678
Views
5
CrossRef citations to date
0
Altmetric
Review / Synthèse

The Atlantic Multi-Decadal Oscillation

&
Pages 307-337 | Received 19 Apr 2022, Accepted 16 May 2022, Published online: 13 Jul 2022

References

  • Akim, E. L., Brumberg, V. A., & Kislik, M. D. (1986). A relativistic theory of motion of inner planets. Proceedings of the International Astronomical Union-IAU Symposium, 114, 63–68. https://doi.org/10.1017/S0074180900147990
  • Akim, E. L., & Stepanianz, V. A. (1977). Numerical theory of the motion of the Earth and Venus derived from data of radar and optical observations and tracking data for the Venera 9 and 10 satellites. Soviet Physics – Doklady, 22, 135–137. https://ui.adsabs.harvard.edu/abs/1977DoSSR.233R.314A/abstract
  • Alexander, M. A., Halimeda, K., & Nye, J. A. (2014). Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. Journal of Marine Systems, 133, 14–26. https://doi.org/10.1016/j.jmarsys.2013.07.017
  • Allan, R. P., Liu, C., Loeb, N. G., Palmer, M. D., Roberts, M., Smith, D., & Vidale, P.-L. (2014). Changes in global net radiative imbalance 1985–2012. Geophysical Research Letters, 41(15), 5588–5597. https://doi.org/10.1002/2014GL060962
  • Anchukaitis, K., & McKay, N. (2014). PAGES2k: Advances in climate field reconstructions. PAGES Magazine, 22(2), 98. https://pastglobalchanges.org/sites/default/files/download/docs/magazine/2014-2/PAGESmagazine_2014(2)_Magazine_LoRes.pdf#page = 42 https://doi.org/10.22498/pages.22.2.98
  • Arbic, B. K., Wallcraft, A. J., & Metzger, E. J. (2010). Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modelling, 32(3-4), 175–187. https://doi.org/10.1016/j.ocemod.2010.01.007
  • Ardanuy, P. E., Stowe, L. L., Gruber, A., & Weiss, M. (1991). Shortwave, longwave, and net cloud-radiative forcing as determined from Nimbus-7 observations. Journal of Geophysical Research, 96(D10), 18537–18549. https://doi.org/10.1029/91JD01992
  • Ash, M. E. (1965). Generation of Planetary Ephemerides on an Electronic Computer. Technical Report 391, M.I.T. Lincoln Laboratory, Lexington, MA. https://apps.dtic.mil/sti/pdfs/AD0629130.pdf
  • Baehr, J., Frhlich, K., Botzet, M., Domeisen, D. I. V., Kornblueh, L., & Notz, D. (2015). The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model. Climate Dynamics, 44(9-10), 2723–2735. https://doi.org/10.1007/s00382-014-2399-7
  • Balmaseda, M. A., Trenberth, K. E., & Kallen, E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40(9), 1754–1759. https://doi.org/10.1002/grl.50382
  • Bell, D. B., & Chelliah, M. (2006). Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. Journal of Climate, 19(4), 590–612. https://doi.org/10.1175/JCLI3659.1
  • Bellomo, K., Clement, A. C., Murphy, L. N., Polvani, L. M., & Cane, M. A. (2016). New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 43(18), 9852–9859. https://doi.org/10.1002/2016GL069961
  • Bellomo, K., Murphy, L. N., Cane, M. A., Clement, A. C., & Polvani, L. M. (2018). Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Climate Dynamics, 50(9-10), 3687–3698. https://doi.org/10.1007/s00382-017-3834-3
  • Bendick, R., & Bilham, R. (2017). Do weak global stresses synchronize earthquakes? Geophysical Research Letters, 44(16), 8320–8327. https://doi.org/10.1002/2017GL074934
  • Birkel, S. D., Mayewski, P. A., Maasch, K. A., Kurbatov, A. V., & Lyon, B. (2018). Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJournal of Climateate and Atmospheric Science, 1(1), 24. https://doi.org/10.1038/s41612-018-0036-6
  • Bjerknes, V. (1916). Uber thermodynamische Maschinen, die unter Mitwirkung der Schwerkraft arbeiten, Abh. Akad. Wissensch. Leipzig, 35(1), 1–33.
  • Boning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., & Bamber, J. L. (2016). Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nature Geoscience, 9(7), 523–527. https://doi.org/10.1038/ngeo2740
  • Bonomo, S., Ferrante, G., Palazzi, E., Pelosi, N., Lirer, F., Viegi, G., & La Grutta, S. (2019). Evidence for a link between the Atlantic Multidecadal Oscillation and annual asthma mortality rates in the US. Scientific Reports, 9(1), 11683. https://doi.org/10.1038/s41598-019-48178-1
  • Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., & Bellouin, N. (2012). Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393), 228–232. https://doi.org/10.1038/nature10946
  • Bretagnon, P., & Francou, G. (1988). Planetary theories in rectangular and spherical variables-VSOP 87 solutions. Astronomy and Astrophysics, 202, 309–315. https://adsabs.harvard.edu/pdf/1988A&A … 202..309B
  • Broecker, W. S. (1987). The biggest chill. Natural History Magazine, 97, 74–82.
  • Broecker, W. S. (1992). The great ocean conveyor, in Global Warming: Physics and Facts. In B. G. Levi, D. Hafemeister, & R. Scribner (Eds.), (pp. 129–161).
  • Brown, P. T., Lozier, M. S., Zhang, R., & Li, W. (2016). The necessity of cloud feedback for a basin-scale Atlantic Multidecadal Oscillation. Geophysical Research Letters, 43(8), 3955–3963. https://doi.org/10.1002/2016GL068303
  • Bryan, F. (1987). On the parameter sensitivity of primitive equation ocean general circulation models. Journal of Physical Oceanography, 17(7), 970–985. https://doi.org/10.1175/1520-0485(1987)017%3C0970:PSOPEO%3E2.0.CO;2
  • Buckley, M. W., & Marshall, J. (2016). Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics, 54(1), 5–63. https://doi.org/10.1002/2015RG000493
  • Caesar, L., Mccarthy, G. D., Thornalley, D. J. R., Cahill, N., & Rahmstorf, S. (2021). Current Atlantic meridional overturning circulation weakest in last millennium. Nature Geoscience, 14(3), 118–120. https://doi.org/10.1038/s41561-021-00699-z
  • Caesar, L., Rahmstorf, S., & Feulner, G. (2020). On the relationship between Atlantic Meridional Overturning Circulation slowdown and global surface warming. Environmental Research Letters, 15(2), 1–8. https://doi.org/10.1088/1748-9326/ab63e3
  • Cane, M. A., Clement, A. C., Murphy, L. N., & Bellomo, K. (2017). Low-pass filtering, heat flux, & Atlantic multidecadal variability. Journal of Climate, 30(18), 7529–7553. https://doi.org/10.1175/JCLI-D-16-0810.1
  • Caron, L.-P., Boudreault, M., & Bruyere, C. L. (2015). Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation. Climate Dynamics, 44(7-8), 1801–1821. https://doi.org/10.1007/s00382-014-2186-5
  • Cassou, C., Kushnir, Y., Hawkins, E., Pirani, A., Kucharski, F., Kang, I., & Caltabiano, N. (2018). Decadal climate variability & predictability: Challenges & opportunities. Bulletin of the American Meteorological Society, 99(3), 479–490. https://doi.org/10.1175/BAMS-D-16-0286.1
  • Chambers, D. P., Merrifield, M. A., & Nerem, R. S. (2012). Is there a 60-year oscillation in global mean sea level? Geophysical Research Letters, 39(18), L18607. https://doi.org/10.1029/2012GL052885
  • Chen, X., & Tung, K.-K. (2014). Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345(6199), 897–903. https://doi.org/10.1126/science.1254937
  • Chen, X., & Tung, K. K. (2018). Global surface warming enhanced by weak Atlantic overturning circulation. Nature, 559(7714), 387–391. https://doi.org/10.1038/s41586-018-0320-y
  • Chen, X., & Tung, K. K. (2021). Comment on ‘On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming’. Environmental Research Letters, 16(3), 038001. https://doi.org/10.1088/1748-9326/abc775
  • Chen, Y., Dai, A., Mu, M., Zhang, R., & Simmonds, I. (2017). Winter Eurasian cooling linked with the Atlantic multidecadal oscillation. Environmental Research Letters, 12(12), 125002. https://doi.org/10.1088/1748-9326/aa8de8
  • Chiessi, C., Mulitza, S., Patzold, J., Wefer, G., & Marengo, J. A. (2009). Impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geopysical Research Letters, 36(21), L21707. https://doi.org/10.1029/2009GL039914
