1,547
Views
6
CrossRef citations to date
0
Altmetric
Review / Synthèse

Atmospheric Convection

, , , , , , , & show all
Pages 422-476 | Received 20 Apr 2022, Accepted 16 May 2022, Published online: 04 Jul 2022

References

  • Abercromby, R. (1888). First report of the thunderstorm committee. – On the photographs of lightning flashes. Quarterly Journal of the Royal Meteorological Society, 14, 226–234. https://doi.org/10.1002/qj.4970146707
  • Agee, E. M. (1987). Mesoscale cellular convection over the oceans. Dynamics of Atmospheres and Oceans, 10, 317–341. https://doi.org/10.1016/0377-0265(87)90023-6
  • Agee, E. M., Chen, T. S., & Dowell, K. E. (1973). A review of mesoscale cellular convection. Bulletin of the American Meteorological Society, 54(10), 1004–1012. https://doi.org/10.1175/1520-0477(1973)054<1004:AROMCC>2.0.CO;2
  • Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W. H., & Frisch, A. S. (1995). The Atlantic stratocumulus transition experiment-ASTEX. Bulletin of the American Meteorological Society, 76(6), 889–904. https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2
  • Albrecht, B. A., Penc, R. S., & Schubert, W. H. (1985). An observational study of cloud-topped mixed layers. Journal of the Atmospheric Society, 42(8), 800–822. https://doi.org/10.1175/1520-0469(1985)042<0800:AOSOCT>2.0.CO;2
  • Albrecht, B. A., Randall, D. A., & Nicholls, S. (1988). Observations of marine stratocumulus during FIRE. Bulletin of the American Meteorological Society, 69(6), 618–626. https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2
  • Albrecht, B., Ghate, V., Mohrmann, J., Wood, R., Zuidema, P., Bretherton, C., Schwartz, C., Eloranta, E., Glienke, S., Donaher, S., Sarkar, M., McGibbon, J., Nugent, A., Shaw, R. A., Fugal, J., Minnis, P., Paliknoda, R., Lussier, L., Jensen, J., … Schmidt, S. (2019). Cloud system evolution in the trades (CSET): Following the evolution of boundary layer cloud systems with the NSF-NCAR GV. Bulletin of the American Meteorological Society, 100(1), 93–121. https://doi.org/10.1175/BAMS-D-17-0180.1
  • Alexander, G. D., & Cotton, W. R. (1998). The use of cloud-resolving simulations of mesoscale convective systems to build a mesoscale parameterization scheme. Journal of the Atmospheric Sciences, 55(12), 2137–2161. https://doi.org/10.1175/1520-0469(1998)055<2137:TUOCRS>2.0.CO;2
  • Anderson, C. J., & Arritt, R. W. (1998). Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Monthly Weather Review, 126(3), 578–599. https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2
  • Anthes, R. A. (1977). A cumulus parameterization scheme utilizing a one-dimensional cloud model. Monthly Weather Review, 105(3), 270–286. https://doi.org/10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
  • Anthes, R. A., Hsie, E.-Y., & Kuo, Y. H. (1987). Description of the Penn State / NCAR Mesoscale Model Version 4(MM4). NCAR Tech. Rep. NCAR/TN-282+STR, 66 pp.
  • Arakawa, A., Jung, J.-H., & Wu, C.-M. (2011). Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys, 11(8), 3731–3742. https://doi.org/10.5194/acp-11-3731-2011
  • Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31(3), 674–701. https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  • Ashley, W. S., Mote, T. L., Dixon, P. G., Trotter, S. L., Powell, E. J., Durkee, J. D., & Grundstein, A. J. (2003). Distribution of mesoscale convective complex rainfall in the United States. Monthly Weather Review, 131(12), 3003–3017. https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2
  • Augstein, E., Riehl, H., Ostapoff, F., & Wagner, V. (1973). Mass and energy transports in an undisturbed Atlantic trade-wind flow. Monthly Weather Review, 101(2), 101–111. https://doi.org/10.1175/1520-0493(1973)101<0101:MAETIA>2.3.CO;2
  • Augustine, J. A., & Howard, K. W. (1988). Mesoscale convective complexes over the United States during 1985. Monthly Weather Review, 116(3), 685–701. https://doi.org/10.1175/1520-0493(1988)116<0685:MCCOTU>2.0.CO;2
  • Austin, P. M., Rauber, R. M., Ochs IIIH. T., & Miller, L. J. (1996). Trade-wind clouds and Hawaiian rainbands. Monthly Weather Review, 124(10), 2126–2151. https://doi.org/10.1175/1520-0493(1996)124<2126:TWCAHR>2.0.CO;2
  • Barnes, G. M., & Garstang, M. (1982). Subcloud layer energetics of precipitating convection. Monthly Weather Review, 110(2), 102–117. https://doi.org/10.1175/1520-0493(1982)110<0102:SLEOPC>2.0.CO;2
  • Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Kĥler, M., Miller, M., & Redelsperger, J. L. (2004). The simulation of the diurnal cycle of convective precipitation over land in a global model. Quarterly Journal of the Royal Meteorological Society, 130(604), 3119–3137. https://doi.org/10.1256/qj.03.103
  • Bechtold, P., Kĥler, M., Jung, T., Leutbecher, M., Rodwell, M., Vitart, F., & Balsamo, G. (2008). Advances in predicting atmospheric variability with the ECMWF model from synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134(634), 1337–1351. https://doi.org/10.1002/qj.289
  • Bechtold, P., Krueger, S. K., Lewellen, W. S., van Meijgaard, E., Moeng, C.-H., Randall, D. A., van Ulden, A., & Wang, S. (1996). Modeling a stratocumulus-topped PBL: Intercompari- son among different one-dimensional codes and with large eddy simulation. Bulletin of the American Meteorological Society, 77(9), 2033–2042. https://doi.org/10.1175/1520-0477-77.9.2033
  • Bechtold, P., Redelsperger, J.-L., Beau, I., Blackburn, M., Brinkop, S., Grandper, J.-Y., Grant, A., Gregory, D., Guichard, F., How, C., & Ioannidou, E. (2000). A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. II: Intercomparison of single-column models and a cloud-resolving model. Quarterly Journal of the Royal Meteorological Society, 126(564), 865–888. https://doi.org/10.1002/qj.49712656405
  • Bechtold, P., Semane, N., Lopez, P., Chaboureau, J., Beljaars, A., & Bormann, N. (2014). Representing equilibrium and nonequilibrium convection in large-scale models. Journal of the Atmospheric Sciences, 71(2), 734–753. https://doi.org/10.1175/JAS-D-13-0163.1
  • Becker, T., Bretherton, C. S., Hohenegger, C., & Stevens, B. (2018). Estimating bulk entrainment with unaggregated and aggregated convection. Geophysical. Research Letter, 45(1), 455–462. https://doi.org/10.1002/2017GL076640
  • Becker, T., & Hohenegger, C. (2021). Entrainment and its dependency on environmental conditions and convective organization in convection-permitting simulations. Monthly Weather Review, 149(2), 537–550. https://doi.org/10.1175/MWR-D-20-0229.1
  • Benard, H. (1900). Les tourbillons cellulaires dans une nappe liquide. Revue Generale des Sciences Pures et Appliquees, 11, 1261–1271 and 1309–1328.
  • Bent, A. E. (1946). Radar detection of precipitation. Journal of the Atmospheric Sciences, 3(3), 78–84. https://doi.org/10.1175/1520-0469(1946)003<0078:RDOP>2.0.CO;2
  • Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., KirkevÂg, A., Seland, ÿ., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., & Kristjánsson, J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720. https://doi.org/10.5194/gmd-6-687-2013
  • Betts, A. K. (1973). Non-precipitating cumulus convection and its parameterization. Quarterly Journal of the Royal Meteorological Society, 99, 178–196. https://doi.org/10.1002/qj.49709941915
  • Betts, A. K. (1975). Parametric interpretation of trade-wind cumulus budget studies. Journal of the Atmospheric Sciences, 32(10), 1934–1945. https://doi.org/10.1175/1520-0469(1975)032<1934:PIOTWC>2.0.CO;2
  • Betts, A. K. (1986). A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, 112(473), 677–691. https://doi.org/10.1002/qj.49711247307
  • Betts, A. K., & Silva Dias, M. F. (1979). Unsaturated downdraft thermo- dynamics in cumulonimbus. Journal of the Atmospheric Sciences, 36(6), 1061–1071. https://doi.org/10.1175/1520-0469(1979)036<1061:UDTIC>2.0.CO;2
  • Bjerknes, J. (1938). Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quarterly Journal of the Royal Meteorological Society, 64, 325–330.
  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
  • Black, M. L., Burpee, R. W., & Marks Jr, F. D. (1996). Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. Journal of the Atmospheric Sciences, 53(13), 1887–1909. https://doi.org/10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2
  • Blamey, R. C., & Reason, C. J. C. (2013). The role of Mesoscale convective complexes in Southern Africa summer rainfall. Journal of Climate, 26(5), 1654–1668. https://doi.org/10.1175/JCLI-D-12-00239.1
  • Blanchard, D. O. (1990). Mesoscale convective patterns of the Southern high plains. Bulletin of the American Meteorological Society, 71(7), 994–1005. https://doi.org/10.1175/1520-0477(1990)071<0994:MCPOTS>2.0.CO;2
  • Bluestein, H. B., & Jain, M. H. (1985). Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. Journal of the Atmospheric Sciences, 42(16), 1711–1732. https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
  • Bluestein, H. B., & Parks, C. R. (1983). Synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Monthly Weather Review, 111(10), 2034–2046. https://doi.org/10.1175/1520-0493(1983)111<2034:ASAPCO>2.0.CO;2
  • Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., & John, V. O. (2011). COSP satellite simulation software for model assessment. Bulletin of the American Meteorological Society, 92(8), 1023–1043. https://doi.org/10.1175/2011BAMS2856.1
  • Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., & Eade, R. (2016). The decadal climate prediction project (DCPP) contribution to CMIP6. Geoscientific Model Development, 9(10), 3751–3777. https://doi.org/10.5194/gmd-9-3751-2016
  • Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P. (2013). Higher-order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. Journal of Climate, 26(23), 9655–9676. https://doi.org/10.1175/JCLI-D-13-00075.1
  • Bony, S., & Dufresne, J. L. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letter, 32(20), L20806. https://doi.org/10.1029/2005GL023851
  • Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Pier Siebesma, A., Sobel, A. H., Watanabe, M., & Webb, M. J. (2015). Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261–268. https://doi.org/10.1038/ngeo2398
  • Bougeault, P. (1981). Modeling the trade-wind cumulus boundary layer. Part II: Ahigher-order one-dimensional model. Journal of the Atmospheric Sciences, 38(11), 2429–2439. https://doi.org/10.1175/1520-0469(1981)038<2429:MTTWCB>2.0.CO;2
  • Bougeault, P. (1985). A simple parameterization of the large-scale effects of cumulus convection. Monthly Weather Review, 113(12), 2108–2121. https://doi.org/10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2
  • Bretherton, C., et. al. (2004). The EPIC 2001 stratocumulus study. Bulletin of American Meteorological Society, 85, 967–977. doi:10.1175/BAMS-85-7-967
  • Bretherton, C. S., Blossey, P. N., & Jones, C. (2013). Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. Journal of Advanced Modeling of Earth System, 5, 316–337. doi:10.1002/jame.20019
  • Bretherton, C. S., Blossey, P. N., & Khairoutdinov, M. (2005). An energy-balance analysis of deep convective self- aggregation above uniform SST. Journal of the Atmospheric Sciences, 62(12), 4273–4292. https://doi.org/10.1175/JAS3614.1
  • Bretherton, C. S., George, R., Wood, R., Allen, G., Leon, D., & Albrecht, B. (2010). Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20S during VOCALS-REx. Atmospheric Chemistry and Physics, 10, 10639–10654. doi:10.5194/acp-10-10639-2010
  • Bretherton, C. S., McCaa, J. R., & Grenier, H. (2004a). A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Monthly Weather Review, 132(4), 864–882. https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2
  • Bretherton, C. S., & Park, S. (2009). A new moist turbulence parameterization in the Community Atmospheric Model. Journal of Climate, 22(12), 3422–3448. https://doi.org/10.1175/2008JCLI2556.1
  • Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgardner, D., Comstock, K., & Wood, R. (2004b). The EPIC 2001 stratocumulus study. Bulletin of the American Meteorological Society, 85(7), 967–977. https://doi.org/10.1175/BAMS-85-7-967
  • Brient, F., & Bony, S. (2013). Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dynamics, 40, 2415–2431. doi:10.1007/s00382-011-1279-7
  • Brocks, K. (1972). Die Atlantische Expedition 1969 (GARP) mit dem Atlantischen Passat Experiment (APEX). Meteor-Forschung- sergebnisse, Ser. A, No. 9.
