789
Views
4
CrossRef citations to date
0
Altmetric
Review / Synthèse

Tropical Cyclones

, &
Pages 360-398 | Received 19 Apr 2022, Accepted 16 May 2022, Published online: 14 Jul 2022

References

  • Abarca, S. F., & Montgomery, M. T. (2013). Essential dynamics of secondary eyewall formation. Journal of the Atmospheric Sciences, 70(10), 3216–3230. https://doi.org/10.1175/JAS-D-12-0318.1
  • Abdullah, A. J. (1966). The spiral bands of a hurricane: a possible dynamic explanation. Journal of the Atmospheric Sciences, 23(4), 367–75. https://doi.org/10.1175/1520-0469(1966)023%3C0367:TSBOAH%3E2.0.CO;2
  • Aiyyer, A., & Molinari, J. (2008). MJO and tropical cyclogenesis in the Gulf of Mexico and eastern Pacific: Case study and idealized numerical modeling. Journal of the Atmospheric Sciences, 65(8), 2691–2704. https://doi.org/10.1175/2007JAS2348.1
  • Alvey, G. R., III, Zawislak, J., & Zipser, E. (2015). Precipitation properties observed during tropical cyclone intensity change. Monthly Weather Review, 143(11), 4476–4492. https://doi.org/10.1175/MWR-D-15-0065.1
  • Andrews, D. G., & McIntyre, M. E. (1978). An exact theory of nonlinear waves on a Lagrangian mean flow. Journal of Fluid Mechanics, 89, 609–646. https://doi.org/10.1017/S0022112078002773
  • Arakawa, H., & Manabe, D. (1963). Investigation of spiral rain bands and frontal structures in terms of shallow water waves. Papers of Meteorology and Geophysics, 14, 127–143. https://web.archive.org/web/20181103002253id_/https://www.jstage.jst.go.jp/article/mripapers1950/14/3-4/14_127/_pdf
  • Atkinson, G. D., & Holliday, C. R. (1977). Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Monthly Weather Review, 105(4), 421–427. https://doi.org/10.1175/1520-0493(1977)105%3C0421:TCMSLP%3E2.0.CO;2
  • Avila, L. A. (1991). Eastern North Pacific hurricane season of 1990. Monthly Weather Review, 119(8), 2034–2046. https://doi.org/10.1175/1520-0493(1991)119%3C2034:ENPHSO%3E2.0.CO;2
  • Avila, L. A., & Pasch, R. J. (1992). Atlantic tropical systems of 1991. Monthly Weather Review, 120(11), 2688–2696. https://doi.org/10.1175/1520-0493(1992)120%3C2688:ATSO%3E2.0.CO;2
  • Baray, J. L., Ancellet, G., Randriambelo, T., & Baldy, S. (1999). Tropical cyclone Marlene and stratosphere-troposphere exchange. Journal of Geophysical Research, 104(D11), 13953–13970. https://doi.org/10.1029/1999JD900028
  • Barnes, G. M., & Powell, M. D. (1995). Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Monthly Weather Review, 123(8), 2348–2368. https://doi.org/10.1175/1520-0493(1995)123%3C2348:EOTIBL%3E2.0.CO;2
  • Barrett, B. S., & Leslie, L. M. (2009). Links between tropical cyclone activity and Madden-Julian oscillation phase in the North Atlantic and northeast Pacific basins. Monthly Weather Review, 137(2), 727–744. https://doi.org/10.1175/2008MWR2602.1
  • Basher, R. E., & Zeng, X. (1995). Tropical cyclones in the southwest Pacific: Spatial patterns and relationships to Southern Oscillation and sea surface temperature. Journal of Climate, 8(5), 1249–1260. https://doi.org/10.1175/1520-0442(1995)008%3C1249:TCITSP%3E2.0.CO;2
  • Bell, D. B., & Chelliah, M. (2006). Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. Journal of Climate, 19(4), 590–612. https://doi.org/10.1175/JCLI3659.1
  • Bell, M. M., Montgomery, M. T., & Emanuel, K. A. (2012). Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. Journal of Atmospheric Sciences, 69(11), 3197–3222. https://doi.org/10.1175/JAS-D-11-0276.1
  • Bergeron, T. (1954). The problem of tropical hurricanes. Quarterly Journal of the Royal Meteorological Society, 80(344), 131–64. https://doi.org/10.1002/qj.49708034402
  • Bessafi, M., & Wheeler, M. (2006). Modulation of South Indian Ocean tropical cyclones by the Madden-Julian oscillation and convectively coupled equatorial waves. Monthly Weather Review, 134(2), 638–656. https://doi.org/10.1175/MWR3087.1
  • Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., & Whitlock, C. E. (2019). Recent increases in tropical cyclone intensification rates. Nature Communications, 10(1), 635. https://doi.org/10.1038/s41467-019-08471-z
  • Birkel, S. D., Mayewski, P. A., Maasch, K. A., Kurbatov, A. V., & Lyon, B. (2018). Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJ Climate and Atmospheric Science, 1(1), 24. https://doi.org/10.1038/s41612-018-0036-6
  • Bister, M., & Emanuel, K. (1998). Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 65, 233–240. https://doi.org/10.1007/BF01030791
  • Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097%3C0163:ATFTEP%3E2.3.CO;2
  • Black, M. L., Burpee, R., & Marks, F., Jr. (1996). Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. Journal of the Atmospheric Sciences, 53(13), 1887–1909. https://doi.org/10.1175/1520-0469(1996)053%3C1887:VMCOTC%3E2.0.CO;2
  • Black, M. L., Gamache, J. F., Marks, F. D., Samsury, C. E., & Willoughby, H. E. (2002). Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Monthly Weather Review, 130(9), 2291–2312. https://doi.org/10.1175/1520-0493(2002)130%3C2291:EPHJOA%3E2.0.CO;2
  • Black, M. L., & Willoughby, H. (1992). The concentric eyewall cycle of Hurricane Gilbert. Monthly Weather Review, 120(6), 947–957. https://doi.org/10.1175/1520-0493(1992)120%3C0947:TCECOH%3E2.0.CO;2
  • Black, P. G., & Anthes, R. (1971). On the asymmetric structure of the tropical cyclone outflow layer. Journal of the Atmospheric Sciences, 28(8), 1348–1366. https://doi.org/10.1175/1520-0469(1971)028%3C1348:OTASOT%3E2.0.CO;2
  • Black, P. G., D'Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B., Terrill, E. J., Walsh, E. J., & Zhang, J. A. (2007). Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bulletin of the American Meteorological Society, 88(3), 357–374. https://doi.org/10.1175/BAMS-88-3-357
  • Black, P. G., & Holland, G. (1995). The boundary layer of tropical cyclone Kerry (1979). Monthly Weather Review, 123(7), 2007–2028. https://doi.org/10.1175/1520-0493(1995)123%3C2007:TBLOTC%3E2.0.CO;2
  • Black, R. A., & Hallett, J. (1999). Electrification of the hurricane. Journal of the Atmospheric Sciences, 56(12), 2004–2028. https://doi.org/10.1175/1520-0469(1999)056%3C2004:EOTH%3E2.0.CO;2
  • Blackwell, K. G. (2000). The evolution of Hurricane Danny (1997) at landfall: Doppler-observed eyewall replacement, vortex contraction/intensification, and low-level wind maxima. Monthly Weather Review, 128(12), 4002–4016. https://doi.org/10.1175/1520-0493(2000)129%3C4002:TEOHDA%3E2.0.CO;2
  • Bluestein, H. B., & Marks, F. D., Jr. (1987). On the structure of the eyewall of Hurricane “Diana” (1984): Comparison of radar and visual characteristics. Monthly Weather Review, 115(10), 2542–2552. https://doi.org/10.1175/1520-0493(1987)115%3C2542:OTSOTE%3E2.0.CO;2
  • Bove, M. C., Elsner, J., Landsea, C., Niu, X., & O'Brien, J. (1998). Effect of El Nino on U.S. landfalling hurricanes, revisited. Bulletin of the American Meteorological Society, 79(11), 2477–2482. https://doi.org/10.1175/1520-0477(1998)079%3C2477:EOENOO%3E2.0.CO;2
  • Bowie, E. H. (1921). The hurricane of October 25, 1921, at Tampa, FLA. Monthly Weather Review, 49(10), 567–570. https://doi.org/10.1175/1520-0493(1921)49%3C567:THOOAT%3E2.0.CO;2
  • Bracken, W. E., & Bosart, L. (2000). The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Monthly Weather Review, 128(2), 353–376. https://doi.org/10.1175/1520-0493(2000)128%3C0353:TROSSF%3E2.0.CO;2
  • Brand, S. (1970). Interaction of binary tropical cyclones of the western North Pacific Ocean. Journal of Applied Meteorology, 9(3), 433–441. https://doi.org/10.1175/1520-0450(1970)009%3C0433:IOBTCO%3E2.0.CO;2
  • Braun, S. A., Archambault, H., Lin, I., Miyamoto, Y., Riemer, M., Rios-Berrios, R., Ritchie-Tyo, E., Sethurathinam, B., Shay, L., & Tang, B. (2018, December 3–7). Topic (3.2): Intensity change: External influences. Proceedings from the Ninth International Workshop on Tropical Cyclones (IWTC-9). 74 pp. https://www.wmo.int/pages/prog/arep/wwrp/tmr/documents/T3.2_report.pdf
  • Briegel, L. M., & Frank, W. M. (1997). Large-scale influences on tropical cyclogenesis in the western North Pacific. Monthly Weather Review, 125, 1397–1413. https://doi.org/10.1175/1520-0493(1997)125%3C1397:LSIOTC%3E2.0.CO;2
  • Brown, D. (2017). Tropical cyclone intensity forecasting: Still a challenging proposition. National Hurricane Center Presentation. https://www.nhc.noaa.gov/outreach/presentations/NHC2017_IntensityChallenges.pdf
  • Bundgaard, R. C. (1958). The first flyover of a tropical cyclone. Weatherwise, 11(3), 79–83. https://doi.org/10.1080/00431672.1958.9925022
  • Byers, H. R. (1944). General meteorology. McGrow Hill Book Comp.
