R. (1982). Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. Nature, 295(5846), 220–223. https://doi.org/10.1038/295220a0
  • Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115
  • NGRIP Members. (2004). High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature, 431(7005), 147–151. https://doi.org/10.1038/nature02805
  • Nilsen, T., Rypdal, K., & Fredriksen, H.-B. (2016). Are there multiple scaling regimes in Holocene temperature records? Earth System Dynamics, 7(2), 419–439. https://doi.org/10.5194/esd-7-419-2016
  • Oba, T., & Murayama, M. (2004). Sea-surface temperature and salinity changes in the northwest Pacific since the Last Glacial Maximum. Journal of Quaternary Science, 19(4), 335–346. https://doi.org/10.1002/jqs.843
  • Oeschger, H., Neftel, A., Staffelbach, T., & Stauffer, B. (1988). The dilemma of the rapid variations in CO2 in Greenland ice cores. Annals of Glaciology, 10, 215–216. https://doi.org/10.3189/S0260305500004626
  • Oppo, D. W., & Sun, Y. (2005). Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian monsoon. Geology, 33(10), 785–788. https://doi.org/10.1130/G21867.1
  • Orr, P. C. (1952). Excavations in Moaning Cave. Santa Barbara Museum of Natural History Anthropology Bulletin, 1, 1–19.
  • Orr, P. C. (1953). Speleothem Age dating. Bulletin of the Texas Archaeological Society, 24, 7–17.
  • Oyabu, I., Kawamura, K., Kitamura, K., Dallmayr, R., Kitamura, A., Sawada, C., Severinghaus, J. P., Beaudette, R., Orsi, A., Sugawara, S., Ishidoya, S., Dahl-Jensen, D., Goto-Azuma, K., Aoki, S., & Nakazawa, T. (2020). New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction. Atmospheric Measurement Techniques, 13(12), 6703–6731. https://doi.org/10.5194/amt-13-6703-2020
  • Pagani, M., Arthur, M. A., & Freeman, K. H. (1999). Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14(3), 273–292. https://doi.org/10.1029/1999PA900006
  • Pagani, M., Huber, M., Liu, Z. H., Bohaty, S., Henderiks, J., Sijp, W., Krishnan, S., & DeConto, R. (2011). The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334(6060), 1261–1264. https://doi.org/10.1126/science.1203909
  • Pagano, T. S., Olsen, E. T., Nguyen, H., Ruzmaikin, A., Jiang, X., & Perkins, L. (2014). Global variability of midtropospheric carbon dioxide as measured by the Atmospheric Infrared Sounder. Journal of Applied Remote Sensing, 8(1), 084984. https://doi.org/10.1117/1.JRS.8.084984
  • PAGES 2k Consortium. (2013). Centennial-scale temperature variability during the past two millennia. Nature Geoscience, 6(5), 339–346. https://doi.org/10.1038/ngeo1797
  • PAGES 2k Consortium. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, https://doi.org/10.1038/sdata.2017.88
  • Pahnke, K., Sachs, J. P., Keigwin, L., Timmermann, A., & Xie, S.-P. (2007). Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography, 22(4), 4214–4228. https://doi.org/10.1029/2007PA001468
  • Pahnke, K., Zahn, R., Elderfield, H., & Schulz, M. (2003). 340,000-Year centennial-scale marine record of southern hemisphere climatic oscillation. Science, 301(5635), 948–952. https://doi.org/10.1126/science.1084451
  • Paillard, D. (2001). Glacial cycles: Toward a new paradigm. Reviews of Geophysics, 39(3), 325–346. https://doi.org/10.1029/2000RG000091
  • Palmer, H. R. (1831). Description of a graphical registrer of tides and winds. Philosophical Transactions of the Royal Society of London, 121, 209–213. https://doi.org/10.1098/rstl.1831.0013
  • PALAEOSENS. (2012). Making sense of paleoclimate sensitivity. Nature, 491(7426), 683–691. https://doi.org/10.1038/nature11574
  • Past Interglacials Working Group of PAGES. (2016). Interglacials of the last 800,000 years. Review of Geophysics, 54(1), 162–219. https://doi.org/10.1002/2015RG000482
  • Patterson, C. C. (1956). Ages of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10(4), 230–237. https://doi.org/10.1016/0016-7037(56)90036-9
  • Pearson, P. N., Foster, G. L., & Wade, B. S. (2009). Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature, 461(7267), 1110–1113. https://doi.org/10.1038/nature08447
  • Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406(6797), 695–699. https://doi.org/10.1038/35021000
  • Pei, Q., Zhang, D. D., Li, J., & Lee, H. F. (2017). Proxy-based northern hemisphere temperature reconstruction for the Mid-to-Late Holocene. Theoretical and Applied Climatology, 130(3–4), 1043–1053. https://doi.org/10.1007/s00704-016-1932-5
  • Pekeris, C. L. (1935). Thermal convection in the interior of the earth. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 3, 346–367. https://doi.org/10.1111/j.1365-246X.1935.tb01742.x
  • Pelletier, J. D. (1997). Analysis and modeling of the natural variability of climate. Journal of Climate, 10(6), 1331–1342. https://doi.org/10.1175/1520-0442(1997)010%3C1331:AAMOTN%3E2.0.CO;2
  • Persoiu, A., Onac, B. P., Wynn, J. G., Blaauw, M., Ionita, M., & Hansson, M. (2017). Holocene winter climate variability in central and eastern Europe. Scientific Report, 7(1), 1196. https://doi.org/10.1038/s41598-017-01397-w
  • Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., & Tans, P. P. (2007). An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proceedings of National Academy of Sciences, 104(48), 18925–18930. https://doi.org/10.1073/pnas.0708986104
  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Saltzman, E., & Stievenard, M. (1999). Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antartica. Nature, 399(6735), 429–436. https://doi.org/10.1038/20859
  • Pettenkofer, M. (1858). Volumetric estimation of atmospheric carbonic acid. Quarterly Journal of the Chemical Society of London, 10(4), 292–297. https://doi.org/10.1039/QJ8581000292
  • Pfleger, F. B. (1948). Foraminifera of a submarine core from the Caribbean Sea. Goteborgs Kungliga Vetenskaps-och Vitterhets-samhalles Handlingar, 6B(5), 3–9.