  • Brown, R. G., & Bretherton, C. S. (1997). A test of the strict quasi- equilibrium theory on long time and space scales. Journal of the Atmospheric Sciences, 54(5), 624–638. https://doi.org/10.1175/1520-0469(1997)054<0624:ATOTSQ>2.0.CO;2
  • Brown, R. G., & Zhang, C. (1997). Variability of midtropospheric moisture and its effect on cloud-top height distribution dur- ing TOGA COARE. Journal of the Atmospheric Sciences, 54(23), 2760–2774. https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2
  • Browning, K. A. (1964). Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. Journal of the Atmospheric Sciences, 21(6), 634–639. https://doi.org/10.1175/1520-0469(1964)021<0634:AAPTWS>2.0.CO;2
  • Brummer, B. (1978). Mass and energy budgets of a 1-km high atmospheric box over the GATE C-scale triangle during undis- turbed and disturbed weather conditions. Journal of the Atmospheric Sciences, 35(6), 997–1011. https://doi.org/10.1175/1520-0469(1978)035<0997:MAEBOA>2.0.CO;2
  • Bryan, G. H., & Parker, M. D. (2010). Observations of a squall line and its near environment using high- frequency rawinsonde launches during VORTEX2. Monthly Weather Review, 138(11), 4076–4097. https://doi.org/10.1175/2010MWR3359.1
  • Byers, H. R., & Battan, L. J. (1949). Some effects of vertical wind shear on thunderstorm structure. Bulletin of the American Meteorological Society, 30(5), 168–175. https://doi.org/10.1175/1520-0477-30.5.168
  • Byers, H. R., & Braham, R. R. (1948). Thunderstorm circulation and structure. Journal of Meteorology, 5(3), 71–86. https://doi.org/10.1175/1520-0469(1948)005%3C0071:TSAC%3E2.0.CO;2
  • Byers, H. R., Holzman, B. G., & Maynard, R. H. (1946). A project on thunderstorm microstructure. Bulletin of the American Meteorological Society, 27(4), 143–146. https://doi.org/10.1175/1520-0477-27.4.143
  • Byers, H. R., & Hull, E. (1949). Inflow patterns of thunderstorms as shown by winds aloft. Bulletin of the American Meteorological Society, 30(3), 90–96. https://doi.org/10.1175/1520-0477-30.3.90
  • Byers, H. R., & Rodebush, H. R. (1948). Causes of thunderstorms of the Florida peninsula. Journal of Meteorology, 5(6), 275–280. https://doi.org/10.1175/1520-0469(1948)005%3C0275:COTOTF%3E2.0.CO;2
  • Caldwell, P., & Bretherton, C. S. (2009). Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. Journal of Climate, 22, 20–38. doi:10.1175/2008JCLI1967.1
  • Cao, G., & Zhang, G. J. (2017). Role of vertical structure of convective heating in MJO simulation in NCAR CAM5.3. Journal of Climate, 30(18), 7423–7439. https://doi.org/10.1175/JCLI-D-16-0913.1
  • Chikira, M., & Sugiyama, M. (2010). A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles. Journal of the Atmospheric Sciences, 67(7), 2171–2193. https://doi.org/10.1175/2010JAS3316.1
  • Christensen, H. M., Dawson, A., & Holloway, C. E. (2018). Forcing single-column models using high-resolution model simulations. Journal of Advances Modeling Earth Systems, 10(8), 1833–1857. https://doi.org/10.1029/2017MS001189
  • Cotton, W. R., Lin, M. S., McAnelly, R. L., & Tremback, C. J. (1989). A composite model of mesoscale convective complexes. Monthly Weather Review, 117(4), 765–783. https://doi.org/10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2
  • Covey, C., Gleckler, P. J., Doutriaux, C., Williams, D. N., Dai, A., Fasullo, J., Trenberth, K., & Berg, A. (2016). Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. Journal of Climate, 29(12), 4461–4471. https://doi.org/10.1175/JCLI-D-15-0664.1
  • Curry, J. A., Hobbs, P. V., King, M. D., Randall, D. A., Minnis, P., Isaac, G. A., Pinto, J. O., Uttal, T., Bucholtz, A., Cripe, D. G., Gerber, H., Fairall, C. W., Garrett, T. J., Hudson, J., Intrieri, J. M., Jakob, C., Jensen, T., Lawson, P., Marcotte, D., … Wylie, D. (2000). FIRE Arctic clouds experiment. Bulletin of the American Meteorological Society, 81(1), 5–29. https://doi.org/10.1175/1520-0477(2000)081<0005:FACE>2.3.CO;2
  • Dai, A. (2006). Precipitation characteristics in eighteen coupled climate models. Journal of Climate, 19(18), 4605–4630. https://doi.org/10.1175/JCLI3884.1
  • Dal Gesso, S., van der Dussen, J. J., Siebesma, A. P., de Roode, S. R., Boutle, I. A., Kamae, Y., Roehrig, R., & Vial, J. (2015). A single-column model intercomparison on the stratocumulus representation in present-day and future climate. Journal of Advances in Modeling Earth Systems, 7(2), 617–647. https://doi.org/10.1002/2014MS000377
  • D’Andrea, F., Gentine, P., Betts, A. K., & Lintner, B. R. (2014). Triggering deep convection with a probabilistic plume model. Journal of the Atmospheric Sciences, 71(11), 3881–3901. https://doi.org/10.1175/JAS-D-13-0340.1
  • Das, P., & Subba Rao, M. C. (1972). The unsaturated downdraft. Indian Journal of Meteorological Geophysics, 23, 135–144.
  • Davies, L., Jakob, C., Cheung, K., Del Genio, A., Hill, A., Hume, T., Keane, R. J., Komori, T., Larson, V. E., Lin, Y., Liu, X., Nielsen, B. J., Petch, J., Plant, R. S., Singh, M. S., Shi, X., Song, X., Wang, W., Whitall, M. A., … Zhang, G. (2013). A single-column model ensemble approach applied to the TWP-ICE experiment. Journal of Geophysical Research, 118(12), 1–20. https://doi.org/10.1002/jgrd.50450
  • Deardorff, J. W. (1980). Cloud top entrainment instability. Journal of the Atmospheric Sciences, 37(1), 131–147. https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2
  • Del Genio, A. D., & Wu, J. (2010). The role of entrainment in the diurnal cycle of continental convection. Journal of Climate, 23(10), 2722–2738. https://doi.org/10.1175/2009JCLI3340.1
  • Del Genio, A. D., & Yao, M. S. (1993). Efficient cumulus pa- rameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteorological Monographs, 46, 181–184. American Meteorological Society.
  • Deng, A., Seaman, N. L., & Kain, J. S. (2003a). A shallow-convection parameterization for mesoscale models Part I: Sub-model description and preliminary applications. Journal of the Atmospheric Sciences, 60(1), 34–56. https://doi.org/10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2
  • Deng, A., Seaman, N. L., & Kain, J. S. (2003b). A shallow-convection parameterization for mesoscale models Part II. Verification and sensitivity studies. Journal of the Atmospheric Sciences, 60(1), 57–78. https://doi.org/10.1175/1520-0469(2003)060<0057:ASCPFM>2.0.CO;2
  • Derbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J. Y., Piriou, J. M., Redelsperger, J. L., & Soares, P. M. M. (2004). Sensitivity of moist convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130(604), 3055–3079. https://doi.org/10.1256/qj.03.130
  • de Rooy, W., Bechtold, P., Frohlich, K., Hohenegger, C., Jonker, H., Mironov, S., Teixeira, J., & Yano, J. I. (2013). Entrainment and detrainment in cumulus convection: An overview. Quarterly Journal of the Royal Meteorological Society, 139, 1–19. https://doi.org/10.1002/qj.1959
  • de Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., & Chandra, A. S. (2017). Cold pools and their influence on the tropical marine boundary layer. Journal of the Atmospheric Sciences, 74(4), 1149–1168. https://doi.org/10.1175/JAS-D-16-0264.1
  • Donner, L. J. (1993). A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. Journal of the Atmospheric Sciences, 50(6), 889–906. https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2
  • Donner, L. J., O’Brien, T. A., Rieger, D., Vogel, B., & Cooke, W. F. (2016). Are atmospheric updrafts a key to unlocking climate forcing and sensitivity? Atmospheric Chemistry Physics, 16(20), 12,983–12,992. https://doi.org/10.5194/acp-16-12983-2016
  • Donner, L. J., & Phillips, V. T. (2003). Boundary layer control on convective available potential energy: Implications for cumulus parameterization. Journal of Geophysical Research, 108(D22), 4701. https://doi.org/10.1029/2003JD003773
  • Donner, L. J., Phillips, V. T., Hemler, R. S., & Fan, S. (2001). A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. Journal of Climate, 14(16), 3444–3463. https://doi.org/10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2
  • Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J.-C., Ginoux, P., Lin, S.-J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Delworth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., … Zeng, F. (2011). The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. Journal of Climate, 24(13), 3484–3519. https://doi.org/10.1175/2011JCLI3955.1
  • Dos Santos, A. F., de Campos Velho, H. F., Luz, E. F. P., Saulo, F. R., Grell, G., & Gan, M. A. (2013). Firefly optimization to determine the precipitation field on South America. Inverse Problems in Science and Engineering, 21(3), 451–466. https://doi.org/10.1080/17415977.2012.712531
  • Durkee, J. D., Mote, T. L., & Sheppard, J. M. (2009). The contribution of meso-scale convective complexes to rainfall across subtropical South America. Journal of Climate, 22(17), 4590–4605. https://doi.org/10.1175/2009JCLI2858.1
  • Emanuel, K. (1995). The behavior of a simple hurricane model using a convective scheme based on subcloud layer entropy equilibrium. Journal of the Atmospheric Sciences, 52(22), 3960–3968. https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2
  • Emanuel, K. (2007). Quasi-equilibrium dynamics of the tropical atmosphere. In T. Schneider & A. Sobel (Eds.), The Global Circulation of the Atmosphere (pp. 186–218). Princeton University Press.
  • Emanuel, K. A. (1981). A similarity theory for unsaturated downdrafts within clouds. Journal of the Atmospheric Sciences, 38(8), 1541–1557. https://doi.org/10.1175/1520-0469(1981)038<1541:ASTFUD>2.0.CO;2
  • Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48(21), 2313–2335. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
  • Emanuel, K., Neelin, J. D., & Bretherton, C. S. (1994). On large-scale circulation in convective atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111–1143. https://doi.org/10.1002/qj.49712051902
  • Engerer, N. A., Stensrud, D. J., & Coniglio, M. C. (2008). Surface characteristics of observed cold pools. Monthly Weather Review, 136(12), 4839–4849. https://doi.org/10.1175/2008MWR2528.1
  • Esbensen, S. (1975). An analysis of subcloud-layer heat and moisture budgets in the western Atlantic trades. Journal of the Atmospheric Sciences, 32(10), 1921–1933. https://doi.org/10.1175/1520-0469(1975)032<1921:AAOSLH>2.0.CO;2
  • Esbensen, S. (1978). Bulk thermodynamic effects and properties of small tropical cumuli. Journal of the Atmospheric Sciences, 35(5), 826–837. https://doi.org/10.1175/1520-0469(1978)035<0826:BTEAPO>2.0.CO;2
  • Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E. L., Davini, P., Debeire, K., de Mora, L., Deser, C., … Zimmermann, K. (2020). Earth System Model evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development, 13(7), 3383–3438. https://doi.org/10.5194/gmd-13-3383-2020
  • Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., & Hoffman, F. M. J. N. C. C. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9, 102–110. https://doi.org/10.1038/s41558-018-0355-y
  • Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., & Williams., D. N. (2016). Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 7(4), 813–830. https://doi.org/10.5194/esd-7-813-2016
  • Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman lectures on physics vol. 2. Addison-Wesley. 538pp.
  • Ficker, H. V. (1936). Bemerkungen uber den Warmeumstaz innerhalb der Passatzirkulation. Vcrlag Akademische WissenSchaften.
  • Fortune, M. A., Cotton, W. R., & McAnelly, R. L. (1992). Frontal-wave-like evolution in some mesoscale convective complexes. Monthly Weather Review, 120(7), 1279–1300. https://doi.org/10.1175/1520-0493(1992)120<1279:FWLEIS>2.0.CO;2
  • Fovell, R. G., & Ogura, Y. (1988). Numerical simulation of a midlatitude squall line in two dimensions. Journal of the Atmospheric Sciences, 45(24), 3846–3879. https://doi.org/10.1175/1520-0469(1988)045<3846:NSOAMS>2.0.CO;2
  • Fowler, L. D., Skamarock, W. C., Grell, G. A., Freitas, S. R., & Duda, M. G. (2016). Analyzing the Grell–Freitas convection scheme from hydrostatic to nonhydrostatic scales within a global model. Monthly Weather Review, 144(6), 2285–2306. https://doi.org/10.1175/MWR-D-15-0311.1
  • Frank, W. M., & Cohen, C. (1987). Simulation of tropical convective systems. Part I: A cumulus parameterization. Journal of the Atmospheric Sciences, 44(24), 3787–3799. https://doi.org/10.1175/1520-0469(1987)044<3787:SOTCSP>2.0.CO;2
  • Frank, W. M., & McBride, J. L. (1989). The vertical distribution of heating in AMEX and GATE cloud clusters. Journal of the Atmospheric Sciences, 46(22), 3464–3478. https://doi.org/10.1175/1520-0469(1989)046<3464:TVDOHI>2.0.CO;2
  • Frank, W. M., Wang, H., & McBride, J. L. (1996). Rawinsonde budget analyses during the TOGA COARE IOP. Journal of the Atmospheric Sciences, 53(13), 1761–1780. https://doi.org/10.1175/1520-0469(1996)053<1761:RBADTT>2.0.CO;2
  • Franklin, C. N., Protat, A., Leroy, D., & Fontaine, E. (2016). Controls on phase composition and ice water content in a convection- permitting model simulation of a tropical mesoscale convective system. Atmospheric Chemistry Physics, 16(14), 8767–8789. https://doi.org/10.5194/acp-16-8767-2016
  • Freitas, S. R., Grell, G. A., & Li, H. (2021). The GF convection parameterization: Recent developments, extensions, and applications. Geoscientific Model Development, 14(9), 5393–5411. https://doi.org/10.5194/gmd-14-5393-2021
  • Freitas, S. R., Grell, G. A., Molod, A., Thompson, M. A., Putman, W. M., Silva, S. e., & Souza, C. M., & P, E. (2018). Assessing the Grell-Freitas convection parameterization in the NASA GEOS modeling system. Journal of Advances in Modeling Earth Systems, 10(6), 1266–1289. https://doi.org/10.0.1029/2017MS001251
  • Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Dias, P. L. S., Dias, M. A. F. S., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., M, C., Silva, S. e., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., … Martins, L. D. (2017). The Brazilian developments on the regional atmospheric modeling system (BRAMS 5.2): An integrated environmental model tuned for tropical areas. Geoscientific Model Development, 10(1), 189–222. [10.5194/gmd-10-189-2017].