  • Callaghan, J., & Power, S. (2010). Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Climate Dynamics, 37, 647–662. https://doi.org/10.1007/s00382-010-0883-2
  • Camargo, S. J., Robertson, A., Gaffney, S., Smyth, P., & Ghil, M. (2007). Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. Journal of Climate, 20(14), 3654–3676. https://doi.org/10.1175/JCLI4203.1
  • Camargo, S. J., & Sobel, A. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15), 2996–3006. https://doi.org/10.1175/JCLI3457.1
  • Camargo, S. J., Wheeler, M., & Sobel, A. (2009). Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. Journal of the Atmospheric Sciences, 66(10), 3061–3074. https://doi.org/10.1175/2009JAS3101.1
  • Cangialosi, J. P. (2018). National Hurricane Center forecast verification report: 2018 hurricane season. National Hurricane Center. 73 pp. https://www.nhc.noaa.gov/verification/pdfs/Verification_2018.pdf
  • Carless, T. G. (1849). Remarks on the Course of the Hurricane which occurred on the Malabar Coast, in April 1847. The Journal of the Royal Geographical Society of London, 19, 76–84. https://doi.org/10.2307/1798087
  • Caron, L.-P., Boudreault, M., & Bruyere, C. (2015). Changes in large-scale controls of Atlantic tropical cyclone activity with the phases of the Atlantic multidecadal oscillation. Climate Dynamics, 44, 1801–1821. https://doi.org/10.1007/s00382-014-2186-5
  • Carr, L. E., Boother, M., & Elsberry, R. (1997). Observational evidence for alternate modes of track-altering binary tropical cyclone scenarios. Monthly Weather Review, 125(9), 2094–2111. https://doi.org/10.1175/1520-0493(1997)125%3C2094:OEFAMO%3E2.0.CO;2
  • Carr, L. E., III, & Elsberry, R. (1998). Objective diagnosis of binary tropical cyclone interactions for the western North Pacific basin. Monthly Weather Review, 126(6), 1734–1740. https://doi.org/10.1175/1520-0493(1998)126%3C1734:ODOBTC%3E2.0.CO;2
  • Carsey, T. P., & Willoughby, H. (2005). Ozone measurements from eyewall transects of two Atlantic tropical cyclones. Monthly Weather Review, 133(1), 166–174. https://doi.org/10.1175/MWR-2844.1
  • Cecil, D. J., & Zipser, E. (1999). Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Monthly Weather Review, 127(1), 103–123. https://doi.org/10.1175/1520-0493(1999)127%3C0103:RBTCIA%3E2.0.CO;2
  • Challa, M., & Pfeffer, R. (1980). Effects of eddy fluxes of angular momentum on the model hurricane development. Journal of the Atmospheric Sciences, 37(7), 1603–1618. https://doi.org/10.1175/1520-0469(1980)037%3C1603:EOEFOA%3E2.0.CO;2
  • Challa, M., Pfeffer, R., Zhao, Q., & Chang, S. (1998). Can eddy fluxes serve as a catalyst for hurricane and typhoon formation? Journal of the Atmospheric Sciences, 55(12), 2201–2219. https://doi.org/10.1175/1520-0469(1998)055%3C2201:CEFSAA%3E2.0.CO;2
  • Chan, J. C. L. (1985). Tropical cyclone activity in the northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Monthly Weather Review, 113(4), 599–606. https://doi.org/10.1175/1520-0493(1985)113%3C0599:TCAITN%3E2.0.CO;2
  • Chan, J. C. L., & Shi, J. E. (2000). Frequency of typhoon landfall over Guangdong Province of China during the period 1470–1931. International Journal of Climatology, 20(2), 183–190. https://doi.org/10.1002/(SICI)1097-0088(200002)20:2%3C183::AID-JOC479%3E3.0.CO;2-U
  • Chand, S. S., McBride, J., Tory, K., Wheeler, M., & Walsh, K. (2013). Impact of different ENSO regimes on Southwest Pacific tropical cyclones. Journal of Climate, 26(2), 600–608. https://doi.org/10.1175/JCLI-D-12-00114.1
  • Chand, S. S., & Walsh, K. (2010). The influence of the Madden-Julian oscillation on tropical cyclone activity in the Fiji region. Journal of Climate, 23(4), 868–886. https://doi.org/10.1175/2009JCLI3316.1
  • Charney, J. G., & Eliassen, A. (1964). On the growth of the hurricane depression. Journal of the Atmospheric Sciences, 21(1), 68–75. https://doi.org/10.1175/1520-0469(1964)021%3C0068:OTGOTH%3E2.0.CO;2
  • Charney, J. G., & Stern, M. (1962). On the stability of internal baroclinic jets in a rotating atmosphere. Journal of the Atmospheric Sciences, 19(2), 159–172. https://doi.org/10.1175/1520-0469(1962)019%3C0159:OTSOIB%3E2.0.CO;2
  • Chavas, D. R., Reed, K., & Knaff, J. (2017). Physical understanding of the tropical cyclone wind-pressure relationship. Nature Communications, 8, 1360. https://doi.org/10.1038/s41467-017-01546-9
  • Chen, H.-F., Liu, Y.-C., Chiang, C.-W., Liu, X., Chou, Y.-M., & Pan, H.-J. (2019). China's historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone (ITCZ) shifts over the past 2 kyr. Climate of the Past, 15(1), 279–289. https://doi.org/10.5194/cp-15-279-2019
  • Chen, H.-F., Wen, S.-Y., Song, S.-R., Yang, T.-N., Lee, T.-Q., Lin, S.-F., Hsu, S. C., Wei, K. Y., Chang, P. Y., & Yu, P. S. (2012). Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene. Journal of Quaternary Science, 27(9), 964–972. https://doi.org/10.1002/jqs.2590
  • Chen, S., Knaff, J. A., & Marks, F. D. (2006). Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly Weather Review, 13(11), 3190–3208. https://doi.org/10.1175/MWR3245.1
  • Chen, S. S., Zhao, W., Donelan, M., & Tolman, H. (2013). Directional wind-wave coupling in fully coupled atmosphere- wave-ocean models: Results from CBLAST-Hurricane. Journal of the Atmospheric Sciences, 70(10), 3198–3215. https://doi.org/10.1175/JAS-D-12-0157.1
  • Chen, T.-C., Wang, S., Yen, M., & Gallus, W. (2004). Role of the monsoon gyre in the interannual variation of tropical cyclone formation over the western North Pacific. Weather and Forecasting, 19(4), 776–785. https://doi.org/10.1175/1520-0434(2004)019%3C0776:ROTMGI%3E2.0.CO;2
  • Chen, X., Wang, Y., & Zhao, K. (2015). Synoptic flow patterns and large-scale characteristics associated with rapidly intensifying tropical cyclones in the South China Sea. Monthly Weather Review, 143(1), 64–87. https://doi.org/10.1175/MWR-D-13-00338.1
  • Chenoweth, M. (2006). A reassessment of historical Atlantic basin tropical cyclone activity, 1700–1855. Climatic Change, 76(1–2), 169–240. https://doi.org/10.1007/s10584-005-9005-2
  • Chenoweth, M., & Divine, D. (2008). A document-based 318-year record of tropical cyclones in the Lesser Antilles, 1690–2007. Geochemistry, Geophysics, Geosystems, 9(8), Q08013. https://doi.org/10.1029/2008GC002066
  • Chenoweth, M., & Divine, D. (2012). Tropical cyclones in the Lesser Antilles: Descriptive statistics and historical variability in cyclone energy, 1638–2009. Climatic Change, 113(3-4), 583–598. https://doi.org/10.1007/s10584-011-0360-x
  • Chevalier, S. (1893). The “Bokhara” typhoon, October 1892: Read before the Shanghai Meteorological Society, “North-China Herald” Office.
  • Chia, H. H., & Ropelewski, C. (2002). The interannual variability in the genesis location of tropical cyclones in the north-west Pacific. Journal of Climate, 15(20), 2934–2944. https://doi.org/10.1175/1520-0442(2002)015%3C2934:TIVITG%3E2.0.CO;2
  • Chu, J. H., Sampson, C. R., Levine, A. S., & Fukada, E. (2002). The joint typhoon warning centre tropical cyclone best-tracks, 1945–2000. https://www.metoc.navy.mil/jtwc/products/best-tracks/tc-bt-report.html
  • Chu, P.-S. (2004). ENSO and tropical cyclone activity. In R. J. Murnane & K.-B. Liu (Eds.), Hurricanes and typhoons, past, present and future (pp. 297–332). Columbia University Press. https://www.soest.hawaii.edu/MET/Hsco/publications/2004.2.pdf
  • Chu, P.-S., & Wang, J. (1997). Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Nino and non-El Nino years significant? Journal of Climate, 10(10), 2683–2689. https://doi.org/10.1175/1520-0442(1997)010%3C2683:TCOITV%3E2.0.CO;2
  • Cione, J. J., Bryan, G. H., Dobosy, R., Zhang, J. A., de Boer, G., Aksoy, A., Wadler, J. B., Kalina, E. A., Dahl, B. A., Ryan, K., & Neuhaus, J. (2020). Eye of the storm: Observing hurricanes with a small unmanned aircraft system. Bulletin of the American Meteorological Society, 101(2), E186–E205. https://doi.org/10.1175/BAMS-D-19-0169.1
  • Clark, J. D., & Chu, P. (2002). Interannual variation of tropical cyclone activity over the Central North Pacific. Journal of the Meteorological Society of Japan, 80(3), 403–418. https://doi.org/10.2151/jmsj.80.403
  • Clement, A., Bellomo, K., Murphy, L., Cane, M., Mauritsen, T., Radel, G., & Stevens, B. (2015). The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350(6258), 320–324. https://doi.org/10.1126/science.aab3980
  • Cline, I. M. (1915). The tropical hurricane of September 29, 1915, in Louisiana. Monthly Weather Review, 43(9), 456–473. https://doi.org/10.1175/1520-0493(1915)43%3C456:TTHOSI%3E2.0.CO;2
  • Collimore, C. C. (2018). Revelations about tropical cyclones from A-Train satellite data: The effect of environmental aerosols on tropical cyclone formation, and the origin of ozone in the eyes of mature tropical cyclones [PhD dissertation, UCLA]. https://escholarship.org/uc/item/5c9767b8.