  • Piani, L., Marrocchi, Y., Rigaudier, T., Vacher, L. G., Thomassin, D., & Marty, B. (2020). Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science, 369(6507), 1110–1113. https://doi.org/10.1126/science.aba1948
  • Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., Ciais, P., Friedlingstein, P., & Sitch, S. (2020). Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26(1), 300–318. https://doi.org/10.1111/gcb.14884
  • Pitman, W. C. (1978). Relationship between eustacy and stratigraphic sequences of passive margins. GSA Bulletin, 89(9), 1389–1403. https://doi.org/10.1130/0016-7606(1978)89%3C1389:RBEASS%3E2.0.CO;2
  • Planck Collaboration. (2016). Planck 2015 results. XIII. Cosmological parameters. Astronomy & Astrophysics, 594, 1–67. https://doi.org/10.1051/0004-6361/201525830
  • Poincare, H. (1901). Sur une forme nouvelle des equations de la m echanique. Comptes Rendus de l'Académie des Sciences, 132, 369–371. https://www.ma.ic.ac.uk/~dholm/classnotes/M3-4A16-Poincare1901.pdf
  • Posamentier, H., & Vail, P. (1988). Eustatic controls on clastic deposition II – Sequence and systems tract models. In C. Wilgus, B. Hastings, C. Kendall, H. Posamentier, C. Ross, & J. Van Wagoner (Eds.), Sea-level changes: An integrated approach (Special Publication, 42, pp. 125–154). Society of Economic Paleontologists and Mineralogists (SEPM).
  • Prokoph, A., Shields, G. A., & Veizer, J. (2008). Compilation and time-series analysis of a marine carbonate d18O, d13C, 87Sr/86Sr and d34S database through Earth history. Earth-Science Reviews, 87(3–4), 113–133. https://doi.org/10.1016/j.earscirev.2007.12.003
  • Rae, J. W. B., Zhang, Y. G., Liu, X., Foster, G. L., Stoll, H. M., & Whiteford, R. D. M. (2021). Atmospheric CO2 over the past 66 million years from Marine Archives. Annual Review of Earth and Planetary Sciences, 49(1), 609–650. https://doi.org/10.1146/annurev-earth-082420-063026
  • Rashid, R., Eisenhauer, A., Stocchi, P., Liebetrau, V., Fietzke, J., Ruggeberg, A., & Dullo, W.-C. (2014). Constraining mid to late Holocene relative sea level change in the southern equatorial Pacific Ocean relative to the Society Islands, French Polynesia. Geochemistry, Geophysics, Geosystems, 15(6), 2601–2615. https://doi.org/10.1002/2014GC005272
  • Rasmussen, S. O., Abbott, P., Blunier, T., Bourne, A., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., & Winstrup, M. (2013). A first chronology for the NEEM ice core. Climate of the Past, 9(6), 2713–2730. https://doi.org/10.5194/cp-9-2713-2013
  • Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M.- L., Johnsen, S. J., Larsen, L. B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E., & Ruth, U. (2006). A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research, 111(D6), D06102. https://doi.org/10.1029/2005jd006079
  • Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., & Winstrup, M. (2014). A stratigraphic framework for abrupt climatic changes during the last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Review, 106, 14–28. https://doi.org/10.1016/j.quascirev.2014.09.007
  • Rasmussen, S. O., Seierstad, I. K., Andersen, K. K., Bigler, M., Dahl-Jensen, D., & Johnsen, S. J. (2008). Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS2 and palaeoclimatic implications. Quaternary Science Reviews, 27(1–2), 18–28. https://doi.org/10.1016/j.quascirev.2007.01.016
  • Ray, R. D., & Douglas, B. C. (2011). Experiments in reconstructing twentieth-century sea levels. Progress in Oceanography, 91(4), 496–515. https://doi.org/10.1016/j.pocean.2011.07.021
  • Raymo, M. E. (1997). The timing of major climate terminations. Paleoceanography, 12(4), 577–585. https://doi.org/10.1029/97PA01169
  • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670
  • Rind, D., Shindell, D., Perlwitz, J., Lerner, J., & Lonergan, P. (2004). The relative importance of solar and anthropogenic forcing of climate change between the Maunder minimum and the present. Journal of Climate, 17(5), 906–929. https://doi.org/10.1175/1520-0442(2004)017%3C0906:TRIOSA%3E2.0.CO;2
  • Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443(7114), 969–972. https://doi.org/10.1038/nature05239
  • Rosell-Mele, A., Bard, E., Emeis, K.-C., Grimalt, J. O., Müller, P., Schneider, R., Bouloubassi, I., Epstein, B., Fahl, K., Fluegge, A., Freeman, K., Goñi, M., Güntner, U., Hartz, D., Hellebust, S., Herbert, T., Ikehara, M., Ishiwatari, R., Kawamura, K., Kenig, F., Leeuw, J., Lehman, S., Mejanelle, L., Ohkouchi, N., Pancost, R. D., Pelejero, C., Prahl, F., Quinn, J., Rontani, J., Rostek, F., Rullkötter, J., Sachs, J., Blanz, T., Sawada, K., Schulz-Bull, D., Sikes, E., Sonzogni, C., Ternois, Y., Versteegh, G., Volkman, J. K., & Wakeham, S. (2001). Precision of the current methods to measure the alkenone proxy UK’37 and absolute alkenone abundance in sediments: Results of an interlaboratory comparison study. Geochemistry, Geophysics, Geosystems, 2(7), https://doi.org/10.1029/2000GC000141
  • Rosenthal, Y., Perron-Cashman, S., Lear, C. H., Bard, E., Barker, S., Billups, K., Bryan, M., Delaney, M. L., Demenocal, P., Dwyer, G. S., Elderfield, H., German, C. R., Greaves, M., Lea, D. Marchitto, T., Pak, D., Ravelo, A. C., Paradis, G. L., Russell, A. D., Schneider, R. R., & Scheindrich, K. (2004). Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochemistry, Geophysics, Geosystems, 5(4), Q04D09. https://doi.org/10.1029/2003GC000650
  • Rossby, C. G. (1939). Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. Journal of Marine Research, 2(1), 38–55. https://doi.org/10.1357/002224039806649023
  • Rothman, D. H. (2002). Atmospheric carbon dioxide levels for the last 500 million years. Proceedings of the National Academy of Sciences, 99(7), 4167–4171. https://doi.org/10.1073/pnas.022055499
  • Royer, D. L. (2014). Atmospheric CO2 and O2 during the Phanerozoic: Tools, patterns, and impacts. Geochemistry Treatise, 6, 251–267. https://doi.org/10.1016/B978-0-08-095975-7.01311-5
  • Royer, D. L. (2016). Climate sensitivity in the geologic past. Annual Review of Earth and Planetary Sciences, 44(1). https://doi.org/10.1146/annurev-earth-100815-024150
  • Royer, D. L., Berner, R. A., Montanez, I. P., Tabor, N. J., & Beerling, D. J. (2004). CO2 as a primary driver of Phanerozoic climate change. GSA Today, 14(3), 4–10. https://doi.org/10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2
  • Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1992). Relation between long-term trends of O-18 isotope composition of precipitation and climate. Science, 258(5084), 981–985. https://doi.org/10.1126/science.258.5084.981
  • Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotopic patterns in modern precipitation. In P. K. Swart, K. C. Lohmann, J. McKenzie, & S. Savin (Eds.), Climate change in continental isotopic records (Geophysical Monograph, 78, pp. 1–36). American Geophysical Union.