  • Chylek, P., Folland, C. K., Lesins, G., Dubey, M. K., & Wang, M. (2009). Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophysical Research Letters, 36(14), L14801. https://doi.org/10.1029/2009GL038777
  • Chylek, P., Klett, J. D., Lesins, G., Dubey, M. K., & Hengartner, N. (2014). The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate. Geophysical Research Letters, 41(5), 1689–1697. https://doi.org/10.1002/2014GL059274
  • Clement, A., Bellomo, K., Murphy, L., Cane, M., Mauritsen, T., Radel, G., & Stevens, B. (2015). The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350(6258), 320–324. https://doi.org/10.1126/science.aab3980
  • Clement, A., Cane, M., Murphy, L., Bellomo, K., Mauritsen, T., & Stevens, B. (2016). Response to comment on -The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 352(6293), 1527–1527. https://doi.org/10.1126/science.aaf2575
  • Clement, A., & DiNezio, P. (2014). The tropical Pacific Ocean-back in the driver’s seat? Science, 343(6174), 976–978. https://doi.org/10.1126/science.1248115
  • Clowes, A. J., & Deacon, G. E. R. (1935). The deep-water circulation of the Indian Ocean. Nature, 136(3450), 936–938. https://doi.org/10.1038/136936a0
  • Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010b). Asian monsoon failure and megadrought during the last millennium. Science, 328(5977), 486–489. https://doi.org/10.1126/science.1185188
  • Cook, E. R., & Jacoby Jr., G. C. (1977). Tree-ring-drought relationships in the Hudson Valley, New York. Science, 198(4315), 399–401. https://doi.org/10.1126/science.198.4315.399
  • Cook, E. R., Seager, R., Heim Jr, R. R., Vose, R. S., Herweeijer, C., Woodhouse, C.. (2010a). Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. Journal of Quaternary Science, 25(1), 48–61. https://doi.org/10.1002/jqs.1303
  • Curtis, S. (2008). The Atlantic multidecadal oscillation & extreme daily precipitation over the US & Mexico during the hurricane season. Climate Dynamics, 30(4), 343–351. https://doi.org/10.1007/s00382-007-0295-0
  • Dai, A., Fyfe, J. C., Xie, S.-P., & Dai, X. (2015). Decadal modulation of global-mean temperature by internal climate variability. Nature Climate Change, 5(6), 555–559. https://doi.org/10.1038/nclimate2605
  • DelSole, T., Tippett, M. K., & Shukla, J. (2011). A significant component of unforced multidecadal variability in the recent acceleration of global warming. Journal of Climate, 24(3), 909–926. https://doi.org/10.1175/2010JCLI3659.1
  • Delworth, T. L., & Greatbatch, R. J. (2000). Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate, 13(9), 1481–1495. https://doi.org/10.1175/1520-0442(2000)013%3C1481:MTCVDB%3E2.0.CO;2
  • Delworth, T. L., Manabe, S., & Stouffer, R. J. (1993). Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. Journal of Climate, 6(11), 1993–2011. https://doi.org/10.1175/1520-0442(1993)006%3C1993:IVOTTC%3E2.0.CO;2
  • Delworth, T. L., & Mann, M. E. (2000). Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16(9), 661–676. https://doi.org/10.1007/s003820000075
  • Delworth, T. L., Zhang, L., Zhang, R., Vecchi, G., & Yang, X. (2017). The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. Journal of Climate, 30(10), 3789–3805. https://doi.org/10.1175/JCLI-D-16-0358.1
  • Deser, C., Guo, R., & Lehner, F. (2017). The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophysical Research Letters, 44(15), 7945–7954. https://doi.org/10.1002/2017GL074273
  • Devine, C. J., & Dunham, D. W. (1966). The ephemerides of the earth-moon barycenter, venus, mars, and mercury considering the earth and moon as separate bodies. NASA Technical Memorandum 33-232. https://ntrs.nasa.gov/api/citations/19660010343/downloads/19660010343.pdf
  • Dijkstra, H. A., Te Raa, L., Schmeits, M., & Gerrit, J. (2006). On the physics of the Atlantic multidecadal oscillation. Ocean Dynamics, 56(1), 36–50. https://doi.org/10.1007/s10236-005-0043-0
  • Dima, M., & Lohmann, G. (2007). A hemispheric mechanism for the Atlantic multidecadal oscillation. Journal of Climate, 20(11), 2706–2719. https://doi.org/10.1175/JCLI4174.1
  • Douville, H., Voldoire, A., & Geoffroy, O. (2015). The recent global warming hiatus: What is the role of Pacific variability? Geophysical Research Letters, 48(3), 880–888. https://doi.org/10.1002/2014GL062775
  • Easterling, D. R., & Wehner, M. F. (2009). Is the climate warming or cooling? Geophysical Research Letters, 36(8), L08706. https://doi.org/10.1029/2009GL037810
  • Eckert, W. J., Brouwer, D., & Clemence, G. M. (1951). Coordinates of the Five Outer Planets 1653-2060, Astronomical Papers, Volume 12. https://books.google.com/books?hl = en&lr = &id = TVMnAQAAIAAJ&oi = fnd&pg = PR9&dq = Coordinates+of+the+Five+Outer+Planets+1653-2060&ots = 5vNI-Vti-N&sig = cWQ1Y-npchxaWg38vKlJidcDcvM#v = onepage&q = Coordinates%20of%20the%20Five%20Outer%20Planets%201653-2060&f = false
  • Egbert, G. D., & Ray, R. D. (2000). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788), 775–778. https://doi.org/10.1038/35015531
  • Egbert, G. D., & Ray, R. D. (2003). Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophysical Research Letters, 30(17), 1907. https://doi.org/10.1029/2003GL017676
  • Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10), 2077–2080. https://doi.org/10.1029/2000GL012745
  • England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A. S., McPhaden, M. J., Purich, A., & Santoso, A. (2014). Recent intensification of wind- driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4(3), 222–227. https://doi.org/10.1038/nclimate2106
  • Feng, S., & Hu, Q. (2008). How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophysical Research Letters, 35(1), L01707. https://doi.org/10.1029/2007GL032484
  • Fienga, A., Deram, P., Viswanathan, V., Ruscio, A., Bernus, L., Durante, D., Gastineau, M., & Laskar, J. (2019). INPOP19a planetary ephemerides. [Research Report] IMCCE. 2019. hal-02470929. https://hal.archives-ouvertes.fr/hal-02470929/document
  • Fienga, A., Manche, H., Laskar, J., & Gastineau, M. (2008). INPOP06: a new numerical planetary ephemeris. Astronomy and Astrophysics, 477(1), 315–327. https://doi.org/10.1051/0004-6361:20066607
  • Folkner, W. M., Charlot, P., Finger, M. H., Williams, J. G., Soevers, O. J., & Newhall, X. X. (1994). Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. Astronomy and Astrophysics, 287, 279–289. https://adsabs.harvard.edu/full/1994A%26A … 287..279F
  • Folkner, W. M., Williams, J., Boggs, D., Park, R., & Kuchynka, P. (2014). JPL Interplanetary Network Progress Report 42-196. http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
  • Folland, C. K., Palmer, T., & Parker, D. E. (1986). Sahel rainfall and worldwide sea temperatures, 1901-85. Nature, 320(6063), 602–607. https://doi.org/10.1038/320602a0
  • Foster, G., & Rahmstorf, S. (2011). Global temperature evolution 1979-2010. Environmental Research Letters, 6(4), 044022. https://doi.org/10.1088/1748-9326/6/4/044022
  • Frankcombe, L. M., & Dijkstra, H. A. (2009). Coherent multi-decadal variability in North Atlantic sea level. Geophysical Research Letters, 36(15), L15604. https://doi.org/10.1029/2009GL039455
  • Frankcombe, L. M., Dijkstra, H., & von der Heydt, A. (2008). Sub-surface signatures of the Atlantic multidecadal oscillation. Geophysical Research Letters, 35(19), L19602. https://doi.org/10.1029/2008GL034989
  • Frankcombe, L. M., von der Heydt, A., & Dijkstra, H. A. (2010). North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. Journal of Climate, 23(13), 3626–3638. https://doi.org/10.1175/2010JCLI3471.1