  • Collins, J. M., Klotzbach, P. J., Maue, R., Roache, D., Blake, E., Paxton, C., & Mehta, C. (2016). The record-breaking 2015 hurricane season in the Eastern North Pacific: An analysis of environmental conditions. Geophysical Research Letters, 43, 9217–9224. https://doi.org/10.1002/2016GL070597
  • Collins, J. M., & Mason, I. (2000). Local environmental conditions related to seasonal tropical cyclone activity in the Northeast Pacific basin. Geophysical Research Letters, 27(23), 3881–3884. https://doi.org/10.1029/2000GL011614
  • Colon, J. A., & Nightingale, W. (1963). Development of tropical cyclones in relation to circulation patterns at the 200 millibar level. Monthly Weather Review, 91(7), 329–336. https://doi.org/10.1175/1520-0493(1963)091%3C0329:DOTCIR%3E2.3.CO;2
  • Courtney, J., & Knaff, J. A. (2009). Adapting the Knaff and Zehr wind-pressure relationship for operational use in tropical cyclone warning centres. Australian Meteorological and Oceanographic Journal, 58, 167–179. http://www.bom.gov.au/jshess/docs/2009/courtney.pdf
  • Courtney, J., Langlade, S., Sampson, C., Knaff, J., Birchard, T., Barlow, S., Kotal, S., Kriat, T., Lee, W., Pasch, R., & Shimada, U. (2019a). Operational perspectives on tropical cyclone intensity change. Part I: Recent advances in intensity guidance. Tropical Cyclone Research and Review, 8(3), 123–133. https://doi.org/10.1016/j.tcrr.2019.10.002
  • Courtney, J., Langlade, S., Sampson, C., Knaff, J., Birchard, T., Barlow, S., Kotal, S., Kriat, T., Lee, W., Pasch, R., Shimada, U., & Singh, A. (2019b). Operational perspectives on tropical cyclone intensity change. Part II: Forecasts by operational agencies. Tropical Cyclone Research and Review, 8(4), 226–239. https://doi.org/10.1016/j.tcrr.2020.01.003
  • Cram, T. A., Persing, J., Montgomery, M. T., & Braun, S. A. (2007). A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high-resolution simulation of Hurricane Bonnie (1998). Journal of the Atmospheric Sciences, 64(6), 1835–1856. https://doi.org/10.1175/JAS3921.1
  • Dai, Y., Majumdar, S., & Nolan, D. (2017). Secondary eyewall formation in tropical cyclones by outflow-jet interaction. Journal of the Atmospheric Sciences, 74(6), 1941–1958. https://doi.org/10.1175/JAS-D-16-0322.1
  • DeHart, J. C., Houze, R., & Rogers, R. F. (2014). Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. Journal of the Atmospheric Sciences, 71(7), 2713–2732. https://doi.org/10.1175/JAS-D-13-0298.1
  • Delworth, T. L., Zhang, L., Zhang, R., Vecchi, G., & Yang, X. (2017). The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. Journal of Climate, 30(10), 3789–3805. https://doi.org/10.1175/JCLI-D-16-0358.1
  • DeMaria, M. (1996). The effect of vertical shear on tropical cyclone intensity change. Journal of the Atmospheric Sciences, 53(14), 2076–2087. https://doi.org/10.1175/1520-0469(1996)053%3C2076:TEOVSO%3E2.0.CO;2
  • DeMaria, M., Baik, J., & Kaplan, J. (1993). Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. Journal of the Atmospheric Sciences, 50, 1133–1147. https://doi.org/10.1175/1520-0469(1993)050%3C1133:ULEAMF%3E2.0.CO;2
  • DeMaria, M., DeMaria, R., Knaff, J., & Molenar, D. (2012). Tropical cyclone lightning and rapid intensity change. Monthly Weather Review, 140(6), 1828–1842. https://doi.org/10.1175/MWR-D-11-00236.1
  • DeMaria, M., Sampson, C., Knaff, J., & Musgrave, K. (2014). Is tropical cyclone intensity guidance improving? Bulletin of the American Meteorological Society, 95(3), 387–398. https://doi.org/10.1175/BAMS-D-12-00240.1
  • Denommee, K. C., Bentley, S. J., & Droxler, A. W. (2014). Climatic controls on hurricane patterns: A 1200-y near-annual record from Lighthouse Reef, Belize. Scientific Reports, 4(1), 3876. https://doi.org/10.1038/srep03876
  • Diamond, H. J., Lorrey, A. M., Knapp, K. R., & Levinson, D. H. (2012). Development of an enhanced tropical cyclone tracks database for the southwest Pacific from 1840 to 2010. International Journal of Climatology, 32, 2240–2250. https://doi.org/10.1002/joc.2412
  • Didlake, A. C., Jr., Heymsfield, G. M., Reasor, P. D., & Guimond, S. R. (2017). Concentric eyewall asymmetries in Hurricane Gonzalo (2014) observed by airborne radar. Monthly Weather Review, 145(3), 729–749. https://doi.org/10.1175/MWR-D-16-0175.1
  • Didlake, A. C., Jr., & Houze, R., Jr. (2011). Kinematics of the secondary eyewall observed in Hurricane Rita (2005). Journal of the Atmospheric Sciences, 68(8), 1620–1636. https://doi.org/10.1175/2011JAS3715.1
  • Didlake, A. C., & Houze, R. (2013a). Convective-scale variations in the inner-core rainbands of a tropical cyclone. Journal of the Atmospheric Sciences, 70, 504–523. https://doi.org/10.1175/JAS-D-12-0134.1
  • Didlake, A. C., & Houze, R. (2013b). Dynamics of the stratiform sector of a tropical cyclone rainband. Journal of the Atmospheric Sciences, 70, 1891–1911. https://doi.org/10.1175/JAS-D-12-0245.1
  • Didlake, A. C., Jr., Reasor, P., Rogers, R., & Lee, W. (2018). Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). Journal of the Atmospheric Sciences, 75, 2909–2929. https://doi.org/10.1175/JAS-D-17-0348.1
  • Dodge, P. P., Burpee, R., & Marks, F. (1999). The kinematic structure of a hurricane with sea level pressure less than 900 mb. Monthly Weather Review, 127, 987–1004. https://doi.org/10.1175/1520-0493(1999)127%3C0987:TKSOAH%3E2.0.CO;2
  • Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B., & Saltzman, E. S. (2004). On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31, L18306. https://doi.org/10.1029/2004GL019460
  • Dong, K. (1988). El Nino and tropical cyclone frequency in the Australian region and the North-western Pacific. Australian Meteorological Magazine, 36, 219–255.
  • Dong, K., & Neuman, C. J. (1983). On the relative motion of binary tropical cyclones. Monthly Weather Review, 111(5), 945–953. https://doi.org/10.1175/1520-0493(1983)111%3C0945:OTRMOB%3E2.0.CO;2
  • Donnelly, J. P., Bryant, S. S., Butler, J., Dowling, J., Fan, L., Hausmann, N., Newby, P. N., Shuman, B., Stern, J., Westover, K., & Webb, T. (2001). A 700-year sedimentary record of intense hurricane landfalls in Southern New England. Geological Society of America Bulletin, 113(6), 714–727. https://doi.org/10.1130/0016-7606(2001)113%3C0714:YSROIH%3E2.0.CO;2
  • Donnelly, J. P., Hawkes, A. D., Lane, P., MacDonald, D., Shuman, B. N., Toomey, M. R., van Hengstum, P. J., & Woodruff, J. D. (2015). Climate forcing of unprecedented intense-hurricane activity in the last 2000 years. Earth's Future, 3, 49–65. https://doi.org/10.1002/2014EF000274
  • Donnelly, J. P., Roll, S., Wengren, M., Butler, J., Lederer, R., & Webb, T. (2001). Sedimentary evidence of intense hurricane strikes from New Jersey. Geology, 29(7), 615–618. https://doi.org/10.1130/0091-7613(2001)029%3C0615:SEOIHS%3E2.0.CO;2
  • Donnelly, J. P., & Woodruff, J. D. (2007). Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature, 447, 465–468. https://doi.org/10.1038/nature05834
  • Dougherty, E. M., Molinari, J., Rogers, R., Zhang, J., & Kossin, J. (2018). Hurricane Bonnie (1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Monthly Weather Review, 146, 3383–3399. https://doi.org/10.1175/MWR-D-18-0030.1
  • Drennan, W. M., Zhang, J., French, J., McCormick, C., & Black, P. (2007). Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. Journal of the Atmospheric Sciences, 64, 1103–1115. https://doi.org/10.1175/JAS3889.1
  • Dunkerton, T. J., Montgomery, M., & Wang, Z. (2009). Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmospheric Chemistry and Physics, 9, 5587–5646. https://doi.org/10.5194/acp-9-5587-2009
  • Dunn, G. E. (1940). Cyclogenesis in the tropical Atlantic. Bulletin of the American Meteorological Society, 21(6), 215–229. https://doi.org/10.1175/1520-0477-21.6.215
  • Dvorak, V. F. (1975). Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly Weather Review, 103(5), 420–430. https://doi.org/10.1175/1520-0493(1975)103%3C0420:TCIAAF%3E2.0.CO;2
  • Eliassen, A. (1951). Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophisica Norvegica, 5, 18–60.
  • Ellis, H. (1791). The Nature of a Hurricane Described, In An Original Letter From Governor Ellis, To Mr. J. S. The Literary Magazine and British Review, 7, 419–420. https://www.proquest.com/openview/c62613c652eef5dd/1?pq-origsite=gscholar&cbl=1665
  • Elsberry, R. L., & Jeffries, R. (1996). Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Monthly Weather Review, 124(7), 1374–1387. https://doi.org/10.1175/1520-0493(1996)124%3C1374:VWSIOT%3E2.0.CO;2
  • Elsner, J. B., & Kara, A. (1999). Hurricanes of the North Atlantic: Climate and Society. Oxford University Press. 488 pp.
  • Elsner, J. B., Kossin, J., & Jagger, T. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455, 92–95. https://doi.org/10.1038/nature07234
  • Elsner, K. B., & Liu, K. (2003). Examining the ENSO-typhoon hypothesis. Climate Research, 25(1), 43–54. doi:10.3354/cr025043
  • Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688. https://doi.org/10.1038/nature03906
  • Emanuel, K. (2018). 100 years of progress in tropical cyclone research. Meteorological Monographs, 59, 15.1–15.68. https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1
  • Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. Journal of the Atmospheric Sciences, 43(6), 585–604. https://doi.org/10.1175/1520-0469(1986)043%3C0585:AASITF%3E2.0.CO;2
  • Emanuel, K. A. (1987). The dependence of hurricane intensity on climate. Nature, 326, 483–485. https://doi.org/10.1038/326483a0
  • Emanuel, K. A. (1991). The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196. https://doi.org/10.1146/annurev.fl.23.010191.001143
  • Emanuel, K. A. (1995). The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. Journal of the Atmospheric Sciences, 52(22), 3960–3968. https://doi.org/10.1175/1520-0469(1995)052%3C3960:TBOASH%3E2.0.CO;2
  • Emanuel, K. A. (2003). Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104. https://doi.org/10.1146/annurev.earth.31.100901.141259
  • Emanuel, K. A., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the Atmospheric Sciences, 61(7), 843–858. https://doi.org/10.1175/1520-0469(2004)061%3C0843:ECOTCI%3E2.0.CO;2
  • Emanuel, K. A., Neelin, J., & Bretherton, C. (1994). On large-scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111–1143. https://doi.org/10.1002/qj.49712051902
  • Emanuel, K. A., & Nolan, D. S. (2004). Tropical cyclone activity and global climate. In Proceedings of 26th Conference on Hurricanes and Tropical Meteorology (pp. 240–241). American Meteorological Society.