  • Freitas, S. R., Putman, W. M., Arnold, N. P., Adams, D. K., & Grell, G. A. (2020). Cascading toward a kilometer-scale GCM: Impacts of a scale-aware convection parameterization in the Goddard earth observing system GCM. Geophysical Research Letter, 47, e2020GL087682. https://doi.org/10.1029/2020GL087682
  • Fridlind, A. M., Li, X., Wu, D., van Lier-Walqui, M., Ackerman, A. S., Tao, W.-K., McFarquhar, G. M., Wu, W., Dong, X., Wang, J., Ryzhkov, A., Zhang, P., Poellot, M. R., Neumann, A., & Tomlinson, J. M. (2017). Derivation of aerosol profiles for MC3E convection studies and use in simulations of the 20 May squall line case. Atmospheric Chemistry Physics, 17(9), 5947–5972. https://doi.org/10.5194/acp-17-5947-2017
  • Fritsch, J. M., & Chappell, C. F. (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. Journal of the Atmospheric Sciences, 37(8), 1722–1733. https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2
  • Fujita, T. (1958). Mesoanalysis of the Illinois tornadoes of 9 April 1953. Journal of Meteorology, 15(3), 288–296. https://doi.org/10.1175/1520-0469(1958)015%3C0288:MOTITO%3E2.0.CO;2
  • Fujiwhara, S. (1939). The law of disturbance. Proceedings of the Imperial Academy, 15(9), 292–297. https://doi.org/10.2183/pjab1912.15.292
  • Gallus, W. A., & Johnson, R. H. (1991). Heat and moisture budgets of an intense midlatitude squall line. Journal of the Atmospheric Sciences, 48(1), 122–146. https://doi.org/10.1175/1520-0469(1991)048<0122:HAMBOA>2.0.CO;2
  • Gallus, W. A., & Johnson, R. H. (1992). The momentum budget of an intense midlatitude squall line. Journal of the Atmospheric Sciences, 49(5), 422–450. https://doi.org/10.1175/1520-0469(1992)049<0422:TMBOAI>2.0.CO;2
  • Gamache, J. F., & Houze, R. A. (1983). Water budget of a mesoscale convective system in the tropics. Journal of the Atmospheric Sciences, 40(7), 1835–1850. https://doi.org/10.1175/1520-0469(1983)040<1835:WBOAMC>2.0.CO;2
  • Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., Fiorino, M., Gleckler, P. J., Hnilo, J. J., Marlais, S. M., Phillips, T. J., Potter, G. L., Santer, B. D., Sperber, K. R., Taylor, K. E., & Williams, D. N. (1999). An overview of the results of the Atmospheric Model Intercomparison Project (AMIP-I). Bulletin of the American Meteorological Society, 80(1), 29–55. https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2
  • Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine learning break the convection parameterization deadlock? Geophysical Research Letter, 45(11), 5742–5751. https://doi.org/10.1029/2018GL078202
  • Gerard, L. (2015). Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution. Monthly Weather Review, 143(10), 4038–4063. https://doi.org/10.1175/MWR-D-15-0030.1
  • Ghan, S., Randall, D., Xu, K.-M., Cederwall, R., Cripe, D., Hack, J., Iacobellis, S., Klein, S., Krueger, S., Lohmann, U., Pedretti, J., Robock, A., Rotstayn, L., Somerville, R., Stenchikov, G., Sud, Y., Walker, G., Xie, S., Yio, J., & Zhang, M. (2000). A comparison of single column model simulations of summertime midlatitude continental convection. Journal of Geophysical Research, 105(D2), 2091–2124. https://doi.org/10.1029/1999JD900971
  • Ghate, V. P., Albrecht, B. A., & Kollias, P. (2010). Vertical velocity struc- ture of nonprecipitating continental boundary layer stratocumulus clouds. Journal of Geophysical Research, 115(D13), D13204. https://doi.org/10.1029/2009JD013091
  • Ghate, V. P., Miller, M. A., & DiPretore, L. (2011). Vertical velocity structure of marine boundary layer trade wind cumulus clouds. Journal of Geophysical Research, 116(D16), 2156–2202. https://doi.org/10.1029/2010JD015344
  • Giangrande, S. E., Collis, S., Straka, J., Protat, A., Williams, C., & Krueger, S. (2013). A summary of convective-core vertical velocity properties using ARM UHF wind profilers in Oklahoma. Journal of Applied Meteorological Climatology, 52(10), 2278–2295. https://doi.org/10.5194/acp-17-14519-2017
  • Giangrande, S. E., Toto, T., Jensen, M. P., Bartholomew, M. J., Feng, Z., Protat, A., Williams, C. R., Schumacher, C., & Machado, L. (2016). Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5. Journal of Geophysics Research, 121(21), 12,891–12,913. https://doi.org/10.1002/2016JD025303
  • Giblett, M. A. (1923). Upper air conditions after a line-squall. Nature, 112, 863–864.
  • Gidel, L. T. (1983). Cumulus cloud transport of transient tracers. Journal of Geophysical Research - Oceans, 88(C11), 6587–6599. https://doi.org/10.1029/JC088iC11p06587
  • Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Güttler, I., O’Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., & Sloan, L. C. (2012). RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29. https://doi.org/10.3354/cr01018
  • Golaz, J. C., Larson, V. E., & Cotton, W. R. (2002). A pdf-based model for boundary layer clouds: Part I. Method and model description. Journal of the Atmospheric Sciences, 59(24), 3540–3551. https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
  • Goswami, B., Khouider, B., Phani, R., Mukhopadhyay, P., & Majda, A. (2017). Improving synoptic and intraseasonal variability in cfsv2 via stochastic representation of organized convection. Geophysical Research Letter, 44(2), 1104–1113. https://doi.org/10.1002/2016GL071542
  • Grabowski, W. W., Bechtold, P., Cheng, A., Forbes, R., Halliwell, C., Khairoutdinov, M., Lang, S., Nasuno, T., Petch, J., Tao, W.-K., Wong, R., Wu, X., & Xu, K.-M. (2006). Daytime convective development over land: A model intercomparison based on LBA observations. Quarterly Journal of the Royal Meteorological Society, 132, 317–344. https://doi.org/10.1256/qj.04.147
  • Grandpeix, J., & Lafore, J. (2010). A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. Journal of the Atmospheric Sciences, 67(4), 881–897. https://doi.org/10.1175/2009JAS3044.1
  • Grandpeix, J., Lafore, J., & Cheruy, F. (2010). A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1D simulations. Journal of the Atmospheric Sciences, 67(4), 898–922. https://doi.org/10.1175/2009JAS3045.1
  • Grandpeix, J. Y., Phillips, V., & Tailleux, R. (2004). Improved mixing representation in Emanuel's convection scheme. Quarterly Journal of the Royal Meteorological Society, 130(604), 3207–3222. https://doi.org/10.1256/qj.03.144
  • Gregory, D., Morcrette, J. J., Jakob, C., Beljaars, A., & Stockdale, T. (2000). Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Quarterly Journal of the Royal Meteorological Society, 134(586), 1337–1351. https://doi.org/10.1002/qj.49712656607
  • Gregory, D., & Rowntree, P. R. (1990). A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 118(7), 1483–1506. https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
  • Grell, G. A. (1988). Semi-prognostic tests of cumulus parameterization schemes in the middle latitudes [PhD dissertation]. University of Miami, Coral Gables, Florida, 225 pp.
  • Grell, G. A. (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3), 764–787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  • Grell, G. A., & Devenyi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letter, 29, 38-1–38-4. https://doi.org/10.1029/2002GL015311
  • Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for use in weather and air quality modelling. Atmospheric Chemistry Physics, 14, 5233–5250. https://doi.org/10.1007/978-94-007-5577-2_60
  • Grell, G. A., Kuo, Y. H., & Pasch, R. (1991). Semi-prognostic tests of cumulus parameterization schemes in the middle latitudes. Monthly Weather Review, 119(1), 5–31. https://doi.org/10.1175/1520-0493(1991)119<0005:STOCPS>2.0.CO;2
  • Grenier, H., & Bretherton, C. S. (2001). A moist PBL parame- terization for large-scale models and its application to sub- tropical cloud-topped marine boundary layers. Monthly Weather Review, 129(3), 357–377. https://doi.org/10.1175/1520-0493(2001)129,0357:AMPPFL.2.0.CO;2
  • Grim, J. A., Rauber, R. M., McFarquhar, G. M., & Jewett, B. F. (2009). Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX. Monthly Weather Review, 137(4), 1206–1229. https://doi.org/10.1175/2008MWR2503.1
  • Gu, J. F., Plant, R. S., Holloway, C. E., Jones, T. R., Stirling, A., Clark, P. A., … Webb, T. L. (2020). Evaluation of the bulk mass flux formulation using large-eddy simulations. Journal of the Atmospheric Sciences, 77(6), 2115–2137. https://doi.org/10.1175/JAS-D-19-0224.1
  • Guichard, F., Petch, J. C., Redelsperger, J.-L., Bechtold, P., Chaboureau, J.-P., Cheinet, S., Grabowski, W., Grenier, H., Jones, C. G., Köhler, M., Piriou, J.-M., Tailleux, R., & Tomasini, M. (2004). Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quarterly Journal of the Royal Meteorological Society, 130(604C), 3139–3172. https://doi.org/10.1256/qj.03.145
  • Guo, H., Golaz, J. C., Donner, L. J., Wyman, B., Zhao, M., & Ginoux, P. (2015). CLUBB as a unified cloud parameterization: Opportunities and challenges. Geophysical Research Letter, 42, 4540–4547. https://doi.org/10.1002/2015GL063672
  • Hadley, G. (1735). Concerning the cause of the general trade-winds. Philosophical Transactions, The Royal Society, 39(437), 58–62. https://doi.org/10.1098/rstl.1735.0014
  • Hagos, S., Feng, Z., Plant, R. S., Houze, J. R. A., & Xiao, H. (2018). A stochastic framework for modeling the population dynamics of convective clouds. Journal of Advances in Modeling Earth Systems, 10(2), 448–465. https://doi.org/10.1002/2017MS001214
  • Hagos, S., Leung, L. R., & Dudhia, J. (2010). Thermodynamics of Madden Julian Oscillation in a regional model with constrained moistening. Journal of the Atmospheric Sciences, 68(9), 1974–1989. https://doi.org/10.1175/2011JAS3592.1
  • Hamilton, R. A., & Archbold, J. W. (1945). Meteorology of Nigeria and adjacent territory. Quarterly Journal of the Royal Meteorological Society, 71(309–310), 231–262. https://doi.org/10.1002/qj.49707130905
  • Han, B., Fan, J., Varble, A., Morrison, H., Williams, C. R., Chen, B., Dong, X., Giangrande, S. E., Khain, A., Mansell, E., Milbrandt, J. A., Shpund, J., & Thompson, G. (2019). Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. Journal of Geophysical Research, 124(2), 1090–1117. https://doi.org/10.1029/2018JD029596
  • Han, J., & Pan, H. L. (2011). Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather and Forecasting, 26(4), 520–533. https://doi.org/10.1175/WAF-D-10-05038.1
  • Han, J., Wang, W., Kwon, Y. C., Hong, S. Y., Tallapragada, V., & Yang, F. (2017). Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Weather and Forecasting, 32(5), 2005–2017. https://doi.org/10.1175/WAF-D-17-0046.1
  • Han, J. Y., Hong, S. Y., & Kwon, Y. C. (2020). The performance of a revised Simplified Arakawa-Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Weather and Forecasting, 35(3), 1113–1128. https://doi.org/10.1175/WAF-D-19-0219.1
  • Hannah, W. M. (2017). Entrainment versus dilution in tropical deep convection. Journal of the Atmospheric Sciences, 74(11), 3725–3747. https://doi.org/10.1175/JAS-D-16-0169.1
  • Hashino, T., Satoh, M., Hagihara, Y., Kubota, T., Matsui, T., Nasuno, T., & Okamoto, H. (2013). Evaluating cloud micro- physics from NICAM against CloudSat and CALIPSO. Journal of Geophysical Research, 118(13), 7273–7292. https://doi.org/10.1002/jgrd.50564
  • Held, I. M., Hemler, R. S., & Ramaswamy, V. (1993). Radiative-convective equilibrium with explicit two-dimen- sional moist convection. Journal of the Atmospheric Sciences, 50(23), 3909–3927. https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Heymsfield, G. M., & Schotz, S. (1985). Structure and evolution of a severe squall line over Oklahoma. Monthly Weather Review, 113(9), 1563–1589. https://doi.org/10.1175/1520-0493(1985)113<1563:SAEOAS>2.0.CO;2
  • Hinrichs, G. (1883). Notes on the Cloud Forms and Climate of Iowa. Bulletin of Iowa Weather Service.
  • Hinrichs, G. (1888a). Tornadoes and derechos. American Meteorological Journal, 5, 306–317.
  • Hinrichs, G. (1888b). Tornadoes and derechos (continued). American Meteorological Journal, 5, 341–349.