  • Ruehlemann, C., Mulitza, S., Mueller, P., Wefer, G., & Zahn, R. (1999). Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature, 402(6761), 511–514. https://doi.org/10.1038/990069
  • Rugenstein, J. K. C., & Chamberlain, C. P. (2018). The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective. Earth Science Reviews, 185, 1129–1156. https://doi.org/10.1016/j.earscirev.2018.09.003
  • Runcorn, S. (1962). Towards a theory of continental drift. Nature, 193(4813), 311–314. https://doi.org/10.1038/193311a0
  • Rundgren, M., & Beerling, D. (1999). A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. Leaves from northern Sweden. The Holocene, 9(5), 509–513. https://doi.org/10.1191/095968399677717287
  • Rundgren, M., & Bjorck, S. (2003). Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth and Planetary Science Letters, 213(3–4), 191–204. https://doi.org/10.1016/S0012-821X(03)00324-8
  • Rundgren, M., Bjorck, S., & Hammarlund, D. (2005). Last interglacial atmospheric CO2 changes from stomatal index data and their relation to climate variations. Global and Planetary Change, 49(1–2), 47–62. https://doi.org/10.1016/j.gloplacha.2005.04.002
  • Rutherford, E. (1905). Present problems in radioactivity. Popular Science Monthly, 67, 1–34.
  • Rye, R., Kuo, P. H., & Holland, H. D. (1995). Atmospheric carbon dioxide concentration before 2.2 billion years ago. Nature, 378(6557), 603–605. https://doi.org/10.1038/378603a0
  • Saltzman, B., Hansen, A. R., & Maasch, K. A. (1984). The late Quaternary glaciations as the response of a three-component feedback system to Earth-orbital forcing. Journal of the Atmospheric Sciences, 41(23), 3380–3389. https://doi.org/10.1175/1520-0469(1984)041%3C3380:TLQGAT%3E2.0.CO;2
  • Sancetta, C., Imbrie, J., & Kipp, N. G. (1973). Climatic record of the past 130,000 years in North Atlantic deep-sea core V23-82: Correlation with the terrestrial record. Quaternary Research, 3(1), 110–116. https://doi.org/10.1016/0033-5894(73)90057-4
  • Schlesinger, M. E., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726. https://doi.org/10.1038/367723a0
  • Schmittner, A., Urban, N. M., Shakun, J. D., Mahowald, N. M., Clark, P. U., Bartlein, P. J., Mix, A. C., & Rosellmele, A. (2011). Climate sensitivity estimated from temperature reconstructions of the last glacial maximum. Science, 334(6061), 1385–1388. https://doi.org/10.1126/science.1203513
  • Schmitz, M. D., & Ogg, G. M. (2012). The geological time scale 2012. Elsevier. https://www.sciencedirect.com/book/9780444594259/the-geologic-time-scale
  • Schneider, L., Smerdon, J., Buntgen, U., Wilson, R., Myglan, V., Kirdyanov, A., & Esper, J. (2015). Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophysical Research Letters, 42(11), 4556–4562. https://doi.org/10.1002/2015GL063956
  • Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., & Burrows, J. P. (2011). Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmospheric Chemistry and Physics, 11, 2863–2880. https://doi.org/10.5194/acp-11-2863-2011
  • Scholander, P. F., Dansgaard, W., Nutt, D., de Vries, H., Coachman, L., & Hemmingsen, E. (1962). Radio-carbon age and oxygen-18 content of Greenland icebergs. Meddelser om Grønland, 165(1), 26.
  • Schrag, D. P., Higgins, J. A., Macdonald, F. A., & Johnston, D. T. (2013). Authigenic carbonate and the history of the global carbon cycle. Science, 339(6119), 540–543. https://doi.org/10.1126/science.1229578
  • Schulz, H., von Rad, U., & Erlenkeuser, H. (1998). Correlation between Arabian Sea and Greenland climate oscillations for the past 110,000 years. Nature, 393(6680), 54–57. https://doi.org/10.1038/31750
  • Schwartzman, D. W. (2015, April 1). The case for a hot Archean climate and its implications to the history of the biosphere. arxiv.org. https://doi.org/10.48550/arXiv.1504.00401
  • Schwarzbach, M. (1963). Climates of the past: an introduction to paleoclimatology. D. Van Nostrand (Ed.), 328 pp.
  • Scotese, C. R., Song, H., Mills, B. J. W., & van der Meer, D. G. (2021). Phanerozoic paleotemperatures: The Earth’s changing climate during the last 540 million years. Earth Science Reviews, 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503
  • Shackleton, N. J. (1967). Oxygen isotopic analyses and Pleistocene temperatures re-assessed. Nature 215, 15–17. https://doi.org/10.1038/215015a0
  • Shackleton, N. J. (1974). Attainment of isotopic equilibrium between ocean water and benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. In Les methodes quantitatives d'etude des variations du climat au cours du Pleistocene (pp. 203–209). CNRS.
  • Shackleton, N. J., Berger, A., & Peltier, W. R. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 81(4), 251–261. https://doi.org/10.1017/S0263593300020782
  • Shackleton, N. J., Hall, M. A., & Vincent, E. (2000). Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography, 115(6), 565–569. https://doi.org/10.1029/2000PA000513
  • Shackleton, N. J., & Kennett, J. P. (1975). Palaeotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analysis in DSDP sites 277, 279, 281. Initial Report of the Deep Sea Drilling Project, 29, 743–755.