  • Frankignoul, C., Gastineau, G., & Kwon, Y.-O. (2017). Estimation of the SST response to anthropogenic and external forcing, and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. Journal of Climate, 30(24), 9871–9895. https://doi.org/10.1175/JCLI-D-17-0009.1
  • Fritts, H. C. (1965). Tree-ring evidences for climatic changes in western North America. Monthly Weather Review, 93(7), 421–443. https://doi.org/10.1175/1520-0493(1965)093%3C0421:TREFCC%3E2.3.CO;2
  • Fyfe, J. C., Gillett, N. P., & Zwiers, F. W. (2013). Overestimated global warming over the past 20 years. Nature Climate Change, 3(9), 767–769. https://doi.org/10.1038/nclimate1972
  • Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M., Hawkins, E., Gillett, N. P., Xie, S., Kosaka, Y., & Swart, N. C. (2016). Making sense of the early-2000s warming slowdown. Nature Climate Change, 6(3), 224–228. https://doi.org/10.1038/nclimate2938
  • Garrett, C. (2003). Internal tides and ocean mixing. Science, 301(5641), 1858–1859. https://doi.org/10.1126/science.1090002
  • Garuba, O. A., Lu, J., Singh, H. A., Liu, F., & Rasch, P. (2018). On the relative roles of the atmosphere and ocean in the Atlantic multidecadal variability. Geophysical Research Letters, 45(17), 9186–9196. https://doi.org/10.1029/2018GL078882
  • Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474–479. https://doi.org/10.1126/science.1060040
  • Gordon, A. L. (1986). Interocean exchange of thermocline water. Journal of Geophysical Research, 91(C4), 5037–5046. https://doi.org/10.1029/JC091iC04p05037
  • Gordon, A. L. (1991). The role of thermohaline circulation in global climate change. Lamont-Doherty Geological Observatory 1990 and 1991 Report, Lamont-Doherty Earth Observatory Technical Report, 44-51. https://academiccommons.columbia.edu/doi/10. 7916/D8M04G8H
  • Goswami, B. N., Madhusoodanan, M., Neema, C., & Sengupta, D. (2006). A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophysical Research Letters, 33(2), L02706. https://doi.org/10.1029/2005GL024803
  • Gray, S. T., Graumlich, L. J., Betancourt, J. L., & Pederson, G. T. (2004). A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophysical Research Letters, 31, L12205. https://doi.org/10.1029/2004GL019932
  • Green, J. A. M., & Nycander, J. (2013). A comparison of tidal conversion parameterizations for tidal models. Journal of Physical Oceanography, 43(1), 104–119. https://doi.org/10.1175/JPO-D-12-023.1
  • Gregg, M. C. (1998). Estimation and Geography of diapycnal mixing in the stratified ocean. Coastal Estuarine Studies, 54, 305–338. https://doi.org/10.1029/CE054p0305
  • Griffies, S. M., & Tziperman, E. (1995). A linear thermohaline oscillator driven by stochastic atmospheric forcing. Journal of Climate, 8(10), 2440–2453. https://doi.org/10.1175/1520-0442(1995)008%3C2440:ALTODB%3E2.0.CO;2
  • Guan, B., & Nigam, S. (2009). Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. Journal of Climate, 22(15), 4228–4240. https://doi.org/10.1175/2009JCLI2921.1
  • Guo, Y., Li, J., Feng, J., Xie, F., Sun, C., & Zheng, J. (2016). The multidecadal variability of the asymmetric mode of the boreal autumn Hadley circulation and its link to the Atlantic multi-decadal oscillation. Journal of Climate, 29(15), 5625–5641. https://doi.org/10.1175/JCLI-D-15-0025.1
  • Hakim, G. J., Emile-Geay, J., Steig, E., Noone, D., Anderson, D., Tardif, R., Steiger, N., & Perkins, W. (2016). The last millennium climate reanalysis project: Framework and first results. Journal of Geophysical Research-Atmosphere, 121(12), 6745–6764. https://doi.org/10.1002/2016JD024751
  • Hansen, J., Sato, M., Kharecha, P., & von Schuckmann, K. (2011). Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11(24), 13421–13449. https://doi.org/10.5194/acp-11-13421-2011
  • Hao, X., He, S., & Wang, H. (2016). Asymmetry in the response of central Eurasian winter temperature to AMO. Climate Dynamics, 47(7-8), 2139–2154. https://doi.org/10.1007/s00382-015-2955-9
  • Hasumi, H., Yasuda, I., Tatebe, H., & Kimoto, M. (2008). Pacific bidecadal climate variability regulated by tidal mixing around the Kuril Islands. Geophysical Research Letters, 35(14), L14601. https://doi.org/10.1029/2008GL034406
  • Haustein, K., Otto, F. E. L., Venema, V., Jacobs, P., Cowtan, K., Hausfather, Z., Way, R. G., White, B., Subramanian, A., & Schurer, A. P. (2019). A limited role for unforced internal variability in twentieth-century warming. Journal of Climate, 32(16), 4893–4917. https://doi.org/10.1175/JCLI-D-18-0555.1
  • Hibiya, T., Nagasawa, M., & Niwa, Y. (2006). Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophysical Research Letters, 33(3), L03611. https://doi.org/10.1029/2005GL025218
  • Hu, Q., & Feng, S. (2008). Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillations. Journal of Climate, 21(11), 2371–2383. https://doi.org/10.1175/2007JCLI2005.1
  • Hu, S. N., & Fedorov, A. V. (2017). The extreme El Nino of 2015-2016 and the end of global warming hiatus. Geophysical Research Letters, 44(8), 3816–3824. https://doi.org/10.1002/2017GL072908
  • Hu, X., Sejas, S. A., Cai, M., Taylor, P. C., Deng, Y., & Yang, S. (2018a). Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Climate Dynamics, 52(3-4), 2005–2016. https://doi.org/10.1007/s00382-018-4232-1
  • Hu, Z., Hu, A., & Hu, Y. (2018b). Contributions of interdecadal Pacific oscillation and Atlantic multidecadal oscillation to global ocean heat content distribution. Journal of Climate, 31(3), 1227–1244. https://doi.org/10.1175/JCLI-D-17-0204.1
  • Huang, R. X. (1999). Mixing & energetics of the oceanic thermohaline circulation. Journal of Physical Oceanography, 29(4), 727–746. https://doi.org/10.1175/1520-0485(1999)029%3C0727:MAEOTO%3E2.0.CO;2
  • Ionita-Scholz, M., Rimbu, N., Chelcea, S., & Patrut, S. (2013). Multidecadal variability of summer temperature over Romania and its relation with Atlantic multidecadal oscillation. Theoretical and Applied Climatology, 113(1-2), 305–315. https://doi.org/10.1007/s00704-012-0786-8
  • IPCC. (2013). Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.). Intergovernmental Panel on Climate Change, Switzerland. https://www.ipcc.ch/report/ar5/wg1/
  • Ishii, M., & Kimoto, M. (2009). Reevaluation of historical ocean heat content variations with an XBT depth bias correction. Journal of Oceanography, 65(3), 287–299. https://doi.org/10.1007/s10872-009-0027-7
  • Jeffreys, H. (1925). On fluid motions produced by differences of temperature and humidity. Quarterly Journal of the Royal Meteorological Society, 51(216), 347–356. https://doi.org/10.1002/qj.49705121604
  • Jevrejeva, S., Moore, J., Grinsted, A., & Woodworth, P. (2008). Recent global sea level acceleration started over 200 years ago? Geophysical Research Letters, 35(8), L08715. https://doi.org/10.1029/2008GL033611
  • Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne, M. J., Peterson, T. C., Vose, R. S., & Zhang, H.-M. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348(6242), 1469–1472. https://doi.org/10.1126/science.aaa5632
  • Katsman, C. A., & van Oldenborgh, G. (2011). Tracing the upper ocean’s missing heat. Geophysical Research Letters, 38(14), L14610. https://doi.org/10.1029/2011GL048417
  • Kaufmann, R. K., Kauppi, H., Mann, M., & Stock, J. (2011). Reconciling anthropogenic climate change with observed temperature 1998-2008. Proceedings of the National Academy of Sciences, 108(29), 11790–11793. https://doi.org/10.1073/pnas.1102467108
  • Kayano, M. T., & Capistrano, V. (2014). How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. International Journal of Climatology, 34(1), 162–178. https://doi.org/10.1002/joc.3674