  • Emanuel, K., Solomon, S., Folini, D., Davis, S., & Cagnazzo, C. (2013). Influence of tropical tropopause layer cooling on Atlantic hurricane activity. Journal of Climate, 26(7), 2288–2301. https://doi.org/10.1175/JCLI-D-12-00242.1
  • Evans, J. L., & Allan, R. (1992). El Nino/Southern Oscillation modification to the structure of the monsoon and tropical cyclone activity in the Australian region. International Journal of Climatology, 12(6), 611–623. https://doi.org/10.1002/joc.3370120607
  • Faller, A. (1963). An experimental study of the instability of the laminar Ekman boundary layer. Journal of Fluid Mechanics, 15, 560–576. https://doi.org/10.1017/S0022112063000458
  • Fang, J., & Zhang, F. (2012). Effect of beta shear on simulated tropical cyclones. Monthly Weather Review, 140(10), 3327–3346. https://doi.org/10.1175/MWR-D-10-05021.1
  • Fassig, O. L. (1928). San Felipe-the hurricane of September 13, 1928, at San Juan, P.R. Monthly Weather Review, 56(9), 350–352. https://doi.org/10.1175/1520-0493(1928)56%3C350:SFHOSA%3E2.0.CO;2
  • Fernandez-Partagas, J., & Diaz, H. F. (1996). Atlantic Hurricanes in the second half of the nineteenth century. Bulletin of the American Meteorological Society, 77(12), 2899–2906. https://doi.org/10.1175/1520-0477(1996)077%3C2899:AHITSH%3E2.0.CO;2
  • Ferreira, R. N., Schubert, W. H., & Hack, J. J. (1996). Dynamical aspects of twin tropical cyclones associated with the Madden–Julian oscillation. Journal of the Atmospheric Sciences, 53(7), 929–945. https://doi.org/10.1175/1520-0469(1996)0530929:DAOTTC2.0.CO;2
  • Fett, R. W. (1966). Upper-level structure of the formative tropical cyclone. Monthly Weather Review, 94(1), 9–18. https://doi.org/10.1175/1520-0493(1966)094%3C0009:ULSOTF%3E2.3.CO;2
  • Finocchio, P. M., Majumdar, S., Nolan, D., & Iskandarani, M. (2016). Idealized tropical cyclone responses to the height & depth of environmental vertical wind shear. Monthly Weather Review, 144(6), 2155–2175. https://doi.org/10.1175/MWR-D-15-0320.1
  • Fischer, M., Rogers, R., & Reasor, P. (2020). The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Monthly Weather Review, 148(3), 981–1004. https://doi.org/10.1175/MWR-D-19-0185.1
  • Fischer, M. S., Tang, B., & Corbosiero, K. (2017). Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Monthly Weather Review, 145(4), 1295–1313. https://doi.org/10.1175/MWR-D-16-0275.1
  • Fischer, M. S., Tang, B., & Corbosiero, K. (2019). A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Monthly Weather Review, 147(10), 3693–3719. https://doi.org/10.1175/MWR-D-19-0013.1
  • Fjrtoft, R. (1950). Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofysiske Publikasjoner, 17, 1–52. http://ngfweb.no/docs/NGF_GP_Vol17_no6.pdf
  • Fletcher, R. D., Smith, J. R., & Bundgaard, R. C. (1961). Superior photographic reconnaissance of tropical cyclones. Weatherwise, 14(3), 102–109. https://doi.org/10.1080/00431672.1961.9930014
  • Fortner, L. E. (1958). Typhoon Sarah, 1956. Bulletin of the American Meteorological Society, 39(12), 633–639. https://doi.org/10.1175/1520-0477-39.12.633
  • Frank, W. M. (1977a). Structure and energetics of the tropical cyclone: I. Storm structure. Monthly Weather Review, 105(9), 1119–1135. https://doi.org/10.1175/1520-0493(1977)105%3C1119:TSAEOT%3E2.0.CO;2
  • Frank, W. M. (1977b). Structure and energetics of the tropical cyclone: II. Dynamics and energetics. Monthly Weather Review, 105(9), 1136–1150. https://doi.org/10.1175/1520-0493(1977)105%3C1136:TSAEOT%3E2.0.CO;2
  • Frank, W. M., & Ritchie, E. (2001). Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 129(9), 2249–2269. https://doi.org/10.1175/1520-0493(2001)129%3C2249:EOVWSO%3E2.0.CO;2
  • Franklin, C. N., Holland, G., & May, P. (2006). Mechanisms for the generation of vorticity features in tropical cyclone rainbands. Monthly Weather Review, 134(10), 2649–2669. https://doi.org/10.1175/MWR3222.1
  • Franklin, J. L., Black, M. L., & Valde, K. (2003). GPS dropwindsonde profiles in hurricanes and their operational implications. Weather and Forecasting, 18(1), 32–44. https://doi.org/10.1175/1520-0434(2003)018%3C0032:GDWPIH%3E2.0.CO;2
  • French, J. R., Drennan, W., Zhang, J., & Black, P. (2007). Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. Journal of the Atmospheric Sciences, 64(4), 1089–1102. https://doi.org/10.1175/JAS3887.1
  • Fritz, H. M., Blount, C. D., Thwin, S., Thu, M. K., & Chan, N. (2009). Cyclone Nargis storm surge in Myanmar. Nature Geoscience, 2, 448–449. https://doi.org/10.1038/ngeo558
  • Fujita, T., Watanabe, K., & Izawa, T. (1969). Formation and structure of equatorial anticyclones caused by large-scale cross-equatorial flow determined by ATS-I photographs. Journal of Applied Meteorology, 8(4), 649–667. https://doi.org/10.1175/1520-0450(1969)008%3C0649:FASOEA%3E2.0.CO;2
  • Fujiwhara, S. (1921). The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quarterly Journal of the Royal Meteorological Society, 47, 287–292. https://doi.org/10.1002/qj.49704720010
  • Fung, I. Y.-S. (1977). The organization of spiral rainbands in a hurricane [Sc.D. thesis, MIT]. 140 pp. https://dspace.mit.edu/bitstream/handle/1721.1/16337/04078908-MIT.pdf?sequence=2
  • Gamache, J. F., Houze, R., Jr., & Marks, F. (1993). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. Journal of the Atmospheric Sciences, 50(19), 3221–3243. https://doi.org/10.1175/1520-0469(1993)050%3C3221:DAIOTI%3E2.0.CO;2
  • Garcia-Herrera, R., Barriopedro, D., Gallego, D., Mellado-Cano, J., Wheeler, D., & Wilkinson, C. (2018). Understanding weather and climate of the last 300 years from ships’ logbooks. Wires Climate Change. https://doi.org/10.1002/wcc.54
  • Garcia-Herrera, R., Gimeno, L., Ribera, P., & Hernandez, E. (2005). New records of Atlantic hurricanes from Spanish documentary sources. Journal of Geophysical Research - Atmospheres, 110, D03109. https://doi.org/10.1029/2004JD005272
  • Garriott, E. B. (1898). The West Indian hurricane of September 29-October 2. Monthly Weather Review, 26(10), 439–440.
  • Giammanco, I. M., Schroeder, J., & Powell, M. (2012). Observed characteristics of tropical cyclone vertical wind profiles. Wind and Structures, 15(1), 1–22. https://doi.org/10.12989/was.2012.15.1.065
  • Girishkumar, M. S., & Ravichandran, M. (2012). The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. Journal of Geophysical Research, 117, C02033. https://doi.org/10.1029/2011JC007417
  • Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M., & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474–479. https://doi.org/10.1126/science.1060040
  • Goldenberg, S. B., & Shapiro, L. (1996). Physical mechanisms for the association of El Niño and West Africa rainfall with Atlantic major hurricanes. Journal of Climate, 9(6), 1169–87. https://doi.org/10.1175/1520-0442(1996)0091169:PMFTAO2.0.CO;2
  • Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669–700. https://doi.org/10.1175/1520-0493(1968)096%3C0669:GVOTOO%3E2.0.CO;2
  • Gray, W. M. (1975). Tropical cyclone genesis. Colorado State University, Department of Atmospheric Sciences Paper, 234, 121 pp.
  • Gray, W. M. (1979). Hurricanes: their formation, structure and likely role in the tropical circulation. In B. Shaw (Ed.), Meteorology over the tropical oceans (pp. 155–218). Royal Meteorological Society Publication.
  • Gray, W. M. (1984). Atlantic seasonal hurricane frequency. Part I: El Nino and 30 mb quasi-biennial oscillation influences. Monthly Weather Review, 112(9), 1649–1668. https://doi.org/10.1175/1520-0493(1984)112%3C1649:ASHFPI%3E2.0.CO;2
  • Gray, W. M. (1998). The formation of tropical cyclones. Meteorology and Atmospheric Physics, 67, 37–69. https://doi.org/10.1007/BF01277501
  • Gray, W. M., Landsea, C., MielkeJr.P., & Berry, K. (1993). Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Weather and Forecasting, 8(1), 73–86. https://doi.org/10.1175/1520-0434(1993)008%3C0073:PABSTC%3E2.0.CO;2
  • Gray, W. M., & Sheaffer, J. (1991). El Nino and QBO influences on tropical cyclone activity. In M. H. Glantz, R. W. Katz, & N. Nicholls (Eds.), Teleconnections linking worldwide anomalies (pp. 257–284). Cambridge University Press.