  • Hogan, R. J., & Illingworth, A. J. (2003). Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities using cloud radar data. Journal of the Atmospheric Sciences, 60(5), 756–767. https://doi.org/10.1175/1520-0469(2003)060<0756:PICIAT>2.0.CO;2
  • Hohenegger, C., & Bretherton, C. S. (2011). Simulating deep convection with a shallow convection scheme. Atmospheric Chemistry Physics, 11, 10389–10406. https://doi.org/10.5194/acp-11-10389-2011
  • Holloway, C. E., Wing, A. A., Bony, S., Muller, C., Masunaga, H., L’Ecuyer, T. S., Turner, D. D., & Zuidema, P. (2017). Observing convective aggregation. Surveys in Geophysics, 38, 1199–1236. https://doi.org/10.1007/s10712-017-9419-1
  • Holtslag, A. A. M., & Boville, B. A. (1993). Local versus nonlocal boundary layer diffusion in a global climate model. Journal of Climate, 6, 1825–1842. https://doi.org/10.1175/1520-0442(1993)006,1825:LVNBLD.2.0.CO;2
  • Houze, R. A. (1977). Structure and dynamics of a tropical squall-line system. Monthly Weather Review, 105(12), 1540–1567. https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2
  • Houze, R. A. (1982). Cloud clusters and large-scale vertical motions in the tropics. Journal of Meteorological Society of Japan, 60, 396–410. https://doi.org/10.2151/jmsj1965.60.1_396
  • Houze, R. A. (1997). Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of the American Meteorological Society, 78(10), 2179–2196. https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
  • Houze Jr, R. A., Rasmussen, K. L., Zuluaga, M. D., & Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 53, 994–1021. https://doi.org/10.1002/2015RG000488
  • Houze, R. A., Rutledge, S. A., Biggerstaff, M. I., & Smull, B. F. (1989). Interpretation of Doppler weather radar displays of mid-latitude mesoscale convective systems. Bulletin of the American Meteorological Society, 70(6), 608–619. https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2
  • Hsu, P. C., & Li, T. (2011). Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. Journal of Climate, 24(3), 942–961. https://doi.org/10.1175/2010JCLI3834.1
  • Huang, D. Q., Yan, P., Zhu, J., Zhang, Y., Kuang, X., & Cheng, J. (2018). Uncertainty of global summer precipitation in the CMIP5 models: A comparison between high-resolution and low-resolution models. Theoretical and Applied Climatology, 132, 55–69. https://doi.org/10.1007/s00704-017-2078-9
  • Hung, M. P., Lin, J. L., Wang, W., Kim, D., Shinoda, T., & Weaver, S. J. (2013). MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. Journal of Climate, 26(17), 6185–6214. https://doi.org/10.1175/JCLI-D-12-00541.1
  • Igau, R. C., LeMone, M. A., & Wei, D. Y. (1999). Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? Journal of the Atmospheric Sciences, 56(13), 2232–2245. https://doi.org/10.1175/1520-0469(1999)056<2232:UADCIT>2.0.CO;2
  • Jabouille, P., Redelsperger, J., & Lafore, J. (1996). Modification of surface fluxes by atmospheric convection in the TOGA COARE region. Monthly Weather Review, 124(5), 816–837. https://doi.org/10.1175/1520-0493(1996)124<0816:MOSFBA>2.0.CO;2
  • Jakob, C., & Siebesma, A. P. (2003). A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Monthly Weather Review, 131(11), 2765–2778. https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2
  • Jeevanjee, N., & Romps, D. M. (2015). Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. Journal of the Atmospheric Sciences, 72(8), 3199–3213. https://doi.org/10.1175/JAS-D-14-0349.1
  • Jensen, M. P., & Del Genio, A. D. (2006). Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. Journal of Climate, 19(10), 2105–2117. https://doi.org/10.1175/JCLI3722.1
  • Jirak, I. L., Cotton, W. R., & McAnelly, R. L. (2003). Satellite and radar survey of mesoscale convective system development. Monthly Weather Review, 131(10), 2428–2449. https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
  • John, V. O., & Soden, B. J. (2007). Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophysical Research Letter, 34(18), L18704. https://doi.org/10.1029/2007gl030429
  • Johnson, R. H. (1976). The role of convective – scale precipitation downdrafts in cumulus and synoptic – scale interactions. Journal of the Atmospheric Sciences, 33(10), 10. https://doi.org/10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2
  • Johnson, R. H. (1984). Partitioning tropical heat and moisture budgets into cumulus and mesoscale components: Implication for cumulus parameterization. Monthly Weather Review, 112(8), 1590–1601. https://doi.org/10.1175/1520-0493(1984)112<1590:PTHAMB>2.0.CO;2
  • Johnson, R. H., Ciesielski, P. E., McNoldy, B. D., Rogers, P. J., & Taft, R. K. (2007). Multiscale variability of the flow during the North American monsoon experiment. Journal of Climate, 20(9), 1628–1648. https://doi.org/10.1175/JCLI4087.1
  • Johnson, R. H., Ciesielski, P. E., Ruppert Jr, J. H., & Katsumata, M. (2015). Sounding-based thermodynamic budgets for DYNAMO. Journal of the Atmospheric Sciences, 72(2), 598–622. https://doi.org/10.1175/JAS-D-14-0202.1
  • Johnson, R. H., & Hamilton, P. J. (1988). The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line. Monthly Weather Review, 116(7), 1444–1472. https://doi.org/10.1175/1520-0493(1988)116<1444:TROSPF>2.0.CO;2
  • Johnson, R. H., & Lin, X. (1997). Episodic trade wind regimes over the western Pacific warm pool. Journal of the Atmospheric Sciences, 54(15), 2020–2034. https://doi.org/10.1175/1520-0469(1997)054<2020:ETWROT>2.0.CO;2
  • Johnson, R. H., & Nicholls, M. E. (1983). A composite analysis of the boundary layer accompanying a tropical squall line. Monthly Weather Review, 111(2), 308–319. https://doi.org/10.1175/1520-0493(1983)111,0308:ACAOTB.2.0.CO;2
  • Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., & Schubert, W. H. (1999). Trimodal characteristics of tropical convection. Journal of Climate, 12(8), 2397–2418. https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
  • Johnson, R. H., & Young, G. S. (1983). Heat and moisture budgets of tropical mesoscale anvil clouds. Journal of the Atmospheric Sciences, 40(9), 2138–2147. https://doi.org/10.1175/1520-0469(1983)040<2138:HAMBOT>2.0.CO;2
  • Jorgensen, D. P., & LeMone, M. A. (1989). Vertical velocity characteristics of oceanic convection. Journal of the Atmospheric Sciences, 46(5), 621–640. https://doi.org/10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2
  • Jorgensen, D. P., Zipser, E. J., & LeMone, M. A. (1985). Vertical motions in intense hurricanes. Journal of the Atmospheric Sciences, 42(8), 839–856. https://doi.org/10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2
  • Kain, J. S. (2004). The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology and Climatology, 43(1), 170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  • Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/ detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 47(23), 2784–2802. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
  • Kain, J. S., & Fritsch, J. M. (1992). The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteorology and Atmospheric Physics, 49, 93–106. https://doi.org/10.1007/BF01025402
  • Kamburova, P. L., & Ludlam, F. H. (1966). Rainfall evaporation in thunderstorm downdrafts. Quarterly Journal of the Royal Meteorological Society, 92, 510–518. https://doi.org/10.1002/QJ.49709239407
  • Kane Jr, R. J., Chelius, C. R., & Fritsch, J. M. (1987). Precipitation characteristics of mesoscale convective weather systems. Journal of Applied Meteorology an Climatology, 26(10), 1345–1357. https://doi.org/10.1175/1520-0450(1987)026<1345:PCOMCW>2.0.CO;2
  • Keane, R. J., Craig, G. C., Keil, C., & Zangl, G. (2014). The Plant-Craig stochastic convection scheme in ICON and its scale adaptivity. Journal of the Atmospheric Sciety, 71(9), 3404–3415. https://doi.org/10.1175/JAS-D-13-0331.1
  • Keane, R. J., Plant, R. S., & Tennant, W. J. (2016). Evaluation of the Plant-Craig stochastic convection scheme (v2.0) in the ensemble forecasting system MOGREPS-R (24 km) based on the unified model (v7.3). Geoscience Model Development, 9(5), 1921–1935. https://doi.org/10.5194/gmd-9-1921-2016
  • Keane, R., & Plant, R. (2012). Large-scale length and time-scales for use with stochastic convective parametrization. Quarterly Journal of the Royal Meteorological Society, 138(666), 1150–1164. https://doi.org/10.1002/qj.992
  • Keuttner, J. P., & Holland, J. (1969). The BOMEX project. Bulletin of the American Meteorological Society, 50(6), 394–402. https://doi.org/10.1175/1520-0477-50.6.394
  • Khouider, B., Biello, J., & Majda, A. J. (2010). A stochastic multicloud model for tropical convection. Communications in Mathematical Sciences, 8(1), 187–216.
  • Khouider, B., & Majda, A. J. (2006). A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. Journal of the Atmospheric Sciences, 63(4), 1308–1323. https://doi.org/10.1175/JAS3677.1
  • Khouider, B., & Moncrieff, M. W. (2015). Organized convection parameterization for the ITCZ. Journal of the Atmospheric Sciences, 72(8), 3073–3096. https://doi.org/10.1175/JAS-D-15-0006.1
  • Kingsmill, D. E., & Wakimoto, R. M. (1991). Kinematic, dynamic, and thermodynamic analyses of a weakly sheared severe thunderstorm over northern Alabama. Monthly Weather Review, 119(2), 262–297. https://doi.org/10.1175/1520-0493(1991)119<0262:KDATAO>2.0.CO;2
  • Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds. Journal of Climate, 6(8), 1587–1606. https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
  • Klein, S. A., & Jakob, C. (1999). Validation and sensitivities of frontal clouds simulated by the ECMWF model. Monthly Weather Review, 127(10), 2514–2531. https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2
  • Knupp, K. R. (1987). Downdrafts within high plains cumulonimbi. Part I: General kinematic structure. Journal of the Atmospheric Sciences, 44(6), 987–1008. https://doi.org/10.1175/1520-0469(1987)044<0987:DWHPCP>2.0.CO;2
  • Knupp, K. R. (1988). Downdrafts within High Plains cumulonimbi. Part II: Dynamics and thermodynamics. Journal of the Atmospheric Sciences, 45(44), 3965–3982. https://doi.org/10.1175/1520-0469(1988)045<3965:DWHPCP>2.0.CO;2
  • Knupp, K. R., & Cotton, W. R. (1985). Convective cloud downdraft structure: An interpretive study. Review of Geophysics, 23, 183–215. https://doi.org/10.1029/RG023i002p00183
  • Kodama, C., Yamada, Y., Noda, A. T., Kikuchi, K., Kajikawa, Y., Nasuno, T., Tomita, T., Yamaura, T., Takahashi, H. G., Hara, M., Kawatani, Y., Satoh, M., & Sugi, M. (2015). A 20-year climatology of a NICAM AMIP-type simulation. Journal of the Meteorological Society of Japan, 93(4), 393–424. https://doi.org/10.2151/jmsj.2015-024
  • Kohler, M., Ahlgrimm, M., & Beljaars, A. (2011). Unified treatment of dry convective and stratocumulus-topped boundary layers in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 137(654), 43–57. https://doi.org/10.1002/qj.713
  • Kollias, P., & Albrecht, B. A. (2010). Vertical velocity statistics in fair- weather cumuli at the ARM TWP Nauru climate research facility. Journal of Climate, 23(24), 6590–6604. https://doi.org/10.1175/2010JCLI3449.1
  • Kreitzberg, C. W., & Perkey, D. J. (1976). Release of potential instability: Part I. A sequential plume model within a hydrostatic primitive equation model. Journal of the Atmospheric Sciety, 33(3), 456–475. https://doi.org/10.1175/1520-0469(1976)033<0456:ROPIPI>2.0.CO;2
  • Krishnamurti, T. N., Kanamitsu, M., Godbole, R., Chang, C. B., Carr, F., & Chow, J. H. (1976). Study of a monsoon depression (II). Dynamical Structure. Journal of Meteorological Society of Japan, 54(4), 208–225. https://doi.org/10.2151/jmsj1965.54.4_208
  • Krishnamurti, T. N., Ramanathan, Y., Pan, H. L., Pasch, R. J., & Molinari, J. (1980). Cumulus parameterization and rainfall rates I. Monthly Weather Review, 108(4), 465–472. https://doi.org/10.1175/1520-0493(1980)108<0465:CPARRI>2.0.CO;2
  • Kuang, Z. (2008). Modeling the interaction between cumulus con- vection and linear gravity waves using a limited-domain cloud system-resolving model. Journal of the Atmospheric Sciences, 65(2), 576–591. https://doi.org/10.1175/2007JAS2399.1
  • Kumar, V. V., Jakob, C., Protat, A., Williams, C., & May, P. (2015). Mass-Flux Characteristics of Tropical Cumulus Clouds from Wind Profiler Observations at Darwin, Australia. Journal of the Atmospheric Sciences, 72(5), 1837-1855. doi:10.1175/jas-d-14-0259.1
  • Kuo, H. L. (1960). On convection and heat transfer. Proc. I. C. N. W. P.
  • Kuo, H. L. (1965). On formation and intensification of tropical cyclones through latent heat release by cumulus convection. Journal of the Atmospheric Sciences, 22(1), 40–63. https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2
  • Kuo, H. L. (1974). Further studies of the parameterization of the influence of cumulus convection on large-scale flow. Journal of the Atmospheric Sciences, 31(5), 1232–1240. https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2
  • Laing, A. G., & Fritsch, J. M. (1997). The global population of mesoscale convective complexes. Quarterly Journal of the Royal Meteorological Society, 123(538), 389–405. https://doi.org/10.1002/qj.49712353807
  • Laing, A. G., Fritsch, J. M., & Negri, A. J. (1999). Contribution of mesoscale convective complexes to rainfall in Sahelian Africa: Estimates from geostationary infrared and passive microwave data. Journal of Applied Meteorology and Climatology, 38(7), 957–964. https://doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2
  • Lamer, K., Kollias, P., & Nuijens, L. (2015). Observations of the variability of shallow trade wind cumulus cloudiness and mass flux. Journal of Geophysical Research – Atmospheres, 120(12), 6161–6178. https://doi.org/10.1002/2014JD022950
  • Lang, S., Tao, W. K., Simpson, J., & Ferrier, B. (2003). Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. Journal of Applied Meteorology and Climatology, 42(4), 505–527. https://doi.org/10.1175/1520-0450(2003)042<0505:MOCSPP>2.0.CO;2
  • Lappen, C. L., & Randall, D. A. (2001a). Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model. Journal of the Atmospheric Sciences, 58(15), 2021–2036. https://doi.org/10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
  • Lappen, C. L., & Randall, D. A. (2001b). Toward a unified parameterization of the boundary layer and moist convection. Part II: Lateral mass exchanges and subplume-scale fluxes. Journal of the Atmospheric Sciences, 58(15), 2037–2051. https://doi.org/10.1175/1520-0469(2001)058<2037:TAUPOT>2.0.CO;2
  • Lappen, C. L., & Randall, D. A. (2001c). Toward a unified parameterization of the boundary layer and moist convection. Part III: Simulations of clear and cloudy convection. Journal of the Atmospheric Sciences, 58(15), 2052–2072. https://doi.org/10.1175/1520-0469(2001)058<2052:TAUPOT>2.0.CO;2
  • Lappen, C. L., Randall, D. A., & Yamaguchi, T. (2010). A higher-order closure model with an explicit PBL top. Journal of the Atmospheric Sciences, 67(3), 834–850. https://doi.org/10.1175/2009JAS3205.1
  • Larson, V. E., Kotenberg, K. E., & Wood, N. B. (2007). An analytic longwave radiation formula for liquid layer clouds. Monthly Weather Review, 135(2), 689–699. https://doi.org/10.1175/MWR3315.1
  • Laws, J. O., & Parsons, D. A. (1943). The relation of raindrop size to intensity. Transactions American Geophysical Union, 24(2), 452–460. https://doi.org/10.1029/TR024i002p00452
  • Lean, H., Clark, P. A., Dixon, M., Roberts, N., Fitch, A., Forbes, R., & Halliwell, C. (2008). Characteristics of high-resolution versions of the met office unified model for forecasting convection over the United Kingdom. Monthly Weather Review, 136(9), 3408–3424. https://doi.org/10.1175/2008MWR2332.1
  • Leary, C. A., & Rappaport, E. N. (1987). The life cycle and internal structure of a mesoscale convective complex. Monthly Weather Review, 115(8), 1503–1527. https://doi.org/10.1175/1520-0493(1987)115<1503:TLCAIS>2.0.CO;2
  • Lee, S. S., Donner, L. J., & Phillips, V. T. (2009). Impacts of aerosol chemical composition on microphysics and precipitation in deep convection. Atmospheric Research, 94(2), 220–237. https://doi.org/10.1016/j.atmosres.2009.05.015
  • Lee, W. L., Wang, Y. C., Shiu, C. J., Tsai, I., Tu, C. Y., Lan, Y. Y., Chen, J. P., Pan, H. L., & Hsu, H. H. (2020). Taiwan earth system model version 1: Description and evaluation of mean state. Geoscientific Model Development, 13(9), 3887–3904. https://doi.org/10.5194/gmd-13-3887-2020
  • Lemon, L. R., & Doswell IIIC. A. (1979). Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Monthly Weather Review, 107(9), 1184–1197. https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2
  • LeMone, M. A., Barnes, G. B., & Zipser, E. J. (1984). Momentum flux by lines of cumulonimbus over the tropical oceans. Journal of the Atmospheric Sciences, 41(12), 1914–1932. https://doi.org/10.1175/1520-0469(1984)041<1914:MFBLOC>2.0.CO;2
  • LeMone, M. A., & Moncrieff, M. W. (1994). Momentum and mass transport by convective bands: Comparisons of highly idealized dynamical models to observations. Journal of the Atmospheric Sciences, 51(2), 281–305. https://doi.org/10.1175/1520-0469(1994)051<0281:MAMTBC>2.0.CO;2
  • LeMone, M. A., & Zipser, E. J. (1980). Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. Journal of the Atmospheric Sciences, 37(11), 2444–2457. https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2
  • Lenderink, G., Pier Siebesma, A., Cheinet, S., Irons, S., Jones, C. G., Marquet, P., Üller, F. M., Olmeda, D., Calvo, J., Sánchez, E., & Soares, P. M. M. (2004). The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quarterly Journal of the Royal Meteorological Society, 130(604), 3339–3364. https://doi.org/10.1256/qj.03.122
  • Lenschow, D. H., Paluch, I. R., Bandy, A. R., Pearson Jr, R., Kawa, S. R., Weaver, C. J., Huebert, B. J., Kay, J. G., Thornton, D. C., & Driedger III, A. R. (1988). Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment. Bulletin of the American Meteorological Society, 69(9), 1058–1067. https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2
  • Leutbecher, M., Lock, S.-J., Ollinaho, P., Lang, S. T. K., Balsamo, G., Bechtold, P., Bonavita, M., Christensen, H. M., Diamantakis, M., Dutra, E., English, S., Fisher, M., Forbes, R. M., Goddard, J., Haiden, T., Hogan, R. J., Juricke, S., Lawrence, H., MacLeod, D., … Weisheimer, A. (2017). Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Quarterly Journal of the Royal Meteorological Society, 143(707), 2315–2339. https://doi.org/10.1002/qj.3094
  • Ley, W. C. (1878). The Euridice squall. Meteorological Magazine, CXLVII, 20–22.