  • Kiehl, J. T., Hack, J., & Briegleb, B. (1994). The simulated earth radiation budget of the National center for atmospheric Research community climate model CCM2 and comparisons with the Earth Radiation Budget Experiment (ERBE). Journal of Geophysical Research, 99(D10), 20815–20827. https://doi.org/10.1029/94JD00941
  • Kiehl, J. T., & Trenberth, K. (1997). Earth's annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–208. https://doi.org/10.1175/1520-0477(1997)078%3C0197:EAGMEB%3E2.0.CO;2
  • Kirtman, B., Power, S., Adedoyin, J., Boer, G., Bojariu, R., Camilloni, I, Doblas-Reyes, F., Fiore, A., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G., Vecchi, G., & Wang, H. J. (2013). Near-term climate change: Projections and predictability, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. Midgley (pp. 953–1028). Cambridge University Press. https://www.ipcc.ch/report/ar5/wg1/
  • Klotzbach, P. J. (2011). The influence of El nino-Southern oscillation and the Atlantic multidecadal oscillation on Caribbean tropical cyclone activity. Journal of Climate, 24(3), 721–731. https://doi.org/10.1175/2010JCLI3705.1
  • Klotzbach, P. J., & Gray, W. (2008). Multidecadal variability in North Atlantic tropical cyclone activity. Journal of Climate, 21(15), 3929–3935. https://doi.org/10.1175/2008JCLI2162.1
  • Klymak, J. M., Legg, S., & Pinkel, R. (2010). A simple parameterization of turbulent tidal mixing near supercritical topography. Journal of Physical Oceanography, 40(9), 2059–2074. https://doi.org/10.1175/2010JPO4396.1
  • Knight, J., Kennedy, J., Folland, C., Harris, G., Jones, G. S., Palmer, M., Parker, D., Scaife, A., & Stott, P. (2009). Do global temperature trends over the last decade falsify climate predictions? Bulletin of the American Meteorological Society, 90, S22–S23. https://doi.org/10.1175/1520-0477-90.1.9
  • Knight, J. R. (2009). The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. Journal of Climate, 22(7), 1610–1625. https://doi.org/10.1175/2008JCLI2628.1
  • Knight, J. R., Allan, R., Folland, C., Vellinga, M., & Mann, M. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32(20), L20708. https://doi.org/10.1029/2005GL024233
  • Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic multidecadal oscillation. Geophysical Research Letters, 33(17), L17706. https://doi.org/10.1029/2006GL026242
  • Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M. S., & Olsen, J. (2014). Evidence for external forcing of the Atlantic multidecadal oscillation since termination of the Little Ice Age. Nature Communications, 5(1), 3323. https://doi.org/10.1038/ncomms4323
  • Koch-Larrouy, A., Atmadipoera, A., van Beek, P., Madec, G., Aucan, J., Lyard, F., Grelet, J., & Souhaut, M. (2015). Estimates of tidal mixing in the Indonesian archipelago from multidisciplinary INDOMIX in-situ data. Deep-Sea Research I, 106, 136–153. https://doi.org/10.1016/j.dsr.2015.09.007
  • Koch-Larrouy, A., Lengaigne, M., Terray, P., Madec, G., & Masson, S. (2010). Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Climate Dynamics, 34(6), 891–904. https://doi.org/10.1007/s00382-009-0642-4
  • Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403–407. https://doi.org/10.1038/nature12534
  • Kosaka, Y., & Xie, S.-P. (2016). The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geoscience, 9(9), 669–673. https://doi.org/10.1038/ngeo2770
  • Krasinsky, G. A., Pitjeva, E. V., Sveshnikov, M. L., & Sveshnikova, E. S. (1981). Some results from the reduction of radar. Laser, and Optical Observations of the Inner Planets and the Moon. Soviet Physics, 26, 1103–1105.
  • Kravtsov, S., Wyatt, M., Curry, J., & Tsonis, A. A. (2015). Comment on “Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures”. Science, 350(6266), 1326. https://doi.org/10.1126/science.aab3570
  • Kucharski, F., Ikram, F., Molteni, F., Farneti, R., Kang, I.-S., No, H.-H., King, M. P., Giuliani, G., & Mogensen, K. (2015). Atlantic forcing of Pacific decadal variability. Climate Dynamics, 46(7-8), 2337–2351. https://doi.org/10.1007/s00382-015-2705-z
  • Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., & Rahmstorf, S. (2007). On the driving processes of the Atlantic meridional overturning circulation. Review of Geophysics, 45(2), RG2001. https://doi.org/10.1029/2004RG000166
  • Kyle, H. L., Ardanuy, P., & Hurley, E. (1985). The status of the nimbus-7 earth-radiation-budget data set. Bulletin of the American Meteorological Society, 66(11), 1378–1388. https://doi.org/10.1175/1520-0477(1985)066%3C1378:TSOTER%3E2.0.CO;2
  • Latif, M., Boening, C., Willenbrand, J., Biastoch, A., & Keenlyside, N. (2007). Decadal to multidecadal variability of the MOC: Mechanisms and predictability. Geophysical Monograph, 173, 149–166. https://doi.org/10.1029/173GM11
  • Latif, M., Roeckner, E., Botzet, M., Esch, M., Haak, H., Hagemann, S., Jungclaus, J., Legutke, S., Marsland, S., Mikolajewicz, U., & Mitchell, J. (2004). Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. Journal of Climate, 17(7), 1605–1614. https://doi.org/10.1175/1520-0442(2004)017%3C1605:RMAPMC%3E2.0.CO;2
  • Ledwell, J. R., Montgomery, E., Polzin, K., St. Laurent, L., Schmitt, R., & Toole, J. (2000). Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403(6766), 179–182. https://doi.org/10.1038/35003164
  • Lee, S. K., & Wang, C. (2010). Delayed advective oscillation of the Atlantic thermohaline circulation. Journal of Climate, 23(5), 1254–1261. https://doi.org/10.1175/2009JCLI3339.1
  • Lee, S., Park, W., Baringer, M. O., Gordon, A. L., Huber, B., & Liu, Y. (2015). Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445–449. https://doi.org/10.1038/ngeo2438
  • Levitus, S., Antonov, J., Boyer, T., Locarnini, R., Garcia, H., & Mishonov, A. V. (2009). Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36, L07608. https://doi.org/10.1029/2008GL037155
  • Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., & Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010. Geophysical Research Letters, 39(10), L10603. https://doi.org/10.1029/2012GL051106
  • Lewandowsky, S., Risbey, J., & Oreskes, N. (2015a). The pause in global warming: Turning a routine fluctuation into a problem for science. Bulletin of the American Meteorological Society, 97(5), 723–733. https://doi.org/10.1175/BAMS-D-14-00106.1
  • Lewandowsky, S., Risbey, J., & Oreskes, N. (2015b). On the definition and identifiability of the alleged -hiatus- in global warming. Scientific Reports, 5(1), 16784. https://doi.org/10.1038/srep16784
  • Li, F., Orsolini, Y. J., Wang, H. J., Gao, Y. Q., & He, S. P. (2018). Modulation of the Aleutian-Icelandic low seesaw and its surface impacts by the Atlantic multidecadal oscillation. Advances in Atmospheric Sciences, 35(1), 95–105. https://doi.org/10.1007/s00376-017-7028-z
  • Li, L., Lozier, M. S., & Buckley, M. W. (2020). An investigation of the ocean's role in Atlantic multidecadal variability. Journal of Climate, 33(8), 3019–3035. https://doi.org/10.1175/JCLI-D-19-0236.1
  • Li, S., & Bates, G. T. (2007). Influence of the Atlantic multidecadal oscillation on the winter climate of east China. Advances in Atmospheric Sciences, 24(1), 126–135. https://doi.org/10.1007/s00376-007-0126-6
  • Li, S., Perlwitz, J., Quan, X., & Hoerling, M. P. (2008). Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophysical Research Letters, 35(5), L05804. https://doi.org/10.1029/2007GL032901
  • Liebmann, B., Dole, R., Jones, C., Blade, I., & Allured, D. (2010). Influence of choice of time period on global surface temperature trend estimates. Bulletin of the American Meteorological Society, 91(11), 1485–1491. https://doi.org/10.1175/2010BAMS3030.1
  • Lin, J. L., Qian, T., & Klotzbach, P. (2022). The tropical cyclones. Atmosphere- Ocean, advanced online publication.