  • Shackleton, N. J., & Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3(1), 39–55. https://doi.org/10.1016/0033-5894(73)90052-5
  • Shakun, J. D., Lea, D. W., Lisiecki, L. E., & Raymo, M. E. (2015). An 800-kyr record of global surface ocean 18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters, 426, 58–68. https://doi.org/10.1016/j.epsl.2015.05.042
  • Shanahan, T. M., Overpeck, J., Anchukaitis, K., Beck, J., Cole, J., Dettman, D., Peck, J., Scholz, C., & King, J. (2009). Atlantic forcing of persistent drought in West Africa. Science, 324(5925), 377–380. https://doi.org/10.1126/science.1166352
  • Shao, Z. G., & Ditlevsen, P. D. (2016). Contrasting scaling properties of inter-glacial and glacial climates. Nature Communications, 7(1), 10951. https://doi.org/10.1038/ncomms10951
  • Shaviv, A., Prokoph, A., & Veizer, J. (2014). Is the Solar System’s galactic motion imprinted in the Phanerozoic climate? Scientific Report, 4(1), 6150. https://doi.org/10.1038/srep06150
  • Shaviv, N., & Veizer, J. (2004). Comments on “CO2 as a primary driver of Phanerozoic climate” by Royer Berner, R. A., Montanez, I. P., Tabor, N. J., & Beerling, D. J. GSA Today, 14(18), 4–7. https://doi.org/10.1130/1052-5173(2004)014<e4:CAAPDO>2.0.CO;2
  • Shaviv, N. J., & Veizer, J. (2003). Celestial driver of Phanerozoic climate? GSA Today, 13(7), 4–10. https://doi.org/10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2
  • Sheldon, N. D. (2006). Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147(1–2), 148–155. https://doi.org/10.1016/j.precamres.2006.02.004
  • Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews, 95(1–2), 1–52. https://doi.org/10.1016/j.earscirev.2009.03.004
  • Shepard, F. P. (1964). Sea level changes in the past 6,000 years: Possible archaeological significance. Science, 143(3606), 574–576. https://doi.org/10.1126/science.143.3606.574
  • Shepard, F. P., & Suess, H. E. (1956). Rate of postglacial rise of sea level. Science, 123(3207), 1082–1083. https://doi.org/10.1126/science.123.3207.1082.b
  • Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., & Zelinka, M. D. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58, e2019RG000678. https://doi.org/10.1029/2019RG000678
  • Shields, G. A., & Veizer, J. (2002). The Precambrian marine carbonate isotope database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6), 1–12. https://doi.org/10.1029/2001GC000266
  • Shugar, D. H., Walker, I. J., Lian, O. B., Eamer, J. B. R., Neudorf, C., McLaren, D., & Fedje, D. (2014). Post-glacial sea-level change along the Pacific coast of North America. Quaternary Science Reviews, 97, 170–192. https://doi.org/10.1016/j.quascirev.2014.05.022
  • Shvedov, F. (1892). Tree as a drought chronicle. Meteorological Vestnik, 5, 163–178 (in Russian).
  • Sicre, M.-A., Yiou, P., EirÌksson, J., Ezat, U., Guimbaut, E., Dahhaoui, I., Knudsen, K., Jansen, E., & Turon, J.-L. (2008). A 4500-year reconstruction of sea surface temperature variability at decadal time scales off North Iceland. Quaternary Science Reviews, 27(21–22), 2041–2047. https://doi.org/10.1016/j.quascirev.2008.08.009
  • Siddall, M., Kaplan, M. R., Schaefer, J. M., Putnam, A., Kelly, M. A., & Goehring, B. (2010). Changing influence of Antarctic and Greenlandic temperature records on sea-level over the last glacial cycle. Quaternary Science Reviews, 29(3–4), 410–423. https://doi.org/10.1016/j.quascirev.2009.11.007
  • Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, C. H., Meischner, D., Schmelzer, I., & Smeed, D. A. (2003). Sea level fluctuations during the last glacial cycle. Nature, 423(6942), 853–858. https://doi.org/10.1038/nature01690
  • Siddall, M., Rohling, E. J., Thompson, W. G., & Waelbroeck, C. (2008). Marine isotope stage 3 sea level fluctuations: Data synthesis and new outlook. Review of Geophysics, 46(4), RG4003. https://doi.org/10.1029/2007RG000226
  • Siegenthaler, U., & Sarmiento, J. L. (1993). Atmospheric carbon dioxide and the ocean. Nature, 365(6442), 119–125. https://doi.org/10.1038/365119a0
  • Siegenthaler, U., Friedli, H., Loetscher, H., Moor, E., Neftel, A., Oeschger, H., & Stauffer, B. (1988). Stable-isotope ratios and concentration of CO2 in air from polar ice cores. Annals of Glaciology, 10, 1–6. https://doi.org/10.3189/S0260305500004341
  • Siegenthaler, U., Monnin, E., Kawamura, K., Spahni, R., Schwander, J., Stauffer, B., Stocker, T. F., Barnola, J.-M., & Fischer, H. (2005). Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus, 57B(7), 51–57. https://doi.org/10.1111/j.1600-0889.2005.00131.x
  • Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., Mc-Connell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., & Sowers, T. A. (2016). The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP). Climate of the Past, 12(3), 769–786. https://doi.org/10.5194/cp-12-769-2016
  • Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M., & Myhre, G. (2014). A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth System Dynamics, 5(1), 139–175. https://doi.org/10.5194/esd-5-139-2014
  • Smith, H. J., Wahlen, M., Mastroianni, D., & Taylor, K. C. (1997). The CO2 concentration of air trapped in GISP2 ice from the Last Glacial Maximum-Holocene transition. Geophysical Research Letters, 24(1), 1–4. https://doi.org/10.1029/96GL03700
  • Smith, P. M., Wynn, P. A., Barker, P., Leng, M., Noble, S. R., & Tych, W. (2016). North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Scientific Reports, 6(1), 24745. https://doi.org/10.1038/srep24745
  • Smith, W. (1815). A Memoir to the Map and Delineation of the Strata of England and Wales, with Parts of Scotland. John Cary (Ed.), London, 51 pp.
  • Smith, W. (1816). Strata Identified by Organized Fossils. W. Arding (Ed.), London, 32 pp.