  • Guimond, S. R., Heymsfield, G., Reasor, P., & Didlake, A. (2016). The rapid intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk platform. Journal of the Atmospheric Sciences, 73(9), 3617–3639. https://doi.org/10.1175/JAS-D-16-0026.1
  • Guimond, S. R., Heymsfield, G., & Turk, F. (2010). Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. Journal of the Atmospheric Sciences, 67(3), 633–654. https://doi.org/10.1175/2009JAS3119.1
  • Guinn, T. A., & Schubert, W. H. (1993). Hurricane spiral bands. Journal of the Atmospheric Sciences, 50(20), 3380–403. https://doi.org/10.1175/1520-0469(1993)050%3C3380:HSB%3E2.0.CO;2
  • Hack, J. J., & Schubert, W. (1986). Nonlinear response of atmospheric vortices to heating by organized cumulus convection. Journal of the Atmospheric Sciences, 43(15), 1559–1573. https://doi.org/10.1175/1520-0469(1986)043%3C1559:NROAVT%3E2.0.CO;2
  • Haig, J., Nott, J., & Reichart, G. (2014). Australian tropical cyclone activity lower than at any time over the past 550–1,500 years. Nature, 505, 667–671. https://doi.org/10.1038/nature12882
  • Hall, J. D., Matthews, A., & Karoly, D. (2001). The modulation of tropical cyclone activity in the Australian region by the Madden-Julian oscillation. Monthly Weather Review, 129(12), 2970–2982. https://doi.org/10.1175/1520-0493(2001)129%3C2970:TMOTCA%3E2.0.CO;2
  • Halverson, J. B., Simpson, J., Heymsfield, G., Pierce, H., Hock, T., & Ritchie, L. (2006). Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. Journal of the Atmospheric Sciences, 63(1), 309–324. https://doi.org/10.1175/JAS3596.1
  • Hankes, I., Wang, Z., Zhang, G., & Fritz, C. (2015). Merger of African easterly waves and formation of Cape Verde storms. Quarterly Journal of the Royal Meteorological Society, 141(689), 1306–1319. https://doi.org/10.1002/qj.2439
  • Hanley, D., Molinari, J., & Keyser, D. (2001). A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Monthly Weather Review, 129(10), 2570–2584. https://doi.org/10.1175/1520-0493(2001)129%3C2570:ACSOTI%3E2.0.CO;2
  • Haque, S. M. A. (1952). Initial of cyclonic circulation in a vertically unstable stagnant air mass. Quarterly Journal of the Royal Meteorological Society, 78, 394–406. https://doi.org/10.1002/qj.49707833710
  • Harper, B. A. (2002). Tropical cyclone parameter estimation and the Australian region: Wind-pressure relationships and related issues for engineering planning and design – a discussion paper. Systems Engineering Australia Report J0106- PR003E, 83 pp.
  • Harr, P. A., Elsberry, R., & Chan, J. (1996). Transformation of a large monsoon depression to a tropical storm during TCM-93. Monthly Weather Review, 124(12), 2625–2643. https://doi.org/10.1175/1520-0493(1996)124%3C2625:TOALMD%3E2.0.CO;2
  • Hastings, P. A. (1990). Southern Oscillation influences on tropical cyclone activity in the Australian/South-west Pacific region. International Journal of Climatology, 10(3), 291–298. https://doi.org/10.1002/joc.3370100306
  • Haurwitz, B. (1935). The height of tropical cyclones and of the “eye” of the storm. Monthly Weather Review, 63, 45–49.
  • Haurwitz, B. (1951). The motion of binary cyclones. Archiv für Meteorologie, Geophysik und Bioklimatologie. Serie A, 4, 73–86. https://doi.org/10.1007/BF02246794
  • Hawkins, H. F., & Imbembo, S. (1976). The structure of a small, intense hurricane, Inez 1966. Monthly Weather Review, 104(4), 418–442. https://doi.org/10.1175/1520-0493(1976)104%3C0418:TSOASI%3E2.0.CO;2
  • Hawkins, H. F., & Rubsam, D. (1968). Hurricane Hilda, 1964. 2. Structure and budgets of the hurricane on October 1, 1964. Monthly Weather Review, 96(9), 617–636. https://doi.org/10.1175/1520-0493(1968)096%3C0617:HH%3E2.0.CO;2
  • Hawkins, J. D., Helveston, M., Lee, T., Turk, F., Richardson, K., Sampson, C., Kent, J., & Wade, R. (2006). Tropical cyclone multiple eyewall characteristics. Preprints, 27th Conference on Hurricane and Tropical Meteorology, American Meteorological Society, 6B.1. http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108864.htm
  • Hence, D. A., & Houze, R., Jr. (2012). Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. Journal of the Atmospheric Sciences, 69(3), 1021–1036. https://doi.org/10.1175/JAS-D-11-0119.1
  • Hendricks, E. A., Braun, S. A., Vigh, J. L., & Courtney, J. B. (2019). A summary of research advances on tropical cyclone intensity change from 2014–2018. Tropical Cyclone Research and Review, 8(4), 219–225. https://doi.org/10.1016/j.tcrr.2020.01.002
  • Hendricks, E. A., Montgomery, M., & Davis, C. (2004). The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). Journal of the Atmospheric Sciences, 61(11), 1209–1232. https://doi.org/10.1175/1520-0469(2004)061%3C1209:TROVHT%3E2.0.CO;2
  • Heymsfield, G. M., Tian, L., Heymsfield, A., Li, L., & Guimond, S. (2010). Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. Journal of the Atmospheric Sciences, 67(2), 285–308. https://doi.org/10.1175/2009JAS3132.1
  • Ho, C.-H., Kim, J., Jyong, J., Kim, H., & Chen, D. (2006). Variation of tropical cyclone activity in the south Indian Ocean: El Nino-Southern Oscillation and Madden-Julian oscillation effects. Journal of Geophysical Research, 111, D22101. https://doi.org/10.1029/2006JD007289
  • Hock, T. F., & Franklin, J. L. (1999). The NCAR GPS dropwindsonde. Bulletin of the American Meteorological Society, 80(3), 407–420. https://doi.org/10.1175/1520-0477(1999)080%3C0407:TNGD%3E2.0.CO;2
  • Holland, G. J. (1995). Scale interaction in the Western Pacific Monsoon. Meteorology and Atmospheric Physics, 56, 57–79. https://doi.org/10.1007/BF01022521
  • Holland, G. J. (1997). The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54(21), 2519–2541. https://doi.org/10.1175/1520-0469(1997)054%3C2519:TMPIOT%3E2.0.CO;2
  • Holland, G. J., Belanger, J., & Fritz, A. (2010). A revised model for radial profiles of hurricane winds. Monthly Weather Review, 138(12), 4393–4406. https://doi.org/10.1175/2010MWR3317.1
  • Holland, G. J., & Dietachmayer, G. (1993). On the interaction of tropical-cyclone-scale vortices. III: Continuous barotropic vortices. Quarterly Journal of the Royal Meteorological Society, 119(514), 1381–1398. https://doi.org/10.1002/qj.49711951408
  • Holland, G. J., & Merrill, R. (1984). On the dynamics of tropical cyclone structural changes. Quarterly Journal of the Royal Meteorological Society, 110(465), 723–745. https://doi.org/10.1002/qj.49711046510
  • Holliday, C. R. (1977). Double intensification of Typhoon Gloria, 1974. Monthly Weather Review, 105(4), 523–528. https://doi.org/10.1175/1520-0493(1977)105%3C0523:DIOTG%3E2.0.CO;2
  • Holthuijsen, L. H., Powell, M., & Pietrzak, J. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research, 117, C09003. https://doi.org/10.1029/2012JC007983
  • Hoose, H. M., & Colon, J. (1970). Some aspects of the radar structure of Hurricane Beulah on September 9, 1967. Monthly Weather Review, 98(7), 529–533. https://doi.org/10.1175/1520-0493(1970)098%3C0529:SAOTRS%3E2.3.CO;2
  • Hoover, E. W. (1961). Relative motion of hurricane pairs. Monthly Weather Review, 89(7), 251–255. https://doi.org/10.1175/1520-0493(1961)089%3C0251:RMOHP%3E2.0.CO;2
  • Hopsch, S. B., Thorncroft, C., & Tyle, K. (2010). Analysis of African easterly wave structures and their role in influencing tropical cyclogenesis. Monthly Weather Review, 138(4), 1399–1419. https://doi.org/10.1175/2009MWR2760.1
  • Houze, R. A. (1982). Cloud clusters and large-scale vertical motions in the Tropics. Journal of Meteorological Society of Japan, 60, 396–410. https://doi.org/10.2151/jmsj1965.60.1_396
  • Houze, R. A., Chen, S., Smull, B., Lee, W., & Bell, M. (2007). Hurricane intensity and eyewall replacement. Science, 315(5816), 1235–1239. https://doi.org/10.1126/science.1135650
  • Houze, R. A., Jr., Lee, W., & Bell, M. (2009). Convective contribution to the genesis of Hurricane Ophelia (2005). Monthly Weather Review, 137(9), 2778–2800. https://doi.org/10.1175/2009MWR2727.1
  • Houze, R. A., Marks, F., Jr., & Black, R. (1992). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. Journal of the Atmospheric Sciences, 49(11), 943–963. https://doi.org/10.1175/1520-0469(1992)049%3C0943:DAIOTI%3E2.0.CO;2
  • Hsu, J.-Y., Lien, R.-C., D'asaro, E. A., & Sanford, T. B. (2017). Estimates of surface wind stress and drag coefficients in Typhoon Megi. Journal of Physical Oceanography, 47(3), 545–565. https://doi.org/10.1175/JPO-D-16-0069.1
  • Huang, L., Li, X., Liu, B., Zhang, J. A., Shen, D., Zhang, Z., & Yu, W. (2018). Tropical cyclone boundary layer rolls in synthetic aperture radar imagery. Journal of Geophysical Research: Oceans, 123(4), 2981–2996. https://doi.org/10.1029/2018JC013755
  • Huang, Y., Montgomery, M., & Wu, C. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. Journal of the Atmospheric Sciences, 69(2), 662–674. https://doi.org/10.1175/JAS-D-11-0114.1
  • Huang, Y., Wu, C., & Montgomery, M. (2018). Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. Journal of the Atmospheric Sciences, 75(10), 3541–3563. https://doi.org/10.1175/JAS-D-18-0037.1
  • Irwin, R. P., & Davis, R. (1999). The relationship between the Southern Oscillation Index and tropical cyclone tracks in the eastern North Pacific. Geophysical Research Letters, 26, 2251–2254. https://doi.org/10.1029/1999GL900533