  • Liu, W., & Xie, S. (2018). An ocean view of the global surface warming hiatus. Oceanography, 31(2), 72–79. https://doi.org/10.5670/oceanog.2018.217
  • Loder, J. W., & Garrett, C. (1978). The 18.6 year cycle of sea surface temperature in shallow seas due to variations in tidal mixing. Journal of Geophysical Research, 83(C4), 1967–1970. https://doi.org/10.1029/JC083iC04p01967
  • Loeb, N. G., Lyman, J., Johnson, G., Allan, R., Doelling, D., Wong, T., Soden, B., & Stephens, G. (2012). Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geoscience, 5(2), 110–113. https://doi.org/10.1038/ngeo1375
  • Loeb, N. G., Wielicki, B., Doelling, D., Smith, G., Keyes, D., Kato, S., Manalo-Smith, N., & Wong, T. (2009). Toward optimal closure of the earth’s top-of-atmosphere radiation budget. Journal of Climate, 22(3), 748–766. https://doi.org/10.1175/2008JCLI2637.1
  • Lu, R., Dong, B., & Ding, H. (2006). Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophysical Research Letters, 33(24), L24701. https://doi.org/10.1029/2006GL027655
  • Luo, B. (2018). Release Notes Stratospheric Aerosol Radiative Forcing and SAD version v4.0.01850 - 2016, ftp://iacftp.ethz.ch/pub_read/luo/CMIP6_SAD_radForcing_v4.0.0/Release_note_v4.0.0.pdf.
  • MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S., Sun, O. M., St. Laurent, L. C., Simmons, H. L., Polzin, K., Pinkel, R., Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M., Melet, A. V., Mater, B., Legg, S., Large, W. G., … Alford, M. H. (2017). Climate process team on internal wave-driven ocean mixing. Bulletin of the American Meteorological Society, 98(11), 2429–2454. https://doi.org/10.1175/BAMS-D-16-0030.1
  • Mann, M. E., Steinman, B., & Miller, S. (2014). On forced temperature changes, internal variability, and the AMO. Geophysical Research Letters, 41(9), 3211–3219. https://doi.org/10.1002/2014GL059233
  • Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P., Cubasch, U., Feldmann, H., Kaspar, F., Kottmeier, C., Marini, C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D., Ulbrich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto, J. G., … Ziese, M. (2016). MiKlip-A National Research project on decadal climate prediction. Bulletin of the American Meteorological Society, 97(12), 2379–2394. https://doi.org/10.1175/BAMS-D-15-00184.1
  • Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., … Versick, S. (2017). Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6), 2247–2302. https://doi.org/10.5194/gmd-10-2247-2017
  • McGregor, S., Timmermann, A., Stuecker, M., England, M., Merrifield, M., Jin, F., & Chikamoto, Y. (2014). Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(10), 888–892. https://doi.org/10.1038/nclimate2330
  • Medhaug, I., Slope, M., Fischer, E., & Knutti, R. (2017). Reconciling controversies about the global warming hiatus. Nature, 545(7652), 41–47. https://doi.org/10.1038/nature22315
  • Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., Hawkins, E., Hegerl, G., Karoly, D., Keenlyside, N., Kimoto, M., Kirtman, B., Navarra, A., Pulwarty, R., Smith, D., Stammer, D., & Stockdale, T. (2009). Decadal prediction: Can it be skillful? Bulletin of the American Meteorological Society, 90(10), 1467–1485. https://doi.org/10.1175/2009BAMS2778.1
  • Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J., & Trenberth, K. (2013). Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. Journal of Climate, 26(18), 7298–7310. https://doi.org/10.1175/JCLI-D-12-00548.1
  • Meehl, G. A., Hu, A., & Tebaldi, C. (2010). Decadal prediction in the Pacific region. Journal of Climate, 23(11), 2959–2973. https://doi.org/10.1175/2010JCLI3296.1
  • Meehl, G. A., Teng, H., & Arblaster, J. (2014). Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4(10), 898–902. https://doi.org/10.1038/nclimate2357
  • Melet, A., Hallberg, R., Legg, S., & Polzin, K. (2013). Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. Journal of Physical Oceanography, 43(3), 602–615. https://doi.org/10.1175/JPO-D-12-055.1
  • Melet, A., Legg, S., & Hallberg, R. (2016). Climatic impacts of parameterized local and remote tidal mixing. Journal of Climate, 29(10), 3473–3500. https://doi.org/10.1175/JCLI-D-15-0153.1
  • Mignot, J., Levermann, A., & Griesel, A. (2006). A decomposition of the Atlantic meridional overturning circulation into physical components using its sensitivity to vertical mixing. Journal of Physical Oceanography, 36(4), 636–650. https://doi.org/10.1175/JPO2891.1
  • Mjell, T. L., Ninnemann, U. S., Kleiven, H. F., & Hall, I. R. (2016). Multidecadal changes in Iceland Scotland Overflow Water vigor over the last 600 years and its relationship to climate. Geophysical Research Letters, 43, 2111–2117. https://doi.org/10.1002/2016GL068227
  • Modak, A., & Mauritsen, T. (2021). The 2000-2012 global warming hiatus more likely with a low climate sensitivity. Geophysical Research Letters, 48(9), L091779. https://doi.org/10.1029/2020GL091779
  • Moyer, T. D. (1971). Mathematical Formulation of the Double-Precision Orbit Determination Program (DPODP). JPL Technical Report 32-1527. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
  • Moyer, T. D. (2000). Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. DESCANSO Monograph 2. JPL Publication 00-7. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
  • Muller, M., Cherniawsky, J., Foreman, M., & von Storch, J. (2012). Global M2 internal tide & its seasonal variability from high resolution ocean circulation and tide modelling. Geophysical Research Letters, 39, L19607. https://doi.org/10.1029/2012GL053320
  • Muller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Müller, W. A., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., … Marotzke, J. (2018). A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383–1413. https://doi.org/10.1029/2017MS001217
  • Munk, W. (1966). Abyssal recipes. Deep Sea Research and Oceanographic Abstracts, 13(4), 707–730. https://doi.org/10.1016/0011-7471(66)90602-4
  • Munk, W., & Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I, 45(12), 1977–2010. https://doi.org/10.1016/S0967-0637(98)00070-3
  • Murphy, L. N., Bellomo, K., Cane, M., & Clement, A. (2017). The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophysical Research Letters, 44(5), 2472–2480. https://doi.org/10.1002/2016GL071337
  • Neukom, R., Barboza, L., Erb, M., Shi, F., Emile-Geay, J., Evans, M., Franke, J., Kaufman, D., Lücke, L., Rehfeld, K., Schurer, A., Zhu, F., Brönnimann, S., Hakim, G., Henley, B., Ljungqvist, F., McKay, N., Valler, V., & von Gunten, L. (2019). Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience, 12(8), 643–649. doi: 10.1038/s41561-019-0400-0
  • Newhall, X. X., Standish, E. M., Jr., & Williams, J. G. (1983). DE102: a Numerically Integrated Ephemerides of the Moon and Planets Spanning Forty-four Centuries. Astronomy and Astrophysics, 1983, 125, 150–167.