  • Snyder, C. W. (2019). Revised estimates of paleoclimate sensitivity over the past 800,000 years. Climatic Change, 156(1), 121–138. https://doi.org/10.1007/s10584-019-02536-0
  • Soden, B. J., & Vecchi, G. A. (2011). The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophysical Research Letters, 38(12), L12704. https://doi.org/10.1029/2011GL047632
  • Song, B., Li, Z., Saito, Y., Okuno, J. I., Li, Z., Lu, A. Q., Hua, D., Li, J., Li, Y. X., & Nakashima, R. (2013). Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change. Palaeogeography, Palaeoclimatology, Palaeoecology, 388, 81–97. https://doi.org/10.1016/j.palaeo.2013.07.026
  • Song, H., Wignall, P. B., Song, H., Dai, X., & Chu, D. (2019). Seawater temperature and dissolved oxygen over the past 500 million years. Journal of Earth Sciences, 30(2), 236–243. https://doi.org/10.1007/s12583-028-1002-2
  • Sowers, T., Brook, E., Etheridge, D., Blunier, T., Fuchs, A., Leuenberger, M., Chappellaz, J., Barnola, J. M., Wahlen, M., Deck, B., & Weyhenmeyer, C. (1997). An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores. Journal of Geophysical Research, 102(C12), 26527–26538. https://doi.org/10.1029/97JC00633
  • Sparrenbom, C. J., Bennike, O., Bjorck, S., & Lambeck, K. (2006). Relative sea-level changes since 15 000 cal. yr BP in the Nanortalik area, southern Greenland. Journal of Quaternary Science, 21(1), 29–48. https://doi.org/10.1002/jqs.940
  • Spratt, R. M., & Lisiecki, L. E. (2016). A late Pleistocene sea level stack. Climate of the Past, 12(4), 1079–1092. https://doi.org/10.5194/cp-12-1079-2016
  • Stanhill, G. (1982). The Montsouris series of carbon dioxide concentration measurements 1877–1910. Climatic Change, 4(3), 221–237. https://doi.org/10.1007/BF02423398
  • Stansell, N. D., Klein, E. S., Finkenbinder, M. S., Fortney, C. S., Dodd, J. P., Terasmaa, J., & Nelson, D. B. (2017). A stable isotope record of Holocene precipitation dynamics in the Baltic region from Lake Nuudsaku, Estonia. Quaternary Science Reviews, 175, 73–84. https://doi.org/10.1016/j.quascirev.2017.09.013
  • Stap, L. B., de Boer, B., Ziegler, M., Bintanja, R., Lourens, L. J., & van de Wal, R. S. W. (2016). CO2 over the past 5 million years: Continuous simulation and new δ11B-based proxy data. Earth and Planetary Science Letters, 439, 1–10. https://doi.org/10.1016/j.epsl.2016.01.022
  • Staubwasser, M., Sirocko, F., Grootes, P. M., & Segl, M. (2003). Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30(8), 1425. https://doi.org/10.1029/2002GL016822
  • Stauffer, B., Hofer, H., Oeschger, H., Schwander, J., & Siegenthaler, U. (1984). Atmospheric COz concentration during the last glaciation. Annals of Glaciology, 5, 160–164. https://doi.org/10.3189/1984AoG5-1-160-164
  • Steig, E. J., Ding, Q. H., White, J. W. C., Kuttel, M., Rupper, S. B., Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T. J., Schneider, D. P., Schauer, A. J., Teel, R. P., Vaughn, B. H., Burgener, L., Williams, J., & Korotkikh, E. (2013). Recent climate and ice-sheet changes in west Antarctica compared with the past 2,000 years. Nature Geoscience, 6(5), 372–375. https://doi.org/10.1038/ngeo1778
  • Steiger, N. J., Smerdon, J. E., Cook, E. R., & Cook, B. I. (2018). A reconstruction of global hydroclimate and dynamical variables over the Common Era. Scientific Data, 5, 180086. https://doi.org/10.1038/sdata.2018.86
  • Stenonis, N. (1669). De Solido intra Solidum Naturaliter Contento Dissertationais Prodromus. Florence, Stellae. 78 pp.
  • Steinhoefel, G., Horn, I., & Blanckenburg, F. (2009). Micro-scale tracing of Fe and Si isotope signatures in banded iron formation using femtosecond laser ablation. Geochimica et Cosmochimica Acta, 18(18), 5343–5360. https://doi.org/10.1016/j.gca.2009.05.037
  • Steinthorsdottir, M., Porter, A. S., Holohan, A., Kunzmann, L., Collinson, M., & McElwain, J. C. (2016). Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary. Climate of the Past, 12(2), 439–454. https://doi.org/10.5194/cpd-11-4985-2015
  • Stenni, B., Buiron, D., Frezzotti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., Baroni, M., Baumgartner, M., Bonazza, M., & Capron, E. (2011). Expression of the bipolar seesaw in Antarctic climate records during the last deglaciation. Nature Geoscience, 4(1), 46–49. https://doi.org/10.1038/ngeo1026
  • Stern, R. J. (2018). The evolution of plate tectonics. Philosophical Transaction of The Royal Society A, 376(2132), 20170406. https://doi.org/10.1098/rsta.2017.0406
  • Stockton, C. W., & Meko, D. M. (1975). A long-term history of drought occurrence in western United States as inferred from tree rings. Weatherwise, 28(6), 244–249. https://doi.org/10.1080/00431672.1975.9931775
  • Stokes, G. G. (1842). On the steady motion of incompressible fluids. Transactions of the Cambridge Philosophical Society, 7, 439–453.
  • Stokes, G. M., & Schwartz, S. E. (1994). The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation testbed. Bulletin of the American Meteorological Society, 75(7), 1201–1221. https://doi.org/10.1175/1520-0477(1994)075%3C1201:TARMPP%3E2.0.CO;2
  • Stott, L. K., Cannariato, K., Thunell, R., Haug, G. H., Koutavas, A., & Lund, S. (2004). Decline in surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 431(7004), 56–59. https://doi.org/10.1038/nature02903
  • Suchecki, R. K., Hubert, J. F., & Birney de Wet, C. C. (1988). Isotopic imprint of climate and hydrogeochemistry on terrestrial strata of the Triassic-Jurassic Hartford and Fundy rift basins. Journal of Sedimentary Petrology, 58, 801–811. https://doi.org/10.1306/212F8E6D-2B24-11D7-8648000102C1865D
  • Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., & Vinther, B. M. (2008). A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 4(1), 47–57. https://doi.org/10.5194/cp-4-47-2008
  • Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Rasmussen, S. O., Röthlisberger, R., Steffensen, J. P., & Vinther, B. M. (2006). The Greenland Ice Core Chronology 2005, 15–42 ka. Part 2: Comparison to other records. Quaternary Science Review, 25(23-24), 3258–3267. https://doi.org/10.1016/j.quascirev.2006.08.003
  • Sverdrup, H. U. (1947). Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proceedings of National Academy of Sciences, 33(11), 318–326. https://doi.org/10.1073/pnas.33.11.318
  • Sweeney, C., Karion, A., Wolter, S., Newberger, T., Guenther, D., Higgs, J. A., Andrews, A. E., Lang, P. M., Neff, D., Dlugokencky, E., Miller, J. B., Montzka, S. A., Miller, B. R., Masarie, K. A., Biraud, S. C., Novelli, P. C., Crotwell, M., Crotwell, A. M., Thoning, K., & Tans, P. P. (2015). Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. Journal of Geophysical Research-Atmosphere, 120(10), 5155–5190. https://doi.org/10.1002/2014JD022591
  • Tans, P. P., Conway, T. J., & Nakazawa, T. (1989). Latitudinal distribution of the sources and sinks of atmospheric carbon-dioxide derived from surface observations and an atmospheric transport model. Journal of Geophysical Research-Atmosphere, 94(D4), 5151–5172. https://doi.org/10.1029/JD094iD04p05151
  • Tartese, R., Chaussidon, M., Gurenko, A., Delarue, F., & Robert, F. (2017). Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochemical Perspectives Letters, 3, 55–65. https://doi.org/10.7185/geochemlet.1706
  • Thenard, J. (1813). Traite elementaire de chimie (1a. ed., 4a. ed., 1813–1816 y 6a. ed., 1834–1836). Crochard.