  • Ley, W. C. (1883). Squalls. Nature, 28, 132–133. https://doi.org/10.1038/028132a0
  • Li, L., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W., Wang, Y., Huang, W., Shi, X., Pu, Y., & Yang, G. (2013). Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2). Advances in Atmospheric Sciences, 30, 855–867. https://doi.org/10.1007/s00376-013-2157-5
  • Ligda, M. G. H. (1956). The radar observations of mature prefrontal squall lines in the midwestern United States. Sixth OSTIV Congress, Publ. IV, Federation Aeronautique Internationale, St-Yan, France, https://journals.sfu.ca/ts/index.php/op/article/download/1364/1297
  • Lilly, D. K. (1960). On the theory of disturbances in a conditionally unstable atmosphere. Monthly Weather Review, 88(1), 1–17. https://doi.org/10.1175/1520-0493(1960)088<0001:OTTODI>2.0.CO;2
  • Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M., Schubert, S. D., Del Genio, A., Donner, L. J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., & Scinocca, J. F. (2006). Tropical intraseasonal variability in 14 IPCC CMIP3 climate models. Part I: Convective signals. Journal of Climate, 19(12), 2665–2690. https://doi.org/10.1175/JCLI3735.1
  • Lin, J. L. (2007). The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. Journal of Climate, 20(18), 4497–4525. https://doi.org/10.1175/JCLI4272.1
  • Lin, J. L., & Mapes, B. E. (2004). Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophysical Research Letter, 31, L16118. https://doi.org/10.1029/2004GL020199
  • Lin, J. L., Mapes, B. E., & Han, W. (2008). What are the sources of mechanical damping in Matsuno–Gill-type models? Journal of Climate, 21(2), 165–179. https://doi.org/10.1175/2007JCLI1546.1
  • Lin, J. L., Mapes, B. E., Zhang, M. H., & Newman, M. (2004). Stratiform precipitation, vertical heating profiles, and the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 61(3), 296–309. https://doi.org/10.1175/1520-0469(2004)061<0296:SPVHPA>2.0.CO;2
  • Lin, J. L., Qian, T., & Shinoda, T. (2014). Stratocumulus clouds in southeastern Pacific simulated by eight CMIP5 CFMIP global climate models. Journal of Climate, 27(8), 3000–3022. https://doi.org/10.1175/JCLI-D-13-00376.1
  • Lin, J. L., Qian, T., Shinoda, T., & Li, S. (2015). Is the tropical atmosphere in convective quasi-equilibrium? Journal of Climate, 28(11), 4357–4372. https://doi.org/10.1175/JCLI-D-14-00681.1
  • Lin, J. L., Zhang, M. H., & Mapes, B. (2005). Zonal momentum budget of the Madden-Julian oscillation: The source and strength of equivalent linear damping. Journal of the Atmospheric Sciences, 62(7), 2172–2188. https://doi.org/10.1175/JAS3471.1
  • Lin, X., & Johnson, R. H. (1996). Heating, moistening, and rain over the western Pacific warm pool during TOGA COARE. Journal of the Atmospheric Sciences, 53(22), 3367–3383. https://doi.org/10.1175/1520-0469(1996)053<3367:HMAROT>2.0.CO;2
  • Lin, Y., Huang, X., Liang, Y., Qin, Y., Xu, S., Huang, W., Xu, F., Liu, L., Wang, Y., Peng, Y., Wang, L., Xue, W., Fu, H., Zhang, G. J., Wang, B., Li, R., Zhang, C., Lu, H., Yang, K., … Gong, P. (2020). Community Integrated Earth System Model (CIESM): description and evaluation. Journal of Advances in Modeling Earth Systems, 12(8), e2019MS002036. https://doi.org/10.1029/2019MS002036
  • Liu, C., Zipser, E., & Nesbitt, J., & W, S. (2007). Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. Journal of Climate, 20(3), 489–503. https://doi.org/10.1175/JCLI4023.1
  • Liu, C., & Zipser, E. J. (2005). Global distribution of convection penetrating the tropical tropopause. Journal of Geophysical Research, 110(D23), D23104. https://doi.org/10.1029/2005JD006063
  • Liu, C., & Zipser, E. J. (2015). The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letter, 42, 3591–3595. https://doi.org/10.1002/2015GL063776
  • Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000). A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly Weather Review, 128(9), 3187–3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  • Lord, S. (1978). Development and observational verification of a cumulus cloud parameterization [PhD dissertation]. University of California, Los Angeles, 359 pp.
  • Louis, J.-F. (1979). A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology, 17, 187–202. https://doi.org/10.1007/BF00117978
  • Lu, C., Sun, C., Liu, Y., Zhang, G. J., Lin, Y., Gao, W., Niu, S., Yin, Y., Qiu, Y., & Jin, L. (2018). Observational relationship between entrainment rate and environmental relative humidity and implications for convection parameterization. Geophysical Research Letter, 45, 13495–13504. https://doi.org/10.1029/2018GL080264
  • Lu, M. L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C., & Seinfeld, J. H. (2007). The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. Journal of Geophysical Research, 112(D10), D10209. https://doi.org/10.1029/2006JD007985
  • Lucas, C., Zipser, E. J., & LeMone, M. A. (1994). Vertical velocity in oceanic convection off tropical Australia. Journal of the Atmospheric Sciences, 51(21), 3183–3193. https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2
  • Luo, Y., Wang, Y., Wang, H., Zheng, Y., & Morrison, H. (2010). Modeling convective-stratiform precipitation processes on a Mei-Yu front with the weather research and forecasting model: Comparison with observations and sensitivity to cloud microphysics parameteri- zations. Journal of Geophysical Research, 115(D18), D18117. https://doi.org/10.1029/2010JD013873
  • Madden, R. A., & Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  • Maddox, R. A. (1980). Mesoscale convective complexes. Bulletin of the American Meteorological Society, 61, 1374–1387.
  • Maddox, R. A. (1983). Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Monthly Weather Review, 111(7), 1475–1493. https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2
  • Majda, A. J., & Shefter, M. G. (2001). Models for stratiform instability and convectively coupled waves. Journal of the Atmospheric Sciences, 58(12), 1567–1584. https://doi.org/10.1175/1520-0469(2001)058<1567:MFSIAC>2.0.CO;2
  • Malardel, S., & Bechtold, P. (2019). The coupling of deep convection with the resolved flow via the divergence of mass flux. Quarterly Journal of the Royal Meteorological Society, 145(722), 1832–1845. https://doi.org/10.1002/qj.3528
  • Manabe, S., Smagorinsky, J. S., & Strickler, R. F. (1965). Simulated climatology of a general circulation model with a hydrological cycle. Monthly Weather Review, 93(12), 769–798. https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2
  • Mapes, B. E. (2000). Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57(10), 1515–1535. https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2
  • Mapes, B. E., & Lin, J. L. (2005). Doppler radar observations of mesoscale wind divergence in regions of tropical convection. Monthly Weather Review, 133(7), 1808–1824. https://doi.org/10.1175/MWR2941.1
  • Mapes, B. E., & Neale, R. B. (2011). Parameterizing convective organization. Journal of Advances in Modeling. Earth Systems, 3, M06004. https://doi.org/10.1029/2011MS000042
  • Mareiott, W. (1890). Second report of the thunderstorm committee. Distribution of thunderstorms over England and Wales, 1871–1887. Quarterly Journal of the Royal Meteorological Society, 16, 1–12.
  • Markowski, P. A. (2002). Hook echoes and rear-flank downdrafts: A review. Monthly Weather Review, 130(4), 852–876. https://doi.org/10.1175/1520-0493(2002)130<0852:HEARFD>2.0.CO;2
  • Markowski, P. M., Hatlee, T., & Richardson, Y. (2018). Tornadogenesis in the 12 May 2010 supercell thunderstorm intercepted by VORTEX2 near Clinton, Oklahoma. Monthly Weather Review, 146(11), 3623–3650. https://doi.org/10.1175/MWR-D-18-0196.1
  • Markowski, P. M., & Richardson, Y. P. (2009). Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmospheric Research, 93, 3–10. https://doi.org/10.1016/j.atmosres.2008.09.015
  • Markowski, P. N., & Straka, J. M. (2002). Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Monthly Weather Review, 130(7), 1692–1721. https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2
  • Marquis, J. M., Richardson, Y., Wurman, J., & Markowski, P. (2008). Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm- scale flow in the Crowell, TX, supercell of 30 April 2000. Monthly Weather Review, 136(12), 5017–5043. https://doi.org/10.1175/2008MWR2442.1
  • Masunaga, H., Matsui, T., Tao, W.-k., Hou, A. Y., Kummerow, C. D., Nakajima, T., Bauer, P., Olson, W. S., Sekiguchi, M., & Nakajima, T. Y. (2010). Satellite data simulator unit: A multi- sensor, multispectral satellite simulator package. Bulletin of the American Meteorological Society, 91(12), 1625–1632. https://doi.org/10.1175/2010BAMS2809.1
  • Matsui, T., Zeng, Z., Tao, W. K., Masunaga, H., Olson, W. S., & Lang, S. (2009). Evaluation of long-term cloud- resolving model simulations using satellite radiance observations and multifrequency satellite simulators. Journal of Atmospheric and Oceanic Technology, 26(7), 1261–1274. https://doi.org/10.1175/2008JTECHA1168.1
  • May, P. T., & Rajopadhyaya, D. K. (1999). Vertical velocity characteristics of deep convection over Darwin, Australia. Monthly Weather Review, 127(6), 1056–1071. https://doi.org/10.1175/1520-0493(1999)127<1056:VVCODC>2.0.CO;2
  • Maynard, R. H. (1945). Radar and weather. Journal of Meteorology, 2(4), 214-226. https://doi.org/10.1175/1520-0469(1945)002<0214:RAW>2.0.CO;2
  • McAnelly, R. L., & Cotton, W. R. (1989). The precipitation life cycle of mesoscale convective complexes over the central United States. Monthly Weather Review, 117(4), 784–808. https://doi.org/10.1175/1520-0493(1989)117<0784:TPLCOM>2.0.CO;2
  • McCumber, M., Tao, W. K., Simpson, J., Penc, R., & Soong, S.-T. (1991). Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection. Journal of Applied Meteorology and Climatology, 30(7), 985–1004. https://doi.org/10.1175/1520-0450-30.7.985
  • Medeiros, B., Stevens, B., Held, I. M., Zhao, M., Williamson, D. L., Olson, J. G., & Bretherton, C. S. (2008). Aquaplanets, climate sensitivity, and low clouds. Journal of Climate, 21(19), 4974–4991. https://doi.org/10.1175/2008JCLI1995.1
  • Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., … Yeager, S. (2014). Decadal climate prediction: An update from the trenches. Bulletin of the American Meteorological Society, 95(2), 243–267. https://doi.org/10.1175/BAMS-D-12-00241.1
  • Mellor, G. L., & Yamada, T. (1974). A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7), 1791–1806. https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2
  • Merryfield, W. J., Baehr, J., Batte, L., Becker, E. J., Butler, A. H., Coelho, C. A., Danabasoglu, G., Dirmeyer, P. A., DoblasReyes, F. J., Domeisen, D. I., Ferranti, L., Ilynia, T., Kumar, A., Muller, W. A., Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma, M., … Yeager, S. (2020). Current and emerging developments in subseasonal to decadal prediction. Bulletin of the American Meteorological Society, 101(6), E869–E896. https://doi.org/10.1175/BAMS-D-19-0037.1
  • Miyakoda, K., & Sirutis, J. (1977). Comparative integrations of global models with various parameterized processes of subgridscale vertical transports: Description of the parameterizations. Beitrage zur Physik Atmosphere, 50, 445–487.
  • Molinari, J. (1985). A general form of Kuo’s cumulus parameterization. Monthly Weather Review, 113(8), 1411–1416. https://doi.org/10.1175/1520-0493(1985)113<1411:AGFOKC>2.0.CO;2
  • Moncrieff, M. W., Liu, C., & Bogenschutz, P. (2017). Simulation, modelling, and dynamically based parameterization of organized tropical convection for global climate models. Journal of the Atmospheric Sciences, 74(5), 1363–1380. https://doi.org/10.1175/JAS-D-16-0166.1
  • Moorthi, S., & Suarez, M. J. (1992). Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Monthly Weather Review, 120(6), 978–1002. https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
  • Morcrette, J. J., Barker, H., Cole, J., Iacono, M., & Pincus, R. (2008). Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Monthly Weather Review, 136(12), 4773–4798. https://doi.org/10.1175/2008MWR2363.1
  • Morrison, H. (2016a). Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part I: Simple, generalized analytic solutions. Journal of the Atmospheric Sciences, 73(4), 1441–1454. https://doi.org/10.1175/JAS-D-15-0040.1
  • Morrison, H. (2016b). Impacts of updraft size and dimensionality on the perturbation pressure and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical solutions and fully dynamical simulations. Journal of the Atmospheric Sciences, 73(4), 1455–1480. https://doi.org/10.1175/JAS-D-15-0040.1
  • Morrison, H., Milbrandt, J. A., Bryan, G. H., Ikeda, K., Tessendorf, S. A., & Thompson, G. (2015). Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. Journal of the Atmospheric Sciences, 72(1), 312–339. https://doi.org/10.1175/JAS-D-14-0066.1
  • Muller, C. J., & Held, I. M. (2012). Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. Journal of the Atmospheric Sciences, 69(8), 2551–2565. https://doi.org/10.1175/JAS-D-11-0257.1
  • Neale, R. B., Richter, J. H., & Jochum, M. (2008). The impact of convection on ENSO: From a delayed oscillator to a series of events. Journal of Climate, 21(22), 5904–5924. https://doi.org/10.1175/2008JCLI2244.1
  • Neiburger, M. (1941). Vorticity analysis of a thunderstorm situation. Bulletin of the American Meteorological Society, 22, 1–5. https://doi.org/10.1175/1520-0477-22.1.1
  • Newton, C. W. (1950). Structure and mechanism of the prefrontal squall line. Journal of the Atmospheric Sciences, 7(3), 210–222. https://doi.org/10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2
  • Nitta, T. (1977). Response of cumulus updraft and downdraft to GATE A/B-scale motion systems. Journal of the Atmospheric Sciences, 34(8), 1163–1186. https://doi.org/10.1175/1520-0469(1977)034<1163:ROCUAD>2.0.CO;2
  • Nitta, T., & Esbensen, S. (1974). Heat and moisture budget analyses using BOMEX data. Monthly Weather Review, 102(1), 17–28. https://doi.org/10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2
  • Norris, J. R. (1998). Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. Journal of Climate, 11(3), 369–382. https://doi.org/10.1175/1520-0442(1998)011<0369:lctoto>2.0.co;2
  • O'Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10(10), 2548–2563. https://doi.org/10.1029/2018MS001351
  • Paluch, I. R. (1979). The entrainment mechanism in Colorado cumuli. Journal of the Atmospheric Sciences, 36(12), 2467–2478. https://doi.org/10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2
  • Pan, H.-L., & Wu, W.-S. (1995). Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40 pp.