  • Nieves, V., Willis, J., & Patzert, W. (2015). Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349(6247), 532–535. https://doi.org/10.1126/science.aaa4521
  • Nigam, S., Guan, B., & Ruiz-Barradas, A. (2011). Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great plains. Geophysical Research Letters, 38(16), L16713. https://doi.org/10.1029/2011GL048650
  • Oelsmann, J., Borchert, L., Hand, R., Baehr, J., & Jungclaus, J. H. (2020). Linking ocean forcing and atmospheric interactions to Atlantic multidecadal variability in MPI-ESM1.2. Geophysical Research Letters, 47(10), e2020GL087259. https://doi.org/10.1029/2020GL087259
  • O’Handley, D. A., Holdridge, D. B., Melbourne, W. G., & Mulholland, J. E. (1969). JPL development ephemeris number 69. Technical report 32-1465, Jet Propulsion Laboratory, Pasadena, CA. https://ntrs.nasa.gov/api/citations/19700021709/downloads/19700021709.pdf
  • Oka, A., & Niwa, Y. (2013). Pacific deep circulation and ventilation controlled by tidal mixing away from the sea bottom. Nature Communications, 4(1), 2419. https://doi.org/10.1038/ncomms3419
  • Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., & Nilsen, F. (2014). Loss of sea ice during winter north of svalbard. Tellus A, 66(1), 23933. https://doi.org/10.3402/tellusa.v66.23933
  • Oort, A., Anderson, L., & Peixoto, J. (1994). Estimates of the energy cycle of the oceans. Journal of Geophysical Research, 99(C4), 7665–7688. https://doi.org/10.1029/93JC03556
  • O’Reilly, C. H., Huber, M., Woollings, T., & Zanna, L. (2016). The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophysical Research Letters, 43(6), 2810–2818. https://doi.org/10.1002/2016GL067925
  • Osafune, S., Kouketsu, S., Masuda, S., & Sugiura, N. (2020). Dynamical ocean response controlling the eastward movement of a heat content anomaly caused by the 18.6-year modulation of localized tidally induced mixing. Journal of Geophysical Research-Oceans, 125, e2019JC015513. https://doi.org/10.1029/2019JC015513
  • Osafune, S., Masuda, S., & Sugiura, N. (2014). Role of the oceanic bridge in linking the 18.6 year modulation of tidal mixing and long-term SST change in the North pacific. Geophysical Research Letters, 41(20), 7284–7290. https://doi.org/10.1002/2014GL061737
  • Osafune, S., & Yasuda, I. (2013). Remote impacts of the 18.6 year period modulation of localized tidal mixing in the North pacific. Journal of Geophysical Research-Oceans, 118(6), 3128–3137. https://doi.org/10.1002/jgrc.20230
  • PAGES 2k Consortium. (2013). Centennial-scale temperature variability during the past two millennia. Nature Geoscience, 6(5), 339–346. https://doi.org/10.1038/ngeo1797
  • PAGES 2k Consortium. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4(1), 170088. https://doi.org/10.1038/sdata.2017.88
  • PAGES 2k Consortium. (2019). Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience, 12(8), 643–649. doi: 10.1038/s41561-019-0400-0
  • Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., Cook, B. I., O’Donnell, A., Lough, J., Grierson, P., & Baker, P. (2015). Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the interdecadal Pacific oscillation. Environmental Research Letters, 10(12), 124002. https://doi.org/10.1088/1748-9326/10/12/124002
  • Palmer, M. D., McNeall, D. J., & Dunstone, N. J. (2011). Importance of the deep ocean for estimating decadal changes in Earth’s radiation. Geophysical Research Letters, 38(13), L13707. https://doi.org/10.1029/2011GL047835
  • Pitjeva, E. V. (2005). High-precision ephemeredes of planets - EPM and determination of some astronomical constants. Solar System Research, 39(3), 176–186. https://doi.org/10.1007/s11208-005-0033-2
  • Pitjeva, E. V. (2013). Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research. Solar System Research, 47(5), 386–402. https://doi.org/10.1134/S0038094613040059
  • Polzin, K. L., Toole, J. M., Ledwell, J. R., & Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276(5309), 93–96. https://doi.org/10.1126/science.276.5309.93
  • Rahmstorf, S. (2006). Thermohaline ocean circulation. In encyclopedia of Quaternary sciences, edited by S. A. Elias, pp. 739-750. Elsevier.
  • Rajaratnam, B., Romano, J., Tsiang, M., & Diffenbaugh, N. S. (2015). Debunking the climate hiatus. Climatic Change, 133(2), 129–140. https://doi.org/10.1007/s10584-015-1495-y
  • Ramanathan, V., Cess, R., Harrison, E., Minnis, P., Barkstrom, B., Ahmad, E., & Hartmann, D. (1989). Cloud-radiative forcing and climate: Results from the Earth Radiation Budget experiment. Science, 243(4887), 57–63. https://doi.org/10.1126/science.243.4887.57
  • Rashid, H., Power, S., & Knight, J. (2010). Impact of multi-decadal fluctuations in the Atlantic thermohaline circulation on Indo-Pacific climate variability in a coupled GCM. Journal of Climate, 23(14), 4038–4044. https://doi.org/10.1175/2010JCLI3430.1
  • Ray, R. D., & Susanto, R. S. (2016). Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperature data. Geophysical Research Letters, 43, 8115–8123. https://doi.org/10.1002/2016GL069485
  • Riguzzi, F., Panza, G., Varga, P., & Doglioni, C. (2010). Can Earth's rotation and tidal despinning drive plate tectonics? Tectonophysics, 484(1-4), 60–73. https://doi.org/10.1016/j.tecto.2009.06.012
  • Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L., & Sanford, T. B. (2003). From tides to mixing along the Hawaiian Ridge. Science, 301(5631), 355–357. https://doi.org/10.1126/science.1085837
  • Ruprich-Robert, Y., Msadek, R., Castruccio, F., Yeager, S., Delworth, T., & Danabasoglu, G. (2017). Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. Journal of Climate, 30(8), 2785–2810. https://doi.org/10.1175/JCLI-D-16-0127.1
  • Saenko, O. A., & Merryfield, W. J. (2005). On the effect of topographically enhanced mixing on the global ocean circulation. Journal of Physical Oceanography, 35(5), 826–834. https://doi.org/10.1175/JPO2722.1
  • Sandstrom, J. W. (1908). Dynamische versuche mit meerwasser. Annals in Hydrodynamic Marine Meteorology, 36, 6–23.
  • Sandstrom, J. W. (1916). Meteorologische Studien im Schwedischen Hochgebirge. Goteborgs K. Vetensk. Vitterhetssamhallets Handkl, 27, 1–48.
  • Santer, B. D., Mears, C., Doutriaux, C., Caldwell, P., Gleckler, P. J., Wigley, T. M. L., Solomon, S., Gillett, N. P., Ivanova, D., Karl, T. R., Lanzante, J. R., Meehl, G. A., Stott, P. A., Taylor, K. E., Thorne, P. W., Wehner, M. F., & Wentz, F. J. (2011). Separating signal and noise in atmospheric temperature changes: The importance of timescale. Journal of Geophysical Research, 116(D22), D22105. https://doi.org/10.1029/2011JD016263
  • Santer, B. D., Painter, J. F., Mears, C. A., Doutriaux, C., Caldwell, P., Arblaster, J. M., Cameron-Smith, P. J., Gillett, N. P., Gleckler, P. J., Lanzante, J., Perlwitz, J., Solomon, S., Stott, P. A., Taylor, K. E., Terray, L., Thorne, P. W., Wehner, M. F., Wentz, F. J., Wigley, T. M. L., … Zou, C.-Z. (2012). Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences, 110(1), 26–33. https://doi.org/10.1073/pnas.1210514109
  • Schiller, A., & Fiedler, R. (2007). Explicit tidal forcing in an ocean general circulation model. Geophysical Research Letters, 34(3), L03611. https://doi.org/10.1029/2006GL028363
  • Schlesinger, M. E., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years. Nature, 367(6465), 723–726. https://doi.org/10.1038/367723a0
  • Schmittner, A., Green, J., & Wilmes, S.-B. (2015). Glacial ocean overturning intensified by tidal mixing in a global circulation model. Geophysical Research Letters, 42(10), 4014–4022. https://doi.org/10.1002/2015GL063561
  • Seidelmann, P. K. (2019). A history of Western Astronomical Almanacs. Journal of Astronomical History and Heritage, 22(1), 93–112. http://www.narit.or.th/files/JAHH/2019JAHHvol22/2019JAHH … 22 … 93S.pdf
  • Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., & King, J. W. (2009). Atlantic forcing of persistent drought in West Africa. Science, 324(5925), 377–380. https://doi.org/10.1126/science.1166352
  • Simmons, H. L., Jayne, S. R., St. Laurent, L. C., & Weaver, A. J. (2004). Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6(3-4), 245–263. https://doi.org/10.1016/S1463-5003(03)00011-8
  • Simon, J. J., Francou, G., Fienga, A., & Manche, H. (2013). New analytical planetary theories VSOP2013 and TOP2013. Astronomy and Astrophysics, 557, A49. https://doi.org/10.1051/0004-6361/201321843
  • Sloyan, B. M., & Rintoul, S. R. (2001). The Southern Ocean limb of the global deep overturning circulation. Journal of Physical Oceanography, 31(1), 143–173. https://doi.org/10.1175/1520-0485(2001)031%3C0143:TSOLOT%3E2.0.CO;2
  • Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., & Plattner, G.-K. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223. https://doi.org/10.1126/science.1182488
  • Standish, E. M. (1982). Orientation of the JPL ephemerides. DE, 200, LE200, to the Dynamical Equinox of J2000. Astronomy and Astrophysics, 114, 297–302.