  • Thompson, L. G., Davis, M. E. Mosley-Thompson, E., Sowers, T. A., Henderson, K. A., Zagorodnov, V. S., Lin, P.-N., Mikhalenko, V. N., Campen, R. K., Bolzan, J. F., Cole-Dai, J., & Francou, B. (1998). A 25,000 year tropical climate history from Bolivian ice cores. Science, 282(5395), 1858–1864. https://doi.org/10.1126/science.282.5395.1858
  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Brecher, H. H, Zagorodnov, V. S., Mashiotta, T. A., Lin, P.-N., Mikhalenko, V. N., Hardy, D. R., & Beer, J. (2002). Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science, 298(5593), 589–593. https://doi.org/10.1126/science.1073198
  • Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., & Liu, K.-b. (1995). Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science, 269(5220), 46–50. https://doi.org/10.1126/science.269.5220.46
  • Thompson, L. G., Mosley-Thompson, E., & Henderson, K. A. (2000). Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science, 15(4), 377–394. https://doi.org/10.1002/1099-1417(200005)15:4%3C377::AID-JQS542%3E3.0.CO;2-L
  • Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., & Bolzan, J. F. (1997). Tropical climate instability: The Last Glacial Cycle from a Qinghai-Tibetan ice core. Science, 276(5320), 1821–1825. https://doi.org/10.1126/science.276.5320.1821
  • Tierney, J. E., Abram, N. J., Anchukaitis, K. J., Evans, M. N., Giry, C., Kilbourne, K. H., Saenger, C. P., Wu, H. C., & Zinke, J. (2015). Tropical sea-surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography, 30(3), 226–252. https://doi.org/10.1002/2014PA002717
  • Tornqvist, T. E., Gonzalez, J. L., Newsom, L. A., Van der Borg, K., De Jong, A. F. M., & Kurnik, C. W. (2004). Deciphering Holocene sea-level history on the US Gulf Coast: A high-resolution record from the Mississippi Delta. GSA Bulletin, 116(7–8), 1026–1039. https://doi.org/10.1130/b2525478.1
  • Trenberth, K. E. (2015). Has there been a hiatus? Science, 349(6249), 691–692. https://doi.org/10.1126/science.aac9225
  • Tripati, A. K., Roberts, C. D., & Eagle, R. A. (2009). Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years. Science, 326(5958), 1394–1397. https://doi.org/10.1126/science.1178296
  • Trouet, V., Diaz, H. F., Wahl, E. R., Viau, A. E., Graham, R., Graham, N., & Cook, E. R. (2013). A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environmental Research Letters, 8(2), 024008. https://doi.org/10.1088/1748-9326/8/2/024008
  • Tung, K.-K., & Zhou, J. (2013). Using data to attribute episodes of warming and cooling in instrumental records. Proceedings of National Academy of Sciences, 110(6), 2058–2063. https://doi.org/10.1073/pnas.1212471110
  • Tzdakis, P. C., Andrieu, V., De Beaulieu, J. L., Crowhurst, S. D., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton N. J., & Wijmstra, T. A. (1997). Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth and Planetary Science Letters, 150(1–2), 171–176. https://doi.org/10.1016/S0012-821X(97)00078-2
  • Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 1947, 562–581. https://doi.org/10.1039/JR9470000562
  • U.S. Committee for the Global Atmospheric Research Program. (1975). Understanding climatic change: A program for action. National Academy of Sciences.
  • Ushikubo, T., Kita, N. T., Cavosie, A. J., Wilde, S. A., Rudnick, R. L., & Valley, J. W. (2008). Lithium in Jack Hills zircons: Recycling of Earth’s earliest crust. Earth and Planetary Science Letters, 272(3–4), 666–676. https://doi.org/10.1016/j.epsl.2008.05.032
  • Vail, P. R., Mitchum, R. M., Todd, R. G., & Widmier, J. M. (1977). Seismic stratigraphy and global changes of sea level. In C. E. Payton (Ed.), Stratigraphic interpretation of seismic data (pp. 49–212). https://archives.datapages.com/data/specpubs/seismic1/data/a165/a165/0001/0050/0083.htm
  • Valley, J. W., Cavosie, A. J., Ushikubo, T., Reinhard, D. A., Lawrence, D. F., Larson, D. J., Clifton, P. H., Kelly, T. F., Wilde, S. A., Moser, D. E., & Spicuzza, M. J. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7(3), 219. https://doi.org/10.1038/ngeo2075
  • Valley, J. W., Peck, W. H., King, E. M., & Wilde, S. A. (2002). A cool early Earth. Geology, 30(4), 351–354. https://doi.org/10.1130/0091-7613(2002)030%3C0351:ACEE%3E2.0.CO;2
  • van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W., & Vroon, P. Z. (2007). Dual role of seawater and hydrothermal fluids in early Archean chert formation: Evidence from silicon isotopes. Geology, 35(10), 939–942. https://doi.org/10.1130/G24096A.1
  • van der Burgh, J., Visscher, H., Dilcher, D. L., & Kurschner, W. M. (1993). Paleoatmospheric signatures in Neogene fossil leaves. Science, 260(5115), 1788–1790. https://doi.org/10.1126/science.260.5115.1788
  • van der Hammen, T., Wijmstra, T. A., & Zagwijn, W. H. (1971). The floral record of the late Cenozoic of Europe. In K. K. Turekian (Ed.), The Late Cenozoic Glacial ages (pp. 391–424).
  • van Veen, J. (1945). Bestaat er een geologische bodemdaling te Amsterdam sedert 1700? Tijdschrift Koninklijk Nederlands Aar- drijkskundig Genootschap, 62, 2–36 (in Dutch).
  • Vautravers, M. J., & Shackleton, N. J. (2006). Centennial-scale surface hydrology off Portugal during marine isotope stage 3: Insights from planktonic foraminiferal fauna variability. Paleoceanography, 21(3), PA3004. https://doi.org/10.1029/2005PA001144
  • Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O., & Strauss, H. (1999). 87Sr/86Sr, d13c and d18O evolution of Phanerozoic seawater. Chemical Geology, 161(1–3), 59–88. https://doi.org/10.1016/S0009-2541(99)00081-9
  • Veizer, J., Godderis, Y., & Francois, L. M. (2000). Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408(6813), 698–701. https://doi.org/10.1038/35047044
  • Veizer, J., & Prokoph, A. (2015). Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146, 92–104. https://doi.org/10.1016/j.earscirev.2015.03.008
  • Verard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M., & Liu, M. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea. Journal of Palaeogeography, 4(1), 64–84. https://doi.org/10.3724/SP.J.1261.2015.00068
  • Verard, C., & Veizer, J. (2019). On plate tectonics and ocean temperatures. Geology, 47(9), 881–885. https://doi.org/10.1130/G46376.1
  • Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., & Wolff, E. W. (2013). The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 9(4), 1733–1748. https://doi.org/10.5194/cp-9-1733-2013
  • Viau, A. E., Gajewski, K., Sawada, M. C., & Fines, P. (2006). Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research, 111(D9), D09102. https://doi.org/10.1029/2005JD006031
  • Vinther, B. M., Clausen, H., Johnsen, S., Rasmussen, S., Andersen, K., Buchardt, S., Dahl-Jensen, D., Seierstad, I., Siggaard-Andersen, M., Steffensen, J., Svensson, A., Olsen, J., Heinemeier, J. (2006). A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research, 111(D13), D13102. https://doi.org/10.1029/2005JD006921
  • Vinther, B. M., Jones, P. D., Briffa, K. R., Clausen, H. B., Andersen, K. K., Dahl-Jensen, D., & Johnsen, S. J. (2010). Climatic signals in multiple highly resolved stable isotope records from Greenland. Quaternary Science Reviews, 29(3–4), 522–538. https://doi.org/10.1016/j.quascirev.2009.11.002
  • Voarintsoa, N. R., Brook, G., Liang, F., Marais, E., Hardt, B., Cheng, H., Edwards, R., & Railsback, L. (2016). Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: Linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from AD 1400 to 1950. The Holocene, 27, 384–396. https://doi.org/10.1177/0959683616660170
  • Voelker, A. H. L., & de Abreu, L. (2011). A review of abrupt climate change events in the northeastern Atlantic Ocean (Iberian margin): latitudinal, longitudinal and vertical gradients. In H. Rashid, L. Polyak, & E. Mosley-Thompson (Eds.), Abrupt climate change: Mechanisms, patterns, and impacts (pp. 15–37). AGU.