  • Park, S. (2014). A Unified Convection Scheme (UNICON). Part I: Formulation. Journal of Atmospheric Sciences, 71(11), 3902–3930. https://doi.org/10.1175/JAS-D-13-0233.1
  • Park, S. (2014). A Unified Convection Scheme (UNICON). Part II: Simulation. Journal of the Atmospheric Sciences, 71(11), 3931–3973. https://doi.org/10.1175/JAS-D-13-0234.1
  • Pergaud, J., Masson, V., Malardel, S., & Couvreux, F. (2009). A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorology, 132, 83–106. https://doi.org/10.1007/s10546-009-9388-0
  • Peters, J. M. (2016). The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. Journal of the Atmospheric Sciences, 73(11), 4531–4551. https://doi.org/10.1175/JAS-D-16-0016.1
  • Peters, K., Crueger, T., Jakob, C., & Mobis, B. (2017). Improved mjo-simulation in echam 6.3 by coupling a stochastic multicloud model to the convection scheme. Journal of Advances in Modeling Earth Systems, 9(1), 193–219. https://doi.org/10.1002/2016MS000809
  • Petterssen, S. (1939). Contributions to the theory of convection. Geofys. Publikasjoner, Norske Videnskaps-Akad. Oslo, 12(9), 1–23.
  • Pincus, R., Batstone, C. P., Patrick-Hofmann, R. J., Taylor, K. E., & Gleckler, P. E. (2008). Evaluating the present-day simulation of clouds, precipitation and radiation in climate models. Journal of Geophysical Research, 133(D14), D14209. https://doi.org/10.1029/2007JD009334
  • Planer, J. J. (1782). Obs. Oscillationis Mercurii in Tubo Torricelliano Erfordise institula. Acta Acad. Moguntinae.
  • Plant, R., & Craig, G. C. (2008). A stochastic parameterization for deep convection based on equilibrium statistics. Journal of the Atmospheric Sciences, 65(1), 87–105. https://doi.org/10.1175/2007JAS2263.1
  • Qian, L., Young, G. S., & Frank, W. M. (1998). A convective wake parameterization scheme for use in general circulation models. Monthly Weather Review, 126(2), 456–469. https://doi.org/10.1175/1520-0493(1998)126%3c0456:ACWPSF%3e2.0.CO;2
  • Randall, D. A. (1980). Conditional instability of the first kind upsidedown. Journal of the Atmospheric Sciences, 37(1), 125–130. https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2
  • Randall, D. A., DeMott, C., Stan, C., Khairoutdinov, M., Benedict, J., McCrary, R., Thayer-Calder, K., & Branson, M. (2016). Simulations of the tropical general circulation with a multiscale global model. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteorological Monographs, American Meteorological Society, 56, 15.1-15.15. https://doi.org/10.1175/AMSM-D-15-0016.1
  • Randall, D. A., Khairoutdinov, M., Arakawa, A., & Grabowski, W. (2003). Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84(11), 1547–1564. https://doi.org/10.1175/BAMS-84-11-1547
  • Randall, D. A., & Pan, D. M. (1993). Implementation of the Arakawa-Schubert cumulus parameterization with a prog- nostic closure. The Representation of Cumulus Convection in Numerical Models, Meteorological Monographs, American Meteorological Society, 46, 137–144.
  • Randall, D. A., Xu, K. M., Somerville, R. J. C., & Iacobellis, S. (1996). Single-column models and cloud ensemble models as links between observations and climate models. Journal of Climate, 9(8), 1683–1697. https://doi.org/10.1175/1520-0442(1996)009<1683:SCMACE>2.0.CO;2
  • Rayleigh, L. (1916). On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philosophical. Magazine, 32, 529–546. https://doi.org/10.1080/14786441608635602
  • Raymond, D. J. (1995). Regulation of moist convection over the west Pacific warm pool. Journal of the Atmospheric Sciences, 52(22), 3945–3959. https://doi.org/10.1175/1520-0469(1995)052<3945:ROMCOT>2.0.CO;2
  • Raymond, D. J., & Blyth, A. M. (1986). A stochastic model for non-precipitating cumulus clouds. Journal of the Atmospheric Sciences, 43(22), 2708–2718. https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2
  • Raymond, D. J., Solomon, R., & Blyth, A. M. (1991). Mass fluxes in New Mexico mountain thunderstorms from radar and aircraft measurements. Quarterly Journal of the Royal Meteorological Society, 117(499), 587–621. https://doi.org/10.1002/qj.49711749909
  • Raymond, D., Sessions, S. L., & Fuchs, Z. (2007). A theory for the spinup of tropical depressions. Quarterly Journal of the Royal Meteorological Society, 133(628), 1743–1754. https://doi.org/10.1002/qj.125
  • Redelsperger, J. L., Guichard, F., & Mondon, S. (2000). A parameterization of mesoscale enhancement of surface fluxes for large-scale models. Journal of Climate, 13(2), 402–421. https://doi.org/10.1175/1520-0442(2000)013<0402:APOMEO>2.0.CO;2
  • Riehl, H. (1950). A model of hurricane formation. Journal of Applied Physics, 21(9), 917–925. https://doi.org/10.1063/1.1699784
  • Riehl, H., Yeh, C., Malkus, J. S., Seur, L., & Noel, E. (1951). The north-east trade of the Pacific Ocean. Quarterly Journal of the Royal Meteorological Society, 77(334), 598–626. https://doi.org/10.1002/qj.49707733405
  • Rio, C., Del Genio, A. D., & Hourdin, F. (2019). Ongoing breakthroughs in convective parameterization. Current Climate Change Report, 5, 95. https://doi.org/10.1007/s40641-019-00127-w
  • Rio, C., Grandpeix, J. Y., Hourdin, F., Guichard, F., Couvreux, F., Lafore, J. P., Fridlind, A., Mrowiec, A., Roehrig, R., Rochetin, N., Lefebvre, M. P., & Idelkadi, A. (2013). Control of deep convection by sub-cloud lifting processes: The ALP closure in the LMDZ5B general circulation model. Climate Dynamics, 40, 2271–2292. https://doi.org/10.1007/s00382-012-1506-x
  • Rio, C., Hourdin, F., Grandpeix, J. Y., & Lafore, J. P. (2009). Shifting the diurnal cycle of parameterized deep convection over land. Geophysical Research Letter, 36, 7. https://doi.org/10.1029/2008GL036779
  • Rochetin, N., Couvreux, F., Grandpeix, J. Y., & Rio, C. (2014a). Deep convection triggering by boundary layer thermals. Part I: LES analysis and stochastic triggering formulation. Journal of the Atmospheric Sciences, 71(2), 496–514. https://doi.org/10.1175/JAS-D-12-0336.1
  • Rochetin, N., Grandpeix, J. Y., Rio, C., & Couvreux, F. (2014b). Deep convection triggering by boundary layer thermals. Part II: Stochastic triggering parameterization for the LMDZ GCM. Journal of the Atmospheric Sciences, 71(2), 515–538. https://doi.org/10.1175/JAS-D-12-0337.1
  • Rodwell, M., Magnusson, L., Bauer, P., Bechtold, P., Bonavita, M., Cardinali, C., & Diamantakis, M. (2013). Characteristics of occasional poor medium-range weather forecasts over Europe. Bulletin of the American Meteorological Society, 94(9), 1393–1405. https://doi.org/10.1175/BAMS-D-12-00099.1
  • Roh, W., & Satoh, M. (2018). Extension of a multisensor satellite radiance-based evaluation for cloud system resolving models. Journal of Meteorological Society of Japan, 96, 55–63. https://doi.org/10.2151/jmsj.2018-002
  • Roh, W., Satoh, M., & Nasuno, T. (2017). Improvement of a cloud microphysics scheme for a global nonhydrostatic model using TRMM and a satellite simulator. Journal of the Atmospheric Sciences, 74(1), 167–184. https://doi.org/10.1175/JAS-D-16-0027.1
  • Romps, D. M. (2010). A direct measure of entrainment. Journal of the Atmospheric Sciences, 67(6), 1908–1927. https://doi.org/10.1175/2010JAS3371.1
  • Romps, D. M. (2016). The stochastic parcel model: A deterministic parameterization of stochastically entraining convection. Journal of Advances in Modeling Earth Systems, 8(1), 319–344. https://doi.org/10.1002/2015MS000537
  • Romps, D. M., & Kuang, Z. (2010). Nature versus nurture in shallow convection. Journal of the Atmospheric Sciences, 67(5), 1655–1666. https://doi.org/10.1175/2009JAS3307.1
  • Rosenthal, G. E. (1786). Merkmale fur das Herannalien d. Gewitter. Mag. Neueste Physik, 4, Part I.
  • Roux, F., Testud, J., Payen, M., & Pinty, B. (1984). West African squall-line thermodynamic structure retrieved from dual-Doppler radar observations. Journal of the Atmospheric Sciences, 41(21), 3104–3121.https://doi.org/10.1175/1520-0469(1984)041<3104:WASLTS>2.0.CO;2
  • Ryde, J. W. (1946). The attenuation and radar echoes produced at centimeter wave-lengths by various meteorological phenomena. Meteorological Factors in Radio-Wave Propagation, Proceeding of the Physical Society of London, 169–188.
  • Sanderson, B. M., Shell, K. M., & Ingram, W. (2010). Climate feedbacks determined using radiative kernels in a multi-thousand member ensemble of AOGCMs. Climate Dynamics, 35, 1219–1236. https://doi.org/10.1007/s00382-009-0661-1
  • Saxen, T. R., & Rutledge, S. A. (2000). Surface rainfall-cold cloud fractional coverage relationship in TOGA COARE: A function of vertical wind shear. Monthly Weather Review, 128(2), 407–415. https://doi.org/10.1175/1520-0493(2000)128<0407:SRCCFC>2.0.CO;2
  • Saxen, T., & Rutledge, S. (1998). Surface fluxes and boundary layer recovery in TOGA COARE: Sensitivity to convective organization. Journal of the Atmospheric Sciences, 55(17), 2763–2781. https://doi.org/10.1175/1520-0469(1998)055<2763:SFABLR>2.0.CO;2
  • Schiro, K. A., & Neelin, J. D. (2018). Tropical continental downdraft characteristics: Mesoscale systems versus unorganized convection. Atmospheric Chemistry Physics, 18, 1997–2010. https://doi.org/10.5194/acp-18-1997-2018
  • Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017). Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations. Geophysical Research Letter, 44(24), 12,396–12,417. https://doi.org/10.1002/2017GL076101
  • Schumacher, C., & Houze Jr, R. A. (2003). Stratiform rain in the tropics as seen by the TRMM precipitation radar. Journal of Climate, 16(11), 1739–1756. https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2
  • Scott, J. D., & Rutledge, S. A. (1995). Doppler radar observations of an asymmetric mesoscale convective system and associated vortex couplet. Monthly Weather Review, 123(12), 3437–3457. https://doi.org/10.1175/1520-0493(1995)123<3437:DROOAA>2.0.CO;2
  • Sherwood, S., Bony, S., & Dufresne, J. L. (2014). Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 37–42. https://doi.org/10.1038/nature12829
  • Siebesma, A. P., & Cuijpers, J. W. M. (1995). Evaluation of parametric assumptions for shallow cumulus convection. Journal of the Atmospheric Sciences, 52(6), 650–666. https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2
  • Simpson, J., Adler, R. F., & North, G. R. (1988). A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bulletin of the American Meteorological Society, 69(3), 278–295. https://doi.org/10.1175/1520-0477(1988)069<0278:APTRMM>2.0.CO;2
  • Simpson, J., & Wiggert, V. (1969). Models of precipitating cumulus towers. Monthly Weather Review, 97(7), 471–489. https://doi.org/10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X.-y. (2008). A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113pp. https://doi.org/10.5065/D68S4MVH
  • Slingo, A. (1987). The development and verification of a cloud prediction scheme for the ECMWF model. Quarterly Journal of Royal Meteorological Society, 113, 899–927. doi:10.1002/qj.49711347710
  • Slingo, A. (1990). Sensitivity of the earth's radiation budget to changes is low clouds. Nature, 343, 49–51. https://doi.org/10.1038/343049a0
  • Slingo, A., Brown, R., & Wrench, C. L. (1982). A field-study of nocturnal stratocumulus. 3. High-resolution radiative and microphysical observations. Quarterly Journal of the Royal Meteorological Society, 108(455), 145–165. https://doi.org/10.1002/qj.49710845509
  • Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., & Yang, X. (2019). Robust skill of decadal climate predictions. NPJ Climate and Atmospheric Science, 2, 13. https://doi.org/10.1038/s41612-019-0071-y
  • Smull, B. F., & Augustine, J. A. (1993). Multiscale analysis of a mature mesoscale convective complex. Monthly Weather Review, 121(1), 103–132. https://doi.org/10.1175/1520-0493(1993)121<0103:MAOAMM>2.0.CO;2
  • Smull, B. F., & Houze Jr, R. A. (1987). Dual-Doppler analysis of a midlatitude squall line with a trailing region of stratiform rain. Journal of the Atmospheric Sciences, 44(15), 2128–2148. https://doi.org/10.1175/1520-0469(1987)044<2128:DDRAOA>2.0.CO;2
  • Soares, P. M. M., Miranda, P. M. A., Siebesma, A. P., & Teixeira, J. (2004). An eddy diffusivity/mass-flux parameterization for dry and shallow cumulus convection. Quarterly Journal of the Royal Meteorological Society, 130(604), 3365–3383. https://doi.org/10.1256/qj.03.223
  • Song, X., & Zhang, G. J. (2009). Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. Journal of Climate, 22, 4299–4315. https://doi.org/10.1175/2009JCLI2642.1
  • Song, X., & Zhang, G. J. (2011). Microphysics parameterization for convective clouds in a global climate model: Description and single-column model tests. Journal of Geophysical Research, 116(D2), D02 201. https://doi.org/10.1029/2010JD014833
  • Song, X., Zhang, G. J., & Li, J. L. F. (2012). Evaluation of microphysics parameterization for convective clouds in the NCAR community atmosphere model CAM5. Journal of Climate, 25(24), 8568–8590. https://doi.org/10.1175/JCLI-D-11-00563.1
  • Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S. H. E., Martin, A., Murphy, J. M., Piani, C., Sexton, D. M. H., Smith, L., Spicer, R., Thorpe, A., & Allen, M. R. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433(7024), 403–406. https://doi.org/10.1038/nature03301
  • Stanfield, R. E., Su, H., Jiang, J. H., Freitas, S. R., Molod, A. M., Luo, Z. J., Huang, L., & Luo, M. (2019). Convective entrainment rates estimated from aura CO and CloudSat/ CALIPSO observations and comparison with GEOS-5. Journal of Geophysics Research, 124(17–18), 9796–9807. https://doi.org/10.1029/2019JD030846
  • Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S., Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P., Morley, B., … van Zanten, M. C. (2003). Dynamics and Chemistry of Marine Stratocumulus-DYCOMS II. Bulletin of the American Meteorological Society, 84(5), 579–593. https://doi.org/10.1175/BAMS-84-5-579
  • Stevens, D. E. (1979). Vorticity, momentum and divergence budgets of synoptic-scale wave disturbances in the tropical Eastern Atlantic. Monthly Weather Review, 107(5), 535–550. https://doi.org/10.1175/1520-0493(1979)107<0535:VMADBO>2.0.CO;2
  • Stewart, B. (1863). On the sudden squalls of 30th October and 21st November 1863. Proceedings Royal Society of London, 13, 51–52.