  • Standish, E. M. (1990). The observational basis for JPL's DE200, the planetary ephemeris of the Astronomical Almanac. Astronomy & Astrophysics, 233, 252–271. https://adsabs.harvard.edu/pdf/1982A%26A … 114..297S
  • Standish, E. M., Keesey, M. S. W., & Newhall, X. X. (1976). JPL Development Ephemeris Number 96. JPL Technical Report 32-1603, 1-36. https://ntrs.nasa.gov/api/citations/19760017018/downloads/19760017018.pdf
  • Steiger, N. J., Smerdon, J., Cook, E., & Cook, B. (2018). A reconstruction of global hydroclimate and dynamical variables over the Common Era. Scientific Data, 5(1), 180086. https://doi.org/10.1038/sdata.2018.86
  • Steinman, B. A., Frankcombe, L. M., Mann, M. E., Miller, S. K., & England, M. H. (2015b). Response to comment on Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 350(6266), 1326. https://doi.org/10.1126/science.aac5208
  • Steinman, B. A., Mann, M. E., & Miller, S. K. (2015a). Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347(6225), 988–991. https://doi.org/10.1126/science.1257856
  • Stockton, C. W., & Meko, D. (1975). A long-term history of drought occurrence in western United States inferred from tree rings. Weatherwise, 28(6), 244–249. https://doi.org/10.1080/00431672.1975.9931775
  • Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13(2), 224–230. https://doi.org/10.1111/j.2153-3490.1961.tb00079.x
  • Stuckman, S. (2016). Global Three-Dimensional Atmospheric Structure of the Atlantic Multidecadal Oscillation as Revealed by Two Reanalyses. Ph.D. Dissertation, The Ohio State University. https://etd.ohiolink.edu/!etd.send_file?accession = osu1476105315092858&disposition = inline
  • Sun, C., Li, J., & Jin, F.-F. (2015). A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dynamics, 45(7-8), 2083–2099. https://doi.org/10.1007/s00382-014-2459-z
  • Sun, C., Li, J., Kucharski, F., Xue, J., & Li, X. (2018). Contrasting spatial structures of Atlantic multidecadal oscillation between observations and slab ocean model simulations. Climate Dynamics, 52(3-4), 1395–1411. https://doi.org/10.1007/s00382-018-4201-8
  • Sutton, R. T., & Hodson, D. L. R. (2005). Atlantic Ocean forcing of North American and European summer climate. Science, 290(5731), 2133–2137. https://doi.org/10.1126/science.1109496
  • Sutton, R. T., McCarthy, G., Robson, J., Sinha, B., Archibald, A., & Gray, L. J. (2018). Atlantic multidecadal variability and the U. K. ACSIS Program. Bulletin of the American Meteorological Society, 99(2), 415–425. https://doi.org/10.1175/BAMS-D-16-0266.1
  • Talley, L. D. (2013). Closure of the global overturning circulation through the Indian. Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26(1), 80–97. https://www.jstor.org/stable/24862019 https://doi.org/10.5670/oceanog.2013.07
  • Tanaka, S., Ohtake, M., & Sato, H. (2004). Tidal triggering of earthquakes in Japan related to the regional tectonic stress. Earth, Planets and Space, 56(5), 511–515. https://doi.org/10.1186/BF03352510
  • Tanaka, Y., Yasuda, I., Hasumi, H., Tatebe, H., & Osafune, S. (2012). Effects of the 18.6-year modulation of tidalmixing on the North Pacific bidecadal climate variability in a coupled climate model. Journal of Climate, 25(21), 7625–7642. https://doi.org/10.1175/JCLI-D-12-00051.1
  • Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., Anderson, D. M., Steig, E. J., & Noone, D. (2019). Last Millennium Reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past, 15(4), 1251–1273. https://doi.org/10.5194/cp-15-1251-2019
  • Tatebe, H., Tanaka, Y., Komuro, Y., & Hasumi, H. (2018). Impact of deep ocean mixing on the climatic mean state in the Southern Ocean. Scientific Reports, 8(1), 14479. https://doi.org/10.1038/s41598-018-32768-6
  • Te Raa, L. A., & Dijkstra, H. A. (2002). Instability of the thermohaline ocean circulation on interdecadal time scales. Journal of Physical Oceanography, 32(1), 138–160. https://doi.org/10.1175/1520-0485(2002)032%3C0138:IOTTOC%3E2.0.CO;2
  • Terray, L. (2012). Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophysical Research Letters, 39(19), L19712. https://doi.org/10.1029/2012GL053046
  • Thompson, D. W. J., Wallace, J. M., Jones, P. D., & Kennedy, J. J. (2009). Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. Journal of Climate, 22(22), 6120–6141. https://doi.org/10.1175/2009JCLI3089.1
  • Timmermann, A., Latif, M., Voss, R., & Groetzner, A. (1998). Northern hemispheric interdecadal variability: A coupled air-sea mode. Journal of Climate, 11(8), 1906–1931. https://doi.org/10.1175/1520-0442(1998)011%3C1906:NHIVAC%3E2.0.CO;2
  • Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J. H., Renold, M., Stocker, T. F., Stouffer, R. J., Sutton, R., Xie, S.-P., & Yin, J. (2007). The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. Journal of Climate, 20(19), 4899–4919. https://doi.org/10.1175/JCLI4283.1
  • Ting, M., Kushnir, Y., & Li, C. (2014). North Atlantic multidecadal SST oscillation: External forcing versus internal variability. Journal of Marine Systems, 133, 27–38. https://doi.org/10.1016/j.jmarsys.2013.07.006
  • Ting, M., Kushnir, Y., Seager, R., & Li, C. (2009). Forced and internal twentieth-century SST trends in the North atlantic. Journal of Climate, 22(6), 1469–1481. https://doi.org/10.1175/2008JCLI2561.1
  • Toggweiler, J. R., & Samuels, B. (1993). Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? in The Global Carbon Cycle, NATO ASI Series, 15, 303-331. https://link.springer.com/chapter/10. 1007/978-3-642-84608-3_13
  • Toggweiler, J. R., & Samuels, B. (1995). Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Research, 42(4), 477–500. https://doi.org/10.1016/0967-0637(95)00012-U
  • Toggweiler, J. R., & Samuels, B. (1998). On the ocean’s large scale circulation in the limit of no vertical mixing. Journal of Physical Oceanography, 28(9), 1832–1852. https://doi.org/10.1175/1520-0485(1998)028%3C1832:OTOSLS%3E2.0.CO;2
  • Trenberth, K. E. (2015). Has there been a hiatus? Science, 349(6249), 691–692. https://doi.org/10.1126/science.aac9225
  • Trenberth, K. E., & Fasullo, J. (2013). An apparent hiatus in global warming? Earth’s Future, 1(1), 19–32. https://doi.org/10.1002/2013EF000165
  • Trenberth, K. E., Fasullo, J., & Balmaseda, M. (2014). Earth’s energy imbalance. Journal of Climate, 27(9), 3129–3144. https://doi.org/10.1175/JCLI-D-13-00294.1
  • Trenberth, K. E., Fasullo, J., & Kiehl, J. (2009). Earth’s global energy budget. Bulletin of the American Meteorological Society, 90(3), 311–323. https://doi.org/10.1175/2008BAMS2634.1
  • Tung, K.-K., & Zhou, J. (2013). Using data to attribute episodes of warming and cooling in instrumental records. Proceedings of the National Academy of Sciences U.S.A, 110(6), 2058–2063. https://doi.org/10.1073/pnas.1212471110
  • Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., & Vargas, F. (2011). Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophysical Research Letters, 38, L12807. https://doi.org/10.1029/2011GL047563