  • Voelker, A. H. L., Lebreiro, S. M., Schonfeld, J., Cacho, I., Erlenkeuser, H., & Abrantes, F. (2006). Mediterranean outflow strengthening during northern hemisphere coolings: A salt source for the glacial Atlantic? Earth and Planetary Science Letters, 245(1–2), 39–55. https://doi.org/10.1016/j.epsl.2006.03.014
  • von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., & Johnsen, S. J. (1999). A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science, 284(5420), 1654–1657. https://doi.org/10.1126/science.284.5420.1654
  • Vose, R. S., Arndt, D., Banzon, V. F., Easterling, D. R., Gleason, B., Huang, B., Kearns, E., Lawrimore, J. H., Menne, M. J., Peterson, T. C., Reynolds, R. W., Smith, T. M., Williams, C. N., & Wuertz, D. B. (2012). NOAA’s merged land-ocean surface temperature analysis. Bulletin of the American Meteorological Society, 93(11), 1677–1685. https://doi.org/10.1175/BAMS-D-11-00241.1
  • Vries, D. H., & Barendsen, G. W. (1954). Measurements of age by the carbon-14 technique. Nature, 174(4442), 138–146. https://doi.org/10.1038/1741138a0
  • Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., & McManus, J. (2002). Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Review, 21(1–3), 295–305. https://doi.org/10.1016/S0277-3791(01)00101-9
  • Wagner, F., Aaby, B., & Visscher, H. (2002). Rapid atmospheric CO2 changes associated with the 8200-years-B.P. cooling event. Proceedings of the National Academy of Sciences, 99(19), 12011–12014. https://doi.org/10.1073/pnas.182420699
  • Wagner, F., Bohncke, S. J. P., DeKlerk, P., Dilcher, D. L., Kurschner, W. M., & Visscher, H. (1999). Century-scale shifts in early Holocene atmospheric CO2 concentration. Science, 284(5422), 1971–1973. https://doi.org/10.1126/science.284.5422.1971
  • Wagner, F., Kouwenberg, L. L. R., Van Hoof, T. B., & Visscher, H. (2004). Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency. Quaternary Science Reviews, 23(18-19), 1947–1954. https://doi.org/10.1016/j.quascirev.2004.04.003
  • Walker, M., Gibbard, P., Head, M. J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L. C., Gkinis, V., Long, A., Lowe, J., Newnham, R., Rasmussen, S. O., & Weiss, H. (2019). Formal Subdivision of the Holocene Series/Epoch: A summary. Journal of the Geological Society of India, 93(2), 135–141. https://doi.org/10.1007/s12594-019-1141-9
  • Wallace, J. M. (1992). Effect of deep convection on the regulation of tropical sea surface temperature. Nature, 357(6375), 230–231. https://doi.org/10.1038/357230a0
  • Wang, X., Edwards, R. L., Auler, A. S., Cheng, H., Kong, X., Wang, Y., Cruz, F. W., Dorale, J. A., & Chiang, H.-W. (2017). Hydroclimate changes across the Amazon low-lands over the past 45,000 years. Nature, 541(7636), 204–207. https://doi.org/10.1038/nature20787
  • Wang, Y., Cheng, H., Edwards, R. L., He, Y. Q., Kong, X. G., An, Z. S., Wu, J. Y., Kelly, M. J., Dykoski, C. A., & Li, X. D. (2005). The Holocene Asian monsoon: Links to solar changes and north Atlantic climate. Science, 308(5723), 854. https://doi.org/10.1126/science.1106296
  • Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., & Dorale, J. A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 2345–2348. https://doi.org/10.1126/science.1064618
  • Watcham, E. P., Bentley, M. J., Hodgson, D. A., Roberts, S. J., Fretwell, P. T., Lloyd, J. M., Larter, R. D., Whitehouse, P. L., Leng, M. J., Monien, P., & Moreton, S. G. (2011). A new Holocene relative sea level curve for the South Shetland Islands. Antarctica. Quaternary Science Review, 30(21–22), 3152–3170. https://doi.org/10.1016/j.quascirev.2011.07.021
  • Watson, E. B., & Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723), 841–844. https://doi.org/10.1126/science.1110873
  • Watts, A. B., & Steekler, M. S. (1979). Subsidence and eustasy at the continental margin of eastern North America. In Deep drilling results in the Atlantic Ocean (Ewing Series, Vol. 3, pp. 218–234).