  • Jang, W., & Chun, H. (2015). Characteristics of binary tropical cyclones observed in the western North Pacific for 62 years (1951–2012). Monthly Weather Review, 143(5), 1749–1761. https://doi.org/10.1175/MWR-D-14-00331.1
  • Jarosz, E., Mitchell, D. A., Wang, D. W., & Teague, W. J. (2007). Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315(5819), 1707–1709. https://doi.org/10.1126/science.1136466
  • Jarvinen, B. R., Neumann, C., & Davis, M. (1984). A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Technical Memorandum NWS NHC 22, 21 pp. https://repository.library.noaa.gov/view/noaa/7069/noaa_7069_DS1.pdf
  • Jiang, H., & Ramirez, E. (2013). Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. Journal of Climate, 26(17), 6459–6470. https://doi.org/10.1175/JCLI-D-12-00432.1
  • Joiner, J., Vasilkov, A., Yang, K., & Bhartia, P. (2006). Observations over hurricanes from the ozone monitoring instrument. Geophysical Research Letters, 33, L06807. https://doi.org/10.1029/2005GL025592
  • Jordan, C. L. (1959). A reported sea level pressure of 877 mb. Monthly Weather Review, 87(9), 365–366. https://doi.org/10.1175/1520-0493(1959)087%3C0365:WNARSL%3E2.0.CO;2
  • Jordan, C. L. (1961). Marked changes in the characteristics of the eye of intense typhoons between the deepening and filling stages. Journal of the Atmospheric Sciences, 18(6), 779–789. https://doi.org/10.1175/1520-0469(1961)018%3C0779:MCITCO%3E2.0.CO;2
  • Jordan, C. L. (1966). Surface pressure variations at coastal stations during the period of irregular motion of Hurricane Carla of 1961. Monthly Weather Review, 94(7), 454–458. https://doi.org/10.1175/1520-0493(1966)094%3C0454:SPVACS%3E2.3.CO;2
  • Jordan, C. L., & Schatzle, F. (1961). The “double eye” of Hurricane Donna. Monthly Weather Review, 89(9), 354–356. https://doi.org/10.1175/1520-0493(1961)089%3C0354:WNTDEO%3E2.0.CO;2
  • Jorgensen, D. P. (1984a). Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. Journal of the Atmospheric Sciences, 41(8), 1268–1285. https://doi.org/10.1175/1520-0469(1984)041%3C1268:MACSCO%3E2.0.CO;2
  • Jorgensen, D. P. (1984b). Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). Journal of the Atmospheric Sciences, 41(8), 1287–1311. https://doi.org/10.1175/1520-0469(1984)041%3C1287:MACSCO%3E2.0.CO;2
  • Jorgensen, D. P., Zipser, E. J., & LeMone, M. (1985). Vertical motions in intense hurricanes. Journal of the Atmospheric Sciences, 42(8), 839–56. https://doi.org/10.1175/1520-0469(1985)042%3C0839:VMIIH%3E2.0.CO;2
  • Judt, F., & Chen, S. (2010). Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005. Journal of the Atmospheric Sciences, 67(11), 3581–3599. https://doi.org/10.1175/2010JAS3471.1
  • Kasahara, A. (1961). A numerical experiment on the development of a tropical cyclone. Journal of the Atmospheric Sciences, 18(3), 259–282. https://doi.org/10.1175/1520-0469(1961)018%3C0259:ANEOTD%3E2.0.CO;2
  • Kepert, J. D. (2006a). Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. Journal of the Atmospheric Sciences, 63(9), 2169–2193. https://doi.org/10.1175/JAS3745.1
  • Kepert, J. D. (2006b). Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. Journal of the Atmospheric Sciences, 63(9), 2194–2211. https://doi.org/10.1175/JAS3746.1
  • Kepert, J. D. (2013). How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? Journal of the Atmospheric Sciences, 70(9), 2808–2830. https://doi.org/10.1175/JAS-D-13-046.1
  • Kepert, J. D., & Nolan, D. (2014). Reply to comments on how does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? Journal of the Atmospheric Sciences, 71(12), 4692–4704. https://doi.org/10.1175/JAS-D-14-0014.1
  • Kikuchi, K., & Wang, B. (2010). Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. Journal of the Meteorological Society of Japan, 88(3), 475–496. https://doi.org/10.2151/jmsj.2010-313
  • Kim, J.-H., Ho, C., Kim, H., Sui, C., & Park, S. (2008). Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden-Julian oscillation. Journal of Climate, 21(6), 1171–1191. https://doi.org/10.1175/2007JCLI1493.1
  • KimBall, J. H. (1915). A pacific hurricane of September, 1915. Monthly Weather Review, 43(9), 486. https://doi.org/10.1175/1520-0493(1915)43%3C486:APHOS%3E2.0.CO;2
  • Kimball, S. K., & Mulekar, M. S. (2004). A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. Journal of Climate, 17(18), 3555–3575. https://doi.org/10.1175/1520-0442(2004)017%3C3555:AYCONA%3E2.0.CO;2
  • Kleinschmidt, E., Jr. (1951). Grundlagen einer theorie der tropischen zyklonen. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 4, 53–72. https://doi.org/10.1007/BF02246793
  • Klotzbach, P. J. (2010). On the Madden-Julian oscillation-Atlantic hurricane relationship. Journal of Climate, 23(2), 282–293. https://doi.org/10.1175/2009JCLI2978.1
  • Klotzbach, P. J. (2011). The influence of El Nino-Southern Oscillation and the Atlantic multidecadal oscillation on Caribbean Tropical cyclone activity. Journal of Climate, 24(3), 721–731. https://doi.org/10.1175/2010JCLI3705.1
  • Klotzbach, P. J. (2012). El Nino-Southern Oscillation, the Madden-Julian oscillation and Atlantic basin tropical cyclone rapid intensification. Journal of Geophysical Research, 117, D14104. https://doi.org/10.1029/2012JD017714
  • Klotzbach, P. J. (2014). The Madden-Julian Oscillation's impacts on worldwide tropical cyclone activity. Journal of Climate, 27(6), 2317–2330. https://doi.org/10.1175/JCLI-D-13-00483.1
  • Klotzbach, P. J., & Blake, E. (2013). North-central Pacific tropical cyclones: Impacts of El Nino-Southern oscillation and the Madden-Julian oscillation. Journal of Climate, 26(19), 7720–7733. https://doi.org/10.1175/JCLI-D-12-00809.1
  • Klotzbach, P. J., Bowen, S., Pielke, R., Jr., & Bell, M. (2018). Continental United States landfall frequency and associated damage: Observations and future risks. Bulletin of the American Meteorological Society, 99(7), 1359–1376. https://doi.org/10.1175/BAMS-D-17-0184.1
  • Klotzbach, P. J., & Gray, W. (2008). Multidecadal variability in North Atlantic tropical cyclone activity. Journal of Climate, 21(15), 3929–3935. https://doi.org/10.1175/2008JCLI2162.1
  • Klotzbach, P. J., & Landsea, C. (2015). Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. Journal of Climate, 28(19), 7621–7629. https://doi.org/10.1175/JCLI-D-15-0188.1
  • Klotzbach, P. J., & Oliver, E. (2015). Modulation of Atlantic basin tropical cyclone activity by the Madden-Julian oscillation (MJO) from 1905 to 2011. Journal of Climate, 28(1), 204–217. https://doi.org/10.1175/JCLI-D-14-00509.1
  • Knaff, J. A. (1997). Implications of summertime sea level pressure anomalies in the tropical Atlantic region. Journal of Climate, 10(4), 789–804. https://doi.org/10.1175/1520-0442(1997)010%3C0789:IOSSLP%3E2.0.CO;2
  • Knaff, J. A., Longmore, S. P., & Molenar, D. A. (2014). An objective satellite-based tropical cyclone size climatology. Journal of Climate, 27(1), 455–476. https://doi.org/10.1175/JCLI-D-13-00096.1
  • Knaff, J. A., & Zehr, R. (2007). Reexamination of tropical cyclone wind-pressure relationships. Weather and Forecasting, 22(1), 71–88. https://doi.org/10.1175/WAF965.1
  • Knapp, K. R., Kruk, M., Levinson, D., Diamond, H., & Neumann, C. (2010). The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bulletin of the American Meteorological Society, 91(3), 363–376. https://doi.org/10.1175/2009BAMS2755.1
  • Knapp, K. R., Vimont, D., Murnane, R., & Harper, B. (2007). A globally consistent reanalysis of hurricane variability and trends. Geophysical Research Letters, 34, L04815. https://doi.org/10.1029/2006GL028836
  • Knight, J. R., Folland, C. K., & Scaife, A. A. (2006). Climate impacts of the Atlantic multidecadal oscillation. Geophysical Research Letters, 33, L17706. https://doi.org/10.1029/2006GL026242
  • Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M. S., & Olsen, J. (2014). Evidence for external forcing of the Atlantic multidecadal oscillation since termination of the little Ice Age. Nature Communications, 5, 3323. https://doi.org/10.1038/ncomms4323
  • Knupp, K. R., Walters, J., & Biggerstaff, M. (2006). Doppler radar and profiler observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. Journal of the Atmospheric Sciences, 63(1), 243–251. https://doi.org/10.1175/JAS3608.1
  • Knutson, T., Camargo, S., Chan, J., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2019). Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bulletin of the American Meteorological Society, 100(10), 1987–2007. https://doi.org/10.1175/BAMS-D-18-0189.1
  • Knutson, T., Camargo, S., Chan, J., Emanuel, K., Ho, C., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K., & Wu, L. (2020). Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101(3), E303–E322. https://doi.org/10.1175/BAMS-D-18-0194.1
  • Knutson, T. R., Landsea, C., & Emanuel, K. (2010). Tropical cyclones and climate change: A review. Nature Geoscience, 3, 157–163. https://doi.org/10.1038/ngeo779
  • Koba, H., Hagiwara, T., Asano, S., & Akashi, S. (1990). Relationships between CI number from Dvorak's technique and minimum sea level pressure or maximum wind speed of tropical cyclone (in Japanese). Journal of Meteorological Research, 42, 59–67.