  • Wang, C., Xie, S., Kosaka, Y., Liu, Q., & Zheng, X. (2017a). Global influence of tropical Pacific variability with implications for global warming slowdown. Journal of Climate, 30(7), 2679–2695. https://doi.org/10.1175/JCLI-D-15-0496.1
  • Wang, J., Yang, B., Ljungqvist, F., Luterbacher, J., Osborn, T., Briffa, K., & Zorita, E. (2017b). Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years. Nature Geoscience, 10(7), 512–517. https://doi.org/10.1038/ngeo2962
  • Wang, R., & Liu, Z. (2020). Stable isotope Evidence for recent global warming hiatus. Journal of Earth Science, 31(2), 419–424. https://doi.org/10.1007/s12583-019-1239-4
  • Wang, S., Wen, X., Luo, Y., Zhao, Z., & Huang, J. (2010). Does the global warming pause in the last decade: 1999-2008. Advances in Climate Change Research, 1(1), 49–54. https://doi.org/10.3724/SP.J.1248.2010.00049
  • Wang, Y., Li, S., & Luo, D. (2009). Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. Journal of Geophysical Research, 114(D2), D02112. https://doi.org/10.1029/2008JD010929
  • Watanabe, M., Kamae, Y., Yoshimori, M., Oka, A., Sato, M., Ishii, M., Mochizuki, T., & Kimoto, W. (2013). Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophysical Research Letters, 40(12), 3175–3179. https://doi.org/10.1002/grl.50541
  • Watanabe, M., Shiogama, H., Tatebe, H., Hayashi, M., Ishii, M., & Kimoto, M. (2014). Contribution of natural decadal variability to global warming acceleration and hiatus. Nature Climate Change, 4(10), 893–897. https://doi.org/10.1038/nclimate2355
  • Watanabe, M., & Tatebe, H. (2019). Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Climate Dynamics, 53(7-8), 4651–4665. https://doi.org/10.1007/s00382-019-04811-3
  • Webb, D. J., & Suginohara, N. (2001). Vertical mixing in the ocean. Nature, 409(6816), 37–38. https://doi.org/10.1038/35051171
  • Welander, P. (1982). A simple heat-salt oscillator. Dynamics of Atmospheres and Oceans, 6(4), 233–242. https://doi.org/10.1016/0377-0265(82)90030-6
  • Wielicki, B. A., Cess, R., King, M., Randall, D., & Harrison, E. (1995). Mission to planet earth: Role of clouds and radiation in climate. Bulletin of the American Meteorological Society, 76(11), 2125–2153. https://doi.org/10.1175/1520-0477(1995)076%3C2125:MTPERO%3E2.0.CO;2
  • Wills, R. C. J., Armour, K., Battisti, D., & Hartmann, D. (2019). Ocean-atmosphere dynamical coupling fundamental to the Atlantic multidecadal oscillation. Journal of Climate, 32(1), 251–272. https://doi.org/10.1175/JCLI-D-18-0269.1
  • Woodworth, P. L., White, N. J., Jevrejeva, S., Holgate, S. J., Church, J. A., & Gehrels, W. R. (2009). Evidence for the accelerations of sea level rise on multi-decade and century timescales. International Journal of Climatology, 29(6), 777–789. https://doi.org/10.1002/joc.1771
  • Wu, Z., Huang, N. E., Long, S. R., & Peng, C.-K. (2007). On the trend, detrending and variability of nonlinear and non-stationary time series. Proceedings of the National Academy of Science, 104(38), 14889–14894. https://doi.org/10.1073/pnas.0701020104
  • Wu, Z., Huang, N., Wallace, J., Smoliak, B., & Chen, X. (2011). On the time-varying trend in global-mean surface temperature. Climate Dynamics, 37(3-4), 759–773. https://doi.org/10.1007/s00382-011-1128-8
  • Wunsch, C., & Ferrari, R. (2004). Vertical mixing, energy and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36(1), 281–314. https://doi.org/10.1146/annurev.fluid.36.050802.122121
  • Wust, G. (1935). The stratosphere of the Atlantic Ocean. Amerind Publishing. 112 pp.
  • Wust, G. (1936). Deep Circulation in the Expanse of the North Atlantic Ocean. The International Hydrographic Review, 2, 23-31.
  • Wyatt, M. G., Kravtsov, S., & Tsonis, A. A. (2012). Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Climate Dynamics, 38(5-6), 929–949. https://doi.org/10.1007/s00382-011-1071-8
  • Yao, S. L., Huang, G., Wu, R., & Qu, X. (2016). The global warming hiatus- A natural product of interactions of a secular warming trend and a multidecadal oscillation. Theoretical and Applied Climatology, 123, 349–360. https://doi.org/10.1007/s00704-014-1358-x
  • Yu, J.-Y., Kao, P., Paek, H., Hsu, H., Hung, C., Lu, M., & An, S. (2015). Linking emergence of the central Pacific El Nino to the Atlantic multidecadal oscillation. Journal of Climate, 28(2), 651–662. https://doi.org/10.1175/JCLI-D-14-00347.1
  • Yuan, T., Oreopoulos, L., Zelinka, M., Yu, H., Norris, J., Chin, M., Platnick, S., & Meyer, K. (2016). Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophysical Research Letters, 43(3), 1349–1356. https://doi.org/10.1002/2016GL067679
  • Zaron, E. D., & Egbert, G. (2006). Estimating open-ocean barotropic tidal dissipation: The Hawaiian Ridge. Journal of Physical Oceanography, 36(6), 1019–1035. https://doi.org/10.1175/JPO2878.1
  • Zhang, J., Schmitt, R., & Huang, R. (1999). The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. Journal of Physical Oceanography, 29(6), 1096–1108. https://doi.org/10.1175/1520-0485(1999)029%3C1096:TRIODM%3E2.0.CO;2
  • Zhang, L., & Wang, C. (2013). Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. Journal of Geophysical Research, 118(10), 5772–5791. https://doi.org/10.1002/jgrc.20390
  • Zhang, R. (2017). On the persistence and coherence of subpolar sea surface temperature & salinity anomalies associated with the Atlantic multidecadal variability. Geophysical Research Letters, 44(15), 7865–7875. https://doi.org/10.1002/2017GL074342
  • Zhang, R., & Delworth, T. (2005). Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18(12), 1853–1860. https://doi.org/10.1175/JCLI3460.1
  • Zhang, R., & Delworth, T. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(17), L17712. https://doi.org/10.1029/2006GL026267
  • Zhang, R., Delworth, T., & Held, I. M. (2007). Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters, 34, 1944–8007. https://doi.org/10.1029/2006GL028683
  • Zhang, R., Sutton, R., Danabasoglu, G., Delworth, T., Kim, W., Robson, J., & Yeager, S. G. (2016). Comment on The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 352(6293), 1527–1527. https://doi.org/10.1126/science.aaf1660
  • Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., & Yeager, S. G. (2019). A review of the role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and associated climate impacts. Reviews of Geophysics, 57(2), 316–375. https://doi.org/10.1029/2019RG000644
  • Zhang, W., Vecchi, G. A., Murakami, H., Villarini, G., Delworth, T. L., Yang, X., & Jia, L. (2018). Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophysical Research Letters, 45(1), 354–362. https://doi.org/10.1002/2017GL076397
  • Zhou, J., & Tung, K. K. (2013). Deducing the multi-decadal anthropogenic global warming trend using multiple regression analysis. Journal of the Atmospheric Sciences, 70(1), 3–8. https://doi.org/10.1175/JAS-D-12-0208.1