  • Webb, M. J., Senior, C. A., Sexton, D. M., Ingram, W. J., Williams, K. D., Ringer, M. A., McAvaney, B. J., Colman, R., Soden, B. J., Gudgel, R., & Knutson, T. (2006). On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dynamics, 27(1), 17–38. https://doi.org/10.1007/s00382-006-0111-2
  • Weldeab, S., Lea, D. W., Schneider, R. R., & Andersen, N. (2007). 155,000 years of West African monsoon and ocean thermal evolution. Science, 316(5829), 1303–1307. https://doi.org/10.1126/science.1140461
  • Weldeab, S., Schneider, R. R., & Kolling, M. (2006). Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth and Planetary Science Letters, 241(3–4), 699–706. https://doi.org/10.1016/j.epsl.2005.11.012
  • Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F., Nilsen, T., & Francus, P. (2018). Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Climate of the Past, 14(4), 527–557. https://doi.org/10.5194/cp-14-527-2018
  • Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R. H., Wilson, P. A., & Zachos, J. C. (2020). An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
  • Wheatley, J. J., Blackwell, P. G., Abram, N. J., McConnell, J. R., Thomas, E. R., & Wolff, E. W. (2012). Automated ice-core layer-counting with strong univariate signals. Climate of the Past, 8(6), 1869–1879. https://doi.org/10.5194/cp-8-1869-2012
  • Wheeler, M., & Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of the Atmospheric Sciences, 56(3), 374–399. https://doi.org/10.1175/1520-0469(1999)056%3C0374:CCEWAO%3E2.0.CO;2
  • Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 gyr ago. Nature, 409(6817), 175–178. https://doi.org/10.1038/35051550
  • Williams, P. D., Alexander, M. J., Barnes, E. A., Butler, A. H., Davies, H. C., Garfinkel, C. I., Kushnir, Y., Lane, T., Lundquist, J., Martius, O., Maue, R., Peltier, W., Sato, K., Scaife, A., & Zhang, C. (2017). A census of atmospheric variability from seconds to decades. Geophysical Research Letters, 44, 11201–11211. https://doi.org/10.1002/2017GL075483
  • Williams, P. W., Neil, H., & Zhao, J.-X. (2010). Age frequency distribution and revised stable isotope curves for New Zealand speleothems: Palaeoclimatic implications. International Journal of Speleology, 39(2), 99–112. https://doi.org/10.5038/1827-806X.39.2.5
  • Willmott, C. J., & Robeson, S. M. (1995). Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology, 15(2), 221–229. https://doi.org/10.1002/joc.3370150207
  • Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D' Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., … Zorita, E. (2016). Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 1–18. https://doi.org/10.1016/j.quascirev.2015.12.005
  • Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., & Buizert, C. (2019). The SP19 chronology for the South Pole Ice core – Part 1: Volcanic matching and annual layer counting. Climate of the Past, 15(5), 1793–1808. https://doi.org/10.5194/cp-15-1793-2019
  • Winstrup, M., Svensson, A. M., Rasmussen, S. O., Winther, O., Steig, E. J., & Axelrod, A. E. (2012). An automated approach for annual layer counting in ice cores. Climate of the Past, 8(6), 1881–1895. https://doi.org/10.5194/cp-8-1881-2012
  • Woillard, G. (1978). Grand Pile peat bog: A continuous pollen record for the last 140,000 yrs. Quaternary Research, 9(1), 1–21. https://doi.org/10.1016/0033-5894(78)90079-0
  • Woodruff, S., Worley, S., Lubker, S., Ji, Z., Freeman, J., Berry, D., Brohan, P., Kent, E. C., Reynolds, R., Smith, S., & Wilkinson, C. (2011). ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 31, 951–967. https://doi.org/10.1002/joc.2103
  • Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menendez, M., & Haigh, I. (2017). Towards a global higher-frequency sea level dataset. Geoscience Data Journal, 3(2), 50–59. https://doi.org/10.1002/gdj3.42
  • Worsley, T. R., Nance, R. D., & Moody, J. B. (1982). Plate tectonic episodicity: A deterministic model for periodic “Pangeas”. Eos, Transactions of the American Geophysical Union, 65(45), 1104.
  • Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B., & Chen, X. (2011). On the time-varying trend in global-mean surface temperature. Climate Dynamics, 37(3–4), 759–773. https://doi.org/10.1007/s00382-011-1128-8
  • Wunsch, C. (2003). The spectral description of climate change including the 100 ky energy. Climate Dynamics, 20(4), 353–363. https://doi.org/10.1007/s00382-002-0279-z
  • Yamamoto, M., Suemune, R., & Oba, T. (2005). Equatorward shift of the subarctic boundary in the northwestern Pacific during the last deglaciation. Geophysical Research Letters, 32(5), L05609. https://doi.org/10.1029/2004GL021903
  • Yao, T., Thompson, L. G., Mosley-Thompson, E., Zhihong, Y., Xingping, Z., & Lin, P. N. (1996). Climatological significance of 18O in north Tibetan ice cores. Journal of Geophysical Research-Atmosphere, 101(D23), 29531–29537. https://doi.org/10.1029/96JD02683
  • Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., & Maksyutov, S. (2009). Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. SOLA, 5, 160–163. https://doi.org/10.2151/sola.2009-041
  • Yu, W., Yao, T., Thompson, L. G., Jouzel, J., Zhao, H., Xu, B., Jing, Z., Wang, N., Wu, G., Ma, Y., Gao, J., Yang, X., Zhang, J., & Qu, D. (2021). Temperature signals of ice core and speleothem isotopic records from Asian monsoon region as indicated by precipitation d18O. Earth and Planetary Science Letters, 554, 116665. https://doi.org/10.1016/j.epsl.2020.116665
  • Yuan, D. X., Cheng, H., Edwards, R. L., Dykoski, C. A., Kelly, M. J., Zhang, M. L., Qing, J. M., Lin, Y. S., Wang, Y. J., Wu, J. Y., Dorale, J. A., An, Z. S., & Cai, Y. J. (2004). Timing, duration, and transitions of the last Interglacial Asian monsoon. Science, 304(5670), 575–578. https://doi.org/10.1126/science.1091220
  • Yuan, Y., Ries, L., Petermeier, H., Trickl, T., Leuchner, M., Couret, C., Sohmer, R., Meinhardt, F., & Menzel, A. (2019). On the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 at Mount Zugspitze, Germany, during 1981–2016. Atmospheric Chemistry and Physics, 19(2), 999–1012. https://doi.org/10.5194/acp-19-999-2019
  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
  • Zachos, J. C., Opdyke, B. N., Quinn, T. M., Jones, C. E., & Halliday, A. N. (1999). Early Cenozoic glaciation, Antarctic weathering, and seawater 87Sr/86Sr: Is there a link? Chemical Geology, 161(1–3), 165–180. https://doi.org/10.1016/S0009-2541(99)00085-6
  • Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., Yeager, S. G., Amrhein, D. E., & Little, C. M. (2019). A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Reviews of Geophysics, 57(2), 316–375. https://doi.org/10.1029/2019RG000644
  • Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability. Journal of Climate, 10(5), 1004–1020. https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
  • Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., & DeConto, R. (2013). A 40-million-year history of atmospheric CO2. Philosophical Transaction of The Royal Society A, 371. https://doi.org/10.1098/rsta.2013.0096
  • Zhao, M., Beveridge, N. A., Shackleton, N. J., Sarnthein, M., & Eglinton, G. (1995). Molecular stratigraphy of cores off northwest Africa: Sea surface temperature history over the last 80 ka. Paleoceanography, 10(3), 661–675. https://doi.org/10.1029/94PA03354
  • Zhu, J., Poulsen, C. J., & Otto-Bliesner, B. L. (2020). High climate sensitivity in CMIP6 model not supported by paleoclimate. Nature Climate Change, 10(5), 1–2. https://doi.org/10.1038/s41558-020-0764-6
  • Zipser, E. J. (1977). Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Monthly Weather Review, 105(12), 1568–1589. https://doi.org/10.1175/1520-0493(1977)105%3C1568:MACDAD%3E2.0.CO;2