  • Komaromi, W. A., & Doyle, J. (2018). On the dynamics of tropical cyclone and trough interactions. Journal of the Atmospheric Sciences, 75(8), 2687–2709. https://doi.org/10.1175/JAS-D-17-0272.1
  • Kossin, J. P. (2015). Hurricane wind-pressure relationship and eyewall replacement cycles. Weather and Forecasting, 30(1), 177–181. https://doi.org/10.1175/WAF-D-14-00121.1
  • Kossin, J. P. (2018). A global slowdown of tropical cyclone translation speed. Nature, 558, 104–108. https://doi.org/10.1038/s41586-018-0158-3
  • Kossin, J. P., Emanuel, K., & Vecchi, G. (2014). The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352. https://doi.org/10.1038/nature13278
  • Kossin, J. P., Olander, T., & Knapp, K. (2013). Trend analysis with a new global record of tropical cyclone intensity. Journal of Climate, 26(24), 9960–9976. https://doi.org/10.1175/JCLI-D-13-00262.1
  • Kossin, J. P., & Sitkowski, M. (2009). An objective model for identifying secondary eyewall formation in hurricanes. Monthly Weather Review, 137(3), 876–892. https://doi.org/10.1175/2008MWR2701.1
  • Kossin, J. P., & Vimont, D. (2007). A more general framework for understanding Atlantic hurricane variability and trends. Bulletin of the American Meteorological Society, 88(11), 1767–1781. https://doi.org/10.1175/BAMS-88-11-1767
  • Kowaleski, A. M., & Evans, J. L. (2016). A reformulation of tropical cyclone potential intensity theory incorporating energy production along a radial trajectory. Monthly Weather Review, 144(10), 3569–3578. https://doi.org/10.1175/MWR-D-15-0383.1
  • Krishnamohan, K. S., Mohanakumar, K., & Joseph, P. (2012). The influence of Madden-Julian oscillation in the genesis of north Indian Ocean tropical cyclones. Theoretical and Applied Climatology, 109, 271–282. https://doi.org/10.1007/s00704-011-0582-x
  • Kubota, H., & Chan, J. (2009). Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophysical Research Letters, 36, L12802. https://doi.org/10.1029/2009GL038108
  • Kuo, H.-C., Chang, C., Yang, Y., & Jiang, H. (2009). Western North Pacific typhoons with concentric eyewalls. Monthly Weather Review, 137(11), 3758–3770. https://doi.org/10.1175/2009MWR2850.1
  • Kuo, H.-C., Schubert, W., Tsai, C., & Kuo, Y. (2008). Vortex interactions and barotropic aspects of concentric eyewall formation. Monthly Weather Review, 136(12), 5183–5198. https://doi.org/10.1175/2008MWR2378.1
  • Kuo, H.-L. (1965). On formation and intensification of tropical cyclones through latent heat release by cumulus convection. Journal of the Atmospheric Sciences, 22(1), 40–63. https://doi.org/10.1175/1520-0469(1965)022%3C0040:OFAIOT%3E2.0.CO;2
  • Kuo, H. L. (1961). Convection in conditionally unstable atmosphere. Tellus, 13(4), 441–459. https://doi.org/10.1111/j.2153-3490.1961.tb00107.x
  • Kurihara, Y. (1976). On the development of spiral bands in a tropical cyclone. Journal of the Atmospheric Sciences, 33(6), 940–958. https://doi.org/10.1175/1520-0469(1976)033%3C0940:OTDOSB%3E2.0.CO;2
  • Lander, M. A. (1994). Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991. Weather and Forecasting, 9(4), 640–654. https://doi.org/10.1175/1520-0434(1994)009%3C0640:DOAMGA%3E2.0.CO;2
  • Lander, M. A. (1995). The merger of two tropical cyclones. Monthly Weather Review, 123(7), 2260–2265. https://doi.org/10.1175/1520-0493(1995)123%3C2260:TMOTTC%3E2.0.CO;2
  • Lander, M., & Holland, G. (1993). On the interaction of tropical-cyclone-scale vortices. I: Observations. Quarterly Journal of the Royal Meteorological Society, 119(514), 1347–1361. https://doi.org/10.1002/qj.49711951406
  • Landsea, C. W. (1993). A climatology of intense (or major) Atlantic hurricanes. Monthly Weather Review, 121(6), 1703–1713. https://doi.org/10.1175/1520-0493(1993)121%3C1703:ACOIMA%3E2.0.CO;2
  • Landsea, C. W. (2007). Counting Atlantic tropical cyclones back to 1900. Eos, Transactions American Geophysical Union, 88(8), 197–202. https://doi.org/10.1029/2007EO180001
  • Landsea, C. W., Anderson, C., Charles, N., Clark, G., Dunion, J., Fernandez-Partagas, J., Hungerford, P., Neumann, C., & Zimmer, M. (2004). The Atlantic hurricane database reanalysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. In R. J. Murnane & K.-B. Liu (Eds.), Hurricanes and typhoons: Past, present, and future (pp. 177–221). Columbia University Press.
  • Landsea, C. W., & Franklin, J. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 141(10), 3576–3592. https://doi.org/10.1175/MWR-D-12-00254.1
  • Landsea, C. W., Harper, B., Hoarau, K., & Knaff, J. (2006). Can we detect trends in extreme tropical cyclones? Science, 313, 452–454. https://doi.org/10.1126/science.1128448
  • LaSeur, N. E., & Hawkins, H. (1963). An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Monthly Weather Review, 91(10), 694–709. https://doi.org/10.1175/1520-0493(1963)091%3C0694:AAOHCB%3E2.3.CO;2
  • Lee, C.-S., Edson, R., & Gray, W. (1989). Some large-scale characteristics associated with tropical cyclone development in the north Indian Ocean during FGGE. Monthly Weather Review, 117(2), 407–426. https://doi.org/10.1175/1520-0493(1989)117%3C0407:SLSCAW%3E2.0.CO;2
  • Lee, C.-Y., & Chen, S. (2012). Symmetric and asymmetric structures of hurricane boundary layer in coupled atmosphere-wave-ocean models and observations. Journal of the Atmospheric Sciences, 69(12), 3576–3594. https://doi.org/10.1175/JAS-D-12-046.1
  • Lee, C. S. (1989a). Observational analysis of tropical cyclogenesis in the Western North Pacific. Part I: Structural evolution of cloud clusters. Journal of the Atmospheric Sciences, 46(16), 2580–2598. https://doi.org/10.1175/1520-0469(1989)046%3C2580:OAOTCI%3E2.0.CO;2
  • Lee, C. S. (1989b). Observational analysis of tropical cyclogenesis in the Western North Pacific. Part II: Budget analysis. Journal of the Atmospheric Sciences, 46(16), 2599–2616. https://doi.org/10.1175/1520-0469(1989)046%3C2599:OAOTCI%3E2.0.CO;2
  • Leppert, K. D., Cecil, D., & Petersen, W. (2013a). Relation between tropical easterly waves, convection, and tropical cyclogenesis: A Lagrangian perspective. Monthly Weather Review, 141(8), 2649–2668. https://doi.org/10.1175/MWR-D-12-00217.1
  • Leppert, K. D., Petersen, W., & Cecil, D. (2013b). Electrically active convection in tropical easterly waves and implications for tropical cyclogenesis in the Atlantic and east Pacific. Monthly Weather Review, 141(2), 542–556. https://doi.org/10.1175/MWR-D-12-00174.1
  • Leroux, M.-D., Plu, M., Barbary, D., Roux, F., & Arbogast, P. (2013). Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. Journal of the Atmospheric Sciences, 70(8), 2547–2565. https://doi.org/10.1175/JAS-D-12-0293.1
  • Leroux, M.-D., Plu, M., & Roux, F. (2016). On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Monthly Weather Review, 144(3), 1179–1202. https://doi.org/10.1175/MWR-D-15-0224.1
  • Leroy, A., & Wheeler, M. (2008). Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Monthly Weather Review, 136(10), 3637–3654. https://doi.org/10.1175/2008MWR2426.1
  • Li, R. C. Y., & Zhou, W. (2013). Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. Journal of Climate, 26(9), 2904–2918. https://doi.org/10.1175/JCLI-D-12-00210.1
  • Li, S. (1936). Untersuchunger ϋber Taifune. Veröffentlichungen des Meterologyischen Instituts der Vniversitä Berlin, Band I, Heft 5.
  • Liebmann, B., Hendon, H. H., & Glick, J. D. (1994). The relationship between tropical cyclones of the western Pacific and Indian Ocean and the Madden-Julian oscillation. Journal of the Meteorological Society of Japan, 72(3), 401–412. https://doi.org/10.2151/jmsj1965.72.3_401
  • Lilly, D. K. (1960). On the theory of disturbances in a conditionally unstable atmosphere. Monthly Weather Review, 88(1), 1–17. https://doi.org/10.1175/1520-0493(1960)088%3C0001:OTTODI%3E2.0.CO;2
  • Lilly, D. K. (1966). On the instability of Ekman boundary flow. Journal of the Atmospheric Sciences, 23(5), 481–494. https://doi.org/10.1175/1520-0469(1966)023%3C0481:OTIOEB%3E2.0.CO;2
  • Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Del Genio, A., Donner, L. J., & Emori, S. (2006). Tropical intraseasonal variability in 14 IPCC CMIP3 climate models. Part I: Convective signals. Journal of Climate, 19(12), 2665–2690. https://doi.org/10.1175/JCLI3735.1
  • Lin, J. L., & Qian, T. (2019). Switch between El Nino and La Nina is caused by subsurface ocean waves likely driven by lunar tidal forcing. Nature Scientific Reports. https://doi.org/10.1038/s41598-019-49678-w
  • Liu, K.-B., & Fearn, M. L. (1993). Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21, 793–796. https://doi.org/10.1130/0091-7613(1993)021%3C0793:LSROLH%3E2.3.CO;2
  • Liu, K.-B., & Fearn, M. L. (2000). Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Research, 54, 238–245. https://doi.org/10.1006/qres.2000.2166
  • Liu, K. B., Shen, C., & Louie, K. S. (2001). A 1,000 year history of typhoon landfalls in Guangdong, Southern China, Reconstructed from Chinese historical documentary records. Annals of the Association of American Geographers, 91, 453–464. https://doi.org/10.1111/0004-5608.00253
  • Lord Kelvin (Sir William Thomson). (1887). On the waves produced by a single impulse in water of any depth, or in a dispersive medium. Proceedings of the Royal Society of London, 42, 80–87. https://doi.org/10.1098/rspl.1887.0017
  • Lorsolo, S., Schroeder, J. L., Dodge, P., & Marks, F., Jr. (2008). An observational study of hurricane boundary layer small-scale coherent structures. Monthly Weather Review, 136(8), 2871–2893. https://doi.org/10.1175/2008MWR2273.1
  • Louie, K., & Liu, K. (2003). Earliest historical records of typhoons in China. Journal of Historical Geography, 29, 299–316. https://doi.org/10.1006/jhge.2002.0453
  • Love, G. (1985a). Cross equatorial influence of winter hemisphere subtropical cold surges. Monthly Weather Review, 113(9), 1487–1498. https://doi.org/10.1175/1520-0493(1985)113%3C1487:CEIOWH%3E2.0.CO;2
  • Love, G. (1985b). Cross equatorial interactions during tropical cyclogenesis. Monthly Weather Review, 113(9), 1499–1509. https://doi.org/10.1175/1520-0493(1985)113%3C1499:CEIDTC%3E2.0.CO;2
  • Love, G., & Murphy, K. (1985). The operational analysis of tropical cyclone wind fields in the Australian northern region (pp. 44–51). Northern Territory Region Research Papers 1984-85. Bureau of Meteorology.