  • Stout, G. E., & Huff, F. A. (1953). Radar records Illinois tornadogenesis. Bulletin of the American Meteorological Society, 34, 281–284. https://doi.org/10.1175/1520-0477-34.6.281
  • Strehlke, F. (1830). Ueber d. Einfluss d. Gewitter auf den Barometerstand. Poggendorff's Annalen, 19, p. 148.
  • Stull, R. B. (1988). An introduction to boundary layer meteorology. Springer, 684 pp.
  • Sui, C. H., & Yanai, M. (1986). Cumulus ensemble effects on the large-scale vorticity and momentum fields of GATE. Part I: Observational evidence. Journal of the Atmospheric Sciences, 43(15), 1618–1642. https://doi.org/10.1175/1520-0469(1986)043<1618:CEEOTL>2.0.CO;2
  • Sun, J., Braun, S., Biggerstaff, M. I., Fovell, R. G., & Houze Jr, R. A. (1993). Warm upper-level downdrafts associated with a squall line. Monthly Weather Review, 121(10), 2919–2927. https://doi.org/10.1175/1520-0493(1993)121<2919:WULDAW>2.0.CO;2
  • Suselj, K., Teixeira, J., & Chung, D. (2013). A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. Journal of the Atmospheric Sciences, 70(7), 1929–1953. https://doi.org/10.1175/JAS-D-12-0106.1
  • Svensson, G., Holtslag, A. A. M., Kumar, V., Mauritsen, T., Steeneveld, G. J., Angevine, W. M., Bazile, E., Beljaars, A., de Bruijn, E. I. F., Cheng, A., Conangla, L., Cuxart, J., Ek, M., Falk, M. J., Freedman, F., Kitagawa, H., Larson, V. E., Lock, A., Mailhot, J., … Zampieri, M. (2011). Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single- column models: The second GABLS experiment. Boundary-Layer Meteorology, 140, 177–206. https://doi.org/10.1007/s10546-011-9611-7
  • Sverdrup, H. U. (1917). Der nordatlantische Passatinversion. Veroffentl. d. Geoph. Inst. d. Univ. Leipzig, Bd. II, Heft I.
  • Symons, G. J. (1889). Results of an investigation of the phenomena of English Thunderstorms during the years 1857–59. https://doi.org/10.1002/qj.4970156901.
  • Symons, G. J. (1890). On barometric oscillations during thunderstorms, and on the barometer, an instrument designed to facilitate their study. Proceeding Royal Society. London, 48, 59–68.
  • Tang, S., Gleckler, P., Xie, S., Lee, J., Ahn, M.-S., Covey, C., & Zhang, C. (2021). Evaluating diurnal and semi-diurnal cycle of precipitation in CMIP6 models using satellite- and ground- based observations. J. Climate, 34(8), 3189–3210. https://doi.org/10.1175/JCLI-D-20-0639.1
  • Taylor, G. R., & Baker, M. B. (1991). Entrainment and detrainment in cumulus clouds. Journal of the Atmospheric Sciences, 48(1), 112–120. https://doi.org/10.1175/1520-0469(1991)048<0112:EADICC>2.0.CO;2
  • Thompson, A. M., Tao, W. K., Pickering, K. E., Scala, J. R., & Simpson, J. (1997). Tropical deep convection and ozone formation. Bulletin of the American Meteorological Society, 78(6), 1043–1054. https://doi.org/10.1175/1520-0477(1997)078<1043:TDCAOF>2.0.CO;2
  • Thompson, R. M., Payne, S. W., Recker, E. E., & Reed, R. J. (1979). Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. Journal of the Atmospheric Sciences, 36(1), 53–72. https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2
  • Thomson, J. (1882). On a changing tesselated structure in certain liquids. Proceeding of the Philosophical Society of Glasgow, 13, 464–468.
  • Thuburn, J., Weller, H., Vallis, G. K., Beare, R. J., & Whitall, M. (2018). A framework for convection and boundary-layer parameterization derived from conditional filtering. Journal of the Atmospheric Sciences, 75(3), 965–981. https://doi.org/10.1175/JAS-D-17-0130.1
  • Tian, B., Fetzer, E. J., Kahn, B. H., Teixeira, J., Manning, E., & Hearty, T. (2013). Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. Journal of Geophysical Research - Atmosphere, 118(1), 114–134. https://doi.org/10.1029/2012JD018607
  • Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117(8), 1779–1800. https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
  • Toaldo, G. (1794). Dei moti del Barometro nei Temporali. Giornale Astro-Meteorologico.
  • Tobin, I., Bony, S., Holloway, C. E., Grandpeix, J. Y., Sèze, G., Coppin, D., Woolnough, S. J., & Roca, R. (2013). Does convective aggregation need to be represented in cumulus parameterizations? Journal of Advances in Modeling Earth Systems, 5(4), 692–703. https://doi.org/10.1002/jame.20047
  • Tobin, I., Bony, S., & Roca, R. (2012). Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. Journal of Climate, 25(20), 6885–6904. https://doi.org/10.1175/JCLI-D-11-00258.1
  • Tokioka, T., Yamazaki, K., Kitoh, A., & Ose, T. (1988). The equatorial 30–60-day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. Journal of Meteorological Society of Japan, 66(6), 883–901. https://doi.org/10.2151/jmsj1965.66.6_883
  • Torri, G., & Kuang, Z. (2016). A Lagrangian study of precipitation-driven downdrafts. Journal of the Atmospheric Sciences, 73(2), 839–854. https://doi.org/10.1175/JAS-D-15-0222.1
  • Tung, W. W., & Yanai, M. (2002a). Convective momentum transport observed during the TOGA COARE IOP. Part I: General features. Journal of the Atmospheric Sciences, 59(11), 1857–1871. https://doi.org/10.1175/1520-0469(2002)059<1857:CMTODT>2.0.CO;2
  • Tung, W. W., & Yanai, M. (2002b). Convective momentum transport observed during the TOGA COARE IOP. Part II: Case studies. Journal of the Atmospheric Sciences, 59(17), 2535–2549. https://doi.org/10.1175/1520-0469(2002)059<2535:CMTODT>2.0.CO;2
  • van Meijgaard, E., & van Ulden, A. P. (1998). A first-order mixing- condensation scheme for nocturnal stratocumulus. Atmospheric Research, 45, 253–273. https://doi.org/10.1016/S0169-8095(97)00080-X
  • Varble, A., Fridlind, A., Zipser, E. J., Ackerman, A., Chaboureau, J.-P., Fan, J., Hill, A., McFarlane, S. A., Pinty, J.-P., & Shipway, B. (2011). Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. Journal of Geophysical Research, 116(D12), D12206. https://doi.org/10.1029/2010JD015180
  • Varble, A., Zipser, E. J., Fridlind, A. M., Zhu, P., Ackerman, A. S., Chaboureau, J.-P., Fan, J., Hill, A., Shipway, B., & Williams, C. (2014). Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics. Journal of Geophysical Research, 119(24), 13,919–13,945. https://doi.org/10.1002/2013JD021372
  • Verlinde, J., Harrington, J. Y., McFarquhar, G. M., Yannuzzi, V. T., Avramov, A., Greenberg, S., Johnson, N., Zhang, G., Poellot, M. R., Mather, J. H., Turner, D. D., Eloranta, E. W., Zak, B. D., Prenni, A. J., Daniel, J. S., Kok, G. L., Tobin, D. C., Holz, R., Sassen, K., … Schofield, R. (2007). The mixed-phase Arctic cloud experiment. Bulletin of the American Meteorological Society, 88(2), 205–221. https://doi.org/10.1175/BAMS-88-2-205
  • Vitart, F., & Molteni, F. (2010). Simulation of the Madden-Julian oscillation and its teleconnections in the ECMWF forecast system. Quarterly Journal of the Royal Meteorological Society, 136(649), 842–855. https://doi.org/10.1002/qj.623
  • Voors, R., Donovan, D., Acarreta, J., Eisinger, M., Franco, R., Lajas, D., Moyano, R., Pirondini, F., Ramos, J., & Wehr, T. (2007). ECSIM: The simulator framework for EarthCARE. Sensors, Systems, and Next-Generation Satellites XI, R. Meynart et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6744). 67441Y, https://doi.org/10.1117/12.737738.
  • Wakimoto, R. M., & Liu, C. (1998). The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Monthly Weather Review, 126(2), 393–408. https://doi.org/10.1175/1520-0493(1998)126<0393:TGCKSD>2.0.CO;2
  • Walker, G. T. (1923). Correlation in seasonal variations of weather. VIII: A preliminary study of world weather. Memoirs of the India Meteorological Department, Poona: Meteorological Office, 24, 75–131.
  • Wallace, J. M. (1992). Effect of deep convection on the regulation of tropical sea surface temperature. Nature, 357, 230–231. https://doi.org/10.1038/357230a0
  • Wang, D., Giangrande, S. E., Feng, Z., Hardin, J. C., & Prein, A. F. (2020a). Updraft and downdraft core size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. Journal of Geophysics Research, 125(11), https://doi.org/10.1029/2019JD031774
  • Wang, D., Jensen, M. P., D’Iorio, J. A., Jozef, G., Giangrande, S. E., Johnson, K. L., Luo, Z. J., Starzec, M., & Mullendore, G. L. (2020b). An observational comparison of level of neutral buoyancy and level of maximum detrainment in tropical deep convective clouds. Journal of Geophysics Research, 125(16), e2020JD032637. https://doi.org/10.1029/2020JD032637
  • Wang, H., Easter, R. C., Rasch, P. J., Wang, M., Liu, X., Ghan, S. J., Qian, Y., Yoon, J. H., Ma, P. L., & Vinoj, V. (2013). Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model. Geoscientific Model Development, 6(3), 765–782. https://doi.org/10.5194/gmd-6-765-2013
  • Wang, S., & Stevens, B. (2000). Top-hat representation of turbulence statistics in cloud-topped boundary layers: A large-eddy simulation study. Journal of the Atmospheric Sciences, 57(3), 423–441. https://doi.org/10.1175/1520-0469(2000)057<0423:THROTS>2.0.CO;2
  • Wang, Y., & Zhang, G. J. (2016). Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5. Journal of Advances in Modeling Earth Systems, 8(4), 1641–1656. https://doi.org/10.1002/2016MS000756
  • Wang, Y., Zhang, G. J., & Craig, G. (2016). Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophysical Research Letter, 43, 6612–6619. https://doi.org/10.1002/2016GL069818
  • Ward, R. A. (1936). Pressure distribution in relation to thunderstorm occurrence on Oregon and Washington national forests. Monthly Weather Review, 64, 37–45. https://doi.org/10.1175/1520-0493(1936)64<37:PDIRTT>2.0.CO;2
  • Webb, M., Senior, C., Bony, S., & Morcrette, J. J. (2001). Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dynamics, 17, 905–922. https://doi.org/10.1007/s003820100157
  • Wedi, N. P., Polichtchouk, I., Dueben, P., Anantharaj, V. G., Bauer, P., Boussetta, S., Browne, P., Deconinck, W., Gaudin, W., Hadade, I., Hatfield, S., Iffrig, O., Lopez, P., Maciel, P., Mueller, A., Saarinen, S., Sandu, I., Quintino, T., & Vitart, F. (2020). A baseline for global weather and climate simulations at 1 km resolution. Journal of Advances in Modeling Earth Systems, 12(11), e2020MS002192. https://doi.org/10.1029/2020MS002192
  • Weisman, M. L. (2001). Bow echoes: A tribute to T. T. Fujita. Bulletin of the American Meteorological Society, 82(1), 97–116. https://doi.org/10.1175/1520-0477(2001)082<0097:BEATTT>2.3.CO;2
  • Wetzel, P. J., Cotton, W. R., & McAnelly, R. L. (1983). A long- lived mesoscale convective complex. Part II: Evolution and structure of the mature complex. Monthly Weather Review, 111(10), 1919–1937. https://doi.org/10.1175/1520-0493(1983)111<1919:ALLMCC>2.0.CO;2
  • Wexler, R. (1947). Radar detection of a frontal storm, 18 June 1946. Journal of the Atmospheric Sciences, 4(1), 38–44. https://doi.org/10.1175/1520-0469(1947)004<0038:RDOAFS>2.0.CO;2
  • Wexler, R. (1948). Rain intensities by radar. Journal of the Atmospheric Sciences, 5(4), 171–173. https://doi.org/10.1175/1520-0469(1948)005<0171:RIBR>2.0.CO;2
  • Wexler, R., & Swingle, D. (1947). Radar storm detection. Bulletin of the American Meteorological Society, 28, 159–167. https://doi.org/10.1175/1520-0477-28.4.159
  • Wilcox, E. M., & Donner, L. J. (2007). The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. Journal of Climate, 20(1), 53–69. https://doi.org/10.1175/JCLI3987.1
  • Wing, A. A., Emanuel, K., Holloway, C., & Muller, C. (2017). Convective self-aggregation in numerical simulations: A review. Surveys in Geophysics, 38, 1173–1197. https://doi.org/10.1007/s10712-017-9408-4
  • Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., & Ohno, T. (2018). Radiative-convective equilibrium model intercomparison project. Geoscientific Model Development, 2017, 1–34. https://doi.org/10.5194/gmd-11-793-2018
  • Wood, R., & Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. Journal of Climate, 19, 6425–6432. doi:10.1175/JCLI3988.1
  • Wood, R., Mechoso, C. R., Bretherton, C. S., Weller, R. A., Huebert, B., Straneo, F., Albrecht, B. A., Coe, H., Allen, G., Vaughan, G., Daum, P., Fairall, C., Chand, D., Gallardo Klenner, L., Garreaud, R., Grados, C., Covert, D. S., Bates, T. S., Krejci, R., … Bower, K. N. (2011). The VAMOS ocean-cloud-atmosphere-land study regional experiment (VOCALS-REx): Goals, platforms, and field operations. Atmospheric Chemistry Physics, 11, 627–654. https://doi.org/10.5194/acp-11-627-2011
  • Woolnough, S. J., Blossey, P. N., Xu, K.-M., Bechtold, P., Chaboureau, J.-P., Hosomi, T., Iacobellis, S. F., Luo, Y., Petch, J. C., Wong, R. Y., & Xie, S. (2010). Modelling convective processes during the suppressed phase of a Madden-Julian oscillation: Comparing single-column models with cloud-resolving models. Quarterly Journal of the Royal Meteorological Society, 136(647), 333–353. https://doi.org/10.1002/qj.568
  • Wu, D., Dong, X., Xi, B., Feng, Z., Kennedy, A., Mullendore, G., Gilmore, M., & Tao, W.-K. (2013). Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. Journal of Geophysical Research, 118(19), 11,119–11,135. https://doi.org/10.1002/jgrd.50798
  • Wu, T. (2012). A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dynamics, 38, 725–744. https://doi.org/10.1007/s00382-011-0995-3
  • Wu, X., & Yanai, M. (1994). Effects of vertical wind shear on the cumulus transport of momentum: Observations and parameterization. Journal of the Atmospheric Sciences, 51(12), 1640–1660. https://doi.org/10.1175/1520-0469(1994)051<1640:EOVWSO>2.0.CO;2
  • Wyant, M. C., Bretherton, C. S., Chlond, A., Griffin, B. M., Kitagawa, H., Lappen, C.-L., Larson, V. E., Lock, A., Park, S., de Roode, S. R., Uchida, J., Zhao, M., & Ackerman, A. S. (2007). A single column model intercomparison of a heavily drizzling stratocumulus topped boundary layer. Journal of Geophysical Research, 112(D24), D24204. https://doi.org/10.1029/2007JD008536
  • Wyatt, B. H. (1923). Temperature and humidity aloft relative to the pressure gradient over the southwest portion of california. Bulletin of the American Meteorological Society, 4, 154–157.
  • Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., Qian, Y., Bogenschutz, P. A., Caldwell, P., Cameron-Smith, P., Golaz, J.-C., Mahajan, S., Singh, B., Tang, Q., Wang, H., Yoon, J.-H., Zhang, K., & Zhang, Y. (2018). Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. Journal of Advances in Modeling Earth Systems, 10(10), 2618–2644. https://doi.org/10.1029/2018ms001350
  • Xie, S., Xu, K.-M., Cederwall, R. T., Bechtold, P., Del Genio, A. D., Klein, S. A., Cripe, D. G., Ghan, S. J., Gregory, D., Iacobellis, S. F., Krueger, S. K., Lohmann, U., Petch, J. C., Randall, D. A., Rotstayn, L. D., Somerville, R. C. J., Sud, Y. C., Von Salzen, K., Walker, G. K., … Zhang, M. (2002). Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society, 128(582), 1095–1136. https://doi.org/10.1256/003590002320373229
  • Xie, S., & Zhang, M. (2000). Impact of the convection triggering function on single-column model simulations. Journal of Geophysical Research, 105(D11), 14983–14996. https://doi.org/10.1029/2000JD900170
  • Xie, S., Zhang, M., Branson, M., Cederwall, R. T., Del Genio, A. D., Eitzen, Z. A., Ghan, S. J., Iacobellis, S. F., Johnson, K. L., Khairoutdinov, M., Klein, S. A., Krueger, S. K., Lin, W., Lohmann, U., Miller, M. A., Randall, D. A., Somerville, R. C. J., Sud, Y. C., Walker, G. K., … Zhang, J. (2005). Simulations of midlatitude frontal clouds by single- column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of Geophysical Research, 110(D15), D15S03. https://doi.org/10.1029/2004JD005119
  • Yanai, M., Chen, B., & Tung, W. W. (2000). The Madden-Julian oscillation observed during the TOGA COARE IOP: Global view. Journal of the Atmospheric Sciences, 57(15), 2374–2396. https://doi.org/10.1175/1520-0469(2000)057<2374:TMJOOD>2.0.CO;2
  • Yanai, M., & Johnson, R. H. (1993). Impact of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteorological Monographs, American Meteorological Society, 46, 36–62.
  • Yang, S., & Smith, E. A. (2008). Convective–stratiform precipitation variability at seasonal scale from 8 yr of TRMM observations: Implications for multiple modes of diurnal variability. Journal of Climate, 21(16), 4087–4114. https://doi.org/10.1175/2008JCLI2096.1
  • Yang, X. S. (2008). Nature-inspired metaheuristic algorithms. Luviner Press.
  • Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2, 78–84. https://doi.org/10.48550/arXiv.1003.1409
  • Yano, J. I., Bènard, P., Couvreux, F., & Lahellec, A. (2010). NAM-SCA: A nonhydrostatic anelastic model with segmentally constant approximations. Monthly Weather Review, 138(5), 1957–1974. https://doi.org/10.1175/2009MWR2997.1
  • Yano, J. I., Fraedrich, K., & Blender, B. (2001). Tropical convective variability as 1/f noise. Journal of Climate, 14(17), 3608–3616. https://doi.org/10.1175/1520-0442(2001)014<3608:TCVAFN>2.0.CO;2
  • Yano, J. I., & Moncrieff, M. W. (2016). Numerical archetypal parameterization for mesoscale convective systems. Journal of the Atmospheric Sciences, 73(7), 2585–2602. https://doi.org/10.1175/JAS-D-15-0207.1
  • Yano, J. I., & Moncrieff, M. W. (2018). Convective organization in evolving large-scale forcing represented by a highly truncated numerical archetype. Journal of the Atmospheric Sciences, 75(8), 2827–2847. https://doi.org/10.1175/JAS-D-17-0372.1
  • Yoshimura, H., Mizuta, R., & Murakami, H. (2015). A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-Lagrangian calculation of transport by compensatory subsidence. Monthly Weather Review, 143, 597–621. doi:10.1175/MWR-D-14-00068.1
  • Young, G. S., Perugini, S. M., & Fairall, C. W. (1995). Convective wakes in the equatorial western Pacific during TOGA. Monthly Weather Review, 123(1), 110–123. https://doi.org/10.1175/1520-0493(1995)123,0110:CWITEW.2.0.CO;2
  • Yuan, J., & Houze Jr, R. A. (2010). Global variability of mesoscale convective system anvil structure from A-train satellite data. Journal of Climate, 23(21), 5864–5888. https://doi.org/10.1175/2010JCLI3671.1
  • Yuter, S. E., & Houze Jr, R. A. (1995a). Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Monthly Weather Review, 123(7), 1921–1940. https://doi.org/10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2
  • Yuter, S. E., & Houze Jr, R. A. (1995b). Three dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Monthly Weather Review, 123(7), 1941–1963. https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
  • Yuter, S. E., & Houze Jr, R. A. (1995c). Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Monthly Weather Review, 123(7), 1964–1983. https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2
  • Zhang, D.-L., Gao, K., & Parsons, D. B. (1989). Numerical simulation of an intense squall line during 10–11 June 1985. Part I: Model verification. Mon. Wea. Rev, 117(5), 960–994. https://doi.org/10.1175/1520-0493(1989)117<0960:NSOAIS>2.0.CO;2
  • Zhang, G. J. (2002). Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. Journal of Geophysical Research, 107, ACL 12-1-ACL 12-16. https://doi.org/10.1029/2001JD001005
  • Zhang, G. J. (2003). Convective quasi-equilibrium in the tropical western Pacific: Comparison with midlatitude continental environment. Journal of Geophysical Research, 108, 4592. https://doi.org/10.1029/2003JD003520
  • Zhang, G. J. (2009). Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. Journal of Geophysical Research, 114, D07109. https://doi.org/10.1029/2008JD010976
  • Zhang, G. J., & Cho, H.-R. (1991). Parameterization of the vertical transport of momentum by cumulus clouds. Part I: Theory. Journal of the Atmospheric Sciences, 48(12), 1483–1492. https://doi.org/10.1175/1520-0469(1991)048<1483:POTVTO>2.0.CO;2
  • Zhang, G. J., Kiehl, J. T., & Rasch, P. J. (1998). Response of climate simulation to a new convective parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3). Journal of Climate, 11(8), 2097–2115. https://doi.org/10.1175/1520-0442(1998)011<2097:ROCSTA>2.0.CO;2
  • Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmosphere-Ocean, 33(3), 407–446. https://doi.org/10.1080/07055900.1995.9649539
  • Zhang, G. J., & McFarlane, N. A. (1995b). Role of convective scale momentum transport in climate simulation. Journal of Geophysical Research, 100, 1417–1426. https://doi.org/10.1029/94JD02519
  • Zhang, G. J., & Mu, M. (2005). Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. Journal of Climate, 18(19), 4046–4064. https://doi.org/10.1175/JCLI3508.1
  • Zhang, G. J., & Song, X. (2010). Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part II: Coupled feedback and the role of ocean heat transport. Journal of Climate, 23(3), 800–812. https://doi.org/10.1175/2009JCLI3109.1
  • Zhang, G. J., & Wang, H. (2006). Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophysical Research Letter, 33, L06709. https://doi.org/10.1029/2005GL025229
  • Zhang, G. J., Wu, X., Zeng, X., & Mitovski, T. (2016). Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-Ice. Climate Dynamics, 47(7–8), 2177–2192. https://doi.org/10.1007/s00382-015-2957-7
  • Zhang, M. (2013). CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. Journal of Advances in Modeling Earth Systems, 5(4), 826–842. https://doi.org/10.1002/2013MS000246
  • Zhang, M., & Bretherton, C. S. (2008). Mechanisms of low cloud climate feedback in idealized single-column simulations with the Community Atmospheric Model, version 3 (CAM3). Journal of Climate, 21, 4859–4878. doi:10.1175/2008JCLI2237.1
  • Zhang, M. H., & Lin, J. L. (1997). Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements. Journal of the Atmospheric Sciences, 54(11), 1503–1524. https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2
  • Zhao, M. (2014). An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. Journal of Climate, 27(5), 1845–1862. https://doi.org/10.1175/JCLI-D-13-00145.1
  • Zhao, M., Golaz, J.-C., Held, I. M., Guo, H., Balaji, V., Benson, R., Chen, J.-H., Chen, X., Donner, L. J., Dunne, J. P., Dunne, K. A., Durachta, J., Fan, S.-M., Freidenreich, S. M., Garner, S. T., Ginoux, P., Harris, L. M., Horowitz, L. W., Krasting, J. P., … Xiang, B. (2018). The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling Earth Systems, 10(3), 735–769. https://doi.org/10.1002/2ik017MS001209
  • Zhu, P. (2015). On the mass-flux representation of vertical transport in moist convection. Journal of the Atmospheric Sciences, 72(12), 4445–4468. https://doi.org/10.1175/JAS-D-14-0332.1
  • Zhu, P., & Albrecht, B. A. (2003). Large eddy simulations of continental shallow cumulus convection. Journal of Geophysical Research, 108(D15), 4453. https://doi.org/10.1029/2002JD003119
  • Zhu, P., & Bretherton, C. S. (2004). A simulation study of shallow moist convection and its impact on the atmospheric boundary layer. Monthly Weather Review, 132(10), 2391–2409. https://doi.org/10.1175/1520-0493(2004)132<2391:ASSOSM>2.0.CO;2
  • Zhu, P., Bretherton, C. S., Köhler, M., Cheng, A., Chlond, A., Geng, Q., Austin, P., Golaz, J.-C., Lenderink, G., Lock, A., & Stevens, B. (2005). Intercomparison and interpretation of single-column model simulations of a nocturnal stratocumulus-topped marine boundary layer. Monthly Weather Review, 133, 2741–2758. https://doi.org/10.1175/MWR2997.1
  • Zhu, P., Hack, J., Kiehl, J., & Bretherton, C. S. (2007). Climate sensitivity of tropical and subtropical marine low clouds to ENSO and global warming due to doubling CO2. Journal of Geophysical Research, 112(D17), https://doi.org/10.1029/2006JD008174
  • Zipser, E. J. (1977). Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Monthly Weather Review, 105(12), 1568–1589. https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2
  • Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., & Yorty, D. P. (2006). Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87(8), 1057–1071. https://doi.org/10.1175/BAMS-87-8-1057
  • Zipser, E. J., & LeMone, M. A. (1980). Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. Journal of the Atmospheric Sciences, 37(11), 2458–2469. https://doi.org/10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2
  • Zuidema, P. (2018). Layered Atlantic Smoke Interactions with Clouds (LASIC) field campaign report, DOE/ARM F. Campaign Rep., 37.
  • Zuidema, P., Leon, D., Pazmany, A., & Cadeddu, M. (2012). Aircraft millimeter-wave passive sensing of cloud liquid water and water vapor during VOCALS-REx. Atmospheric Chemistry and Physics, 12, 355–369. doi:10.5194/acp-12-355-2012
  • Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M., & Formenti, P. (2016). Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosols impact on climate. Bulletin of the American Meteorological Society, 97(7), 1131–1135. https://doi.org/10.1175/BAMS-D-15-00082.1
  • Zuidema, P., Torri, G., Muller, C., & Chandra, A. (2017). A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surveys in Geophysics, 38(6), 1283–1305. https://doi.org/10.1007/s10712-017-9447-x
  • Zuidema, P., Westwater, E. R., Fairall, C., & Hazen, D. (2005). Shipbased liquid water path estimates in marine stratocumulus. Journal of Geophysical Research, 110, D20206. doi:10.1029/2005JD005833