  • Ludlum, D. M. (1963). Early American hurricanes, 1492–1870. American Meteorological Society. 198 pp.
  • Lussier, L. L., III, Montgomery, M. T., & Bell, M. M. (2014). The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 3: Dynamics of low-level spin-up during the genesis. Atmospheric Chemistry and Physics, 14, 8795–8812. https://doi.org/10.5194/acp-14-8795-2014
  • Madden, R. A., & Julian, P. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028%3C0702:DOADOI%3E2.0.CO;2
  • Magee, A. D., Verdon-Kidd, D., Diamond, H., & Kiem, A. (2017). Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: A spatial analysis of the southwest Pacific region. International Journal of Climatology, 37, 1118–1137. https://doi.org/10.1002/joc.5070
  • Malkus, J. S., & Riehl, H. (1960). On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20. https://doi.org/10.3402/tellusa.v12i1.9351
  • Maloney, E. D., & Hartmann, D. (2000a). Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. Journal of Climate, 13(9), 1451–1460. https://doi.org/10.1175/1520-0442(2000)013%3C1451:MOENPH%3E2.0.CO;2
  • Maloney, E. D., & Hartmann, D. (2000b). Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287, 2002–2004. https://doi.org/10.1126/science.287.5460.2002
  • Mann, M., Steinman, B., Brouillette, D., & Miller, S. (2021). Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371, 1014–1019. https://doi.org/10.1126/science.abc5810
  • Mann, M., Steinman, B., & Miller, S. (2020). Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nature Communications, 11, 49. https://doi.org/10.1038/s41467-019-13823-w
  • Marks, F. D., Jr. (1985). Evolution of the structure of precipitation in Hurricane Allen (1980). Monthly Weather Review, 113(6), 909–930, https://doi.org/10.1175/1520-0493(1985)113,0909EOTSOP.2.0.CO;2
  • Marks, F. D., & Houze, R. (1984). Airborne Doppler radar observations in Hurricane Debby. Bulletin of American Meteorological Society, 65(6), 569–582. https://doi.org/10.1175/1520-0477(1984)065%3C0569:ADROIH%3E2.0.CO;2
  • Marks, F. D., Jr., & Houze, R., Jr. (1987). Inner core structure of Hurricane Alicia from airborne Doppler radar observations. Journal of the Atmospheric Sciences, 44(9), 1296–1317. https://doi.org/10.1175/1520-0469(1987)044%3C1296:ICSOHA%3E2.0.CO;2
  • Marks, F. D., Jr., Houze, R., Jr., & Gamache, J. (1992). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. Journal of the Atmospheric Sciences, 49(11), 919–942. https://doi.org/10.1175/1520-0469(1992)049%3C0919:DAIOTI%3E2.0.CO;2
  • McBride, J. L. (1981). Observational analysis of tropical cyclone formation. Part III: Budget analysis. Journal of the Atmospheric Sciences, 38(6), 1152–1166. https://doi.org/10.1175/1520-0469(1981)038%3C1152:OAOTCF%3E2.0.CO;2
  • McBride, J. L., & Keenan, T. (1982). Climatology of tropical cyclone genesis in the Australian region. Journal of Climatology, 2, 13–33. https://doi.org/10.1002/joc.3370020103
  • McBride, J. L., & Zehr, R. (1981). Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. Journal of the Atmospheric Sciences, 38(6), 1132–1151. https://doi.org/10.1175/1520-0469(1981)038%3C1132:OAOTCF%3E2.0.CO;2
  • McDonald, N. J. (1968). The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20, 138–50. https://doi.org/10.1111/j.2153-3490.1968.tb00358.x
  • McNoldy, B. D. (2004). Triple eyewall in Hurricane Juliette. Bulletin of the American Meteorological Society, 85, 1663–1666. https://doi.org/10.1175/BAMS-85-11-1657
  • Mei, W., & Xie, S. (2016). Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9, 753–757. https://doi.org/10.1038/ngeo2792
  • Menkes, C. E., Lengaigne, E., Marchesiello, P., Jourdain, N., Vincent, E., Lefevre, J., Chauvin, F., & Royer, J. (2012). Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dynamics, 38, 301–321. https://doi.org/10.1007/s00382-011-1126-x
  • Merrill, R. T. (1984). A comparison of large and small tropical cyclones. Monthly Weather Review, 112(7), 1408–1418. https://doi.org/10.1175/1520-0493(1984)112%3C1408:ACOLAS%3E2.0.CO;2
  • Merrill, R. T. (1988a). Characteristics of the upper-tropospheric environmental flow around hurricanes. Journal of the Atmospheric Sciences, 45(11), 1665–1677. https://doi.org/10.1175/1520-0469(1988)045%3C1665:COTUTE%3E2.0.CO;2
  • Merrill, R. T. (1988b). Environmental influences on hurricane intensification. Journal of the Atmospheric Sciences, 45(11), 1678–1687. https://doi.org/10.1175/1520-0469(1988)045%3C1678:EIOHI%3E2.0.CO;2
  • Millas, C. J. (1968). Hurricanes of the Caribbean and adjacent regions, 1492–1800. Academy of the Arts and Sciences of the Americas. 328 pp.
  • Miller, B. I. (1958). On the maximum intensity of hurricanes. Journal of the Atmospheric Sciences, 15(2), 184–195. https://doi.org/10.1175/1520-0469(1958)015%3C0184:OTMIOH%3E2.0.CO;2
  • Miller, B. I. (1964). A study of the filling of hurricane Donna over land (1960). Monthly Weather Review, 92(9), 389–406. https://doi.org/10.1175/1520-0493(1964)0920389: ASOTFO>2.3.CO;2
  • Mitchell, C. L. (1926). The West Indian hurricane of September 14–22, 1926. Monthly Weather Review, 54(10), 409–414. https://doi.org/10.1175/1520-0493(1926)54%3C409:TWIHOS%3E2.0.CO;2
  • Mock, C. J. (2004). Tropical cyclone reconstructions from documentary records: Examples for South Carolina, United States. In R. J. Murnane & K. Liu (Eds.), Hurricanes and typhoons: Past, present and future (pp. 121–148). Columbia University Press.
  • Molinari, J., Frank, J., & Vollaro, D. (2013). Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Monthly Weather Review, 141(3), 1048–1060. https://doi.org/10.1175/MWR-D-12-00135.1
  • Molinari, J., Knight, D., Dickinson, M., Vollaro, D., & Skubis, S. (1997). Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Monthly Weather Review, 125(10), 2699–2708. https://doi.org/10.1175/1520-0493(1997)125%3C2699:PVEWAE%3E2.0.CO;2
  • Molinari, J., Moore, P., & Idone, V. (1999). Convective structure of hurricanes as revealed by lightning locations. Monthly Weather Review, 127(4), 520–534. https://doi.org/10.1175/1520-0493(1999)127%3C0520:CSOHAR%3E2.0.CO;2
  • Molinari, J., Moore, P., Idone, V., Henderson, R., & Saljoughy, A. (1994). Cloud-to-ground lightning in Hurricane Andrew. Journal of Geophysical Research, 99, 16665–16676. https://doi.org/10.1029/94JD00722
  • Molinari, J., Skubis, S., & Vollaro, D. (1995). External influences on hurricane intensity. Part III: Potential vorticity structure. Journal of the Atmospheric Sciences, 52(20), 3593–3606. https://doi.org/10.1175/1520-0469(1995)052%3C3593:EIOHIP%3E2.0.CO;2
  • Molinari, J., Skubis, S., Vollaro, D., Alsheimer, F., & Willoughby, H. (1998). Potential vorticity analysis of tropical cyclone intensification. Journal of the Atmospheric Sciences, 55(16), 2632–2644. https://doi.org/10.1175/1520-0469(1998)055%3C2632:PVAOTC%3E2.0.CO;2
  • Molinari, J., & Vollaro, D. (1989). External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. Journal of the Atmospheric Sciences, 46(8), 1093–1105. https://doi.org/10.1175/1520-0469(1989)046%3C1093:EIOHIP%3E2.0.CO;2
  • Molinari, J., & Vollaro, D. (1990). External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. Journal of the Atmospheric Sciences, 47(15), 1902–1918. https://doi.org/10.1175/1520-0469(1990)047%3C1902:EIOHIP%3E2.0.CO;2
  • Molinari, J., Zhang, J., Rogers, R., & Vollaro, D. (2019). Repeated eyewall replacement cycles in Hurricane Frances (2004). Monthly Weather Review, 147(6), 2009–2022. https://doi.org/10.1175/MWR-D-18-0345.1
  • Montgomery, M. T., & Farrell, B. (1993). Tropical cyclone formation. Journal of the Atmospheric Sciences, 50(2), 285–310. https://doi.org/10.1175/1520-0469(1993)050%3C0285:TCF%3E2.0.CO;2
  • Montgomery, M. T., & Kallenbach, R. (1997). A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quarterly Journal of the Royal Meteorological Society, 123, 435–465. https://doi.org/10.1002/qj.49712353810
  • Montgomery, M. T., Nguyen, S., Smith, R., & Persing, J. (2009). Do tropical cyclones intensify by WISHE? Quarterly Journal of the Royal Meteorological Society, 135, 1697–1714. https://doi.org/10.1002/qj.459
  • Montgomery, M. T., Nicholls, M. E., Cram, T. A., & Saunders, A. B. (2006). A vortical hot tower route to tropical cyclogenesis. Journal of the Atmospheric Sciences, 63(1), 355–386. https://doi.org/10.1175/JAS3604.1
  • Montgomery, M. T., & Smith, R. (2017). Recent developments in the fluid dynamics of tropical cyclones. Annual Review of Fluid Mechanics, 49, 541–574. https://doi.org/10.1146/annurev-fluid-010816-060022
  • Montgomery, M. T., Zhang, J. A., & Smith, R. K. (2014). An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quarterly Journal of the Royal Meteorological Society, 140(684), 2132–2146. https://doi.org/10.1002/qj.2283
  • Mora, C., Miller, D., & Grissino-Mayer, H. (2006). Tempest in a tree ring: Paleotempestology and the record of past hurricanes. The Sedimentary Record, 4(3), 4. https://thesedimentaryrecord.scholasticahq.com/article/30118.pdf
  • Moreau de Jonnès, A. (1822). Sur les ouragans des Antilles, avec un tableau chronologique de ceux qui eurent lieu. Histoire Physique des Antilles Franc aises, 1, 346.
  • Morrison, I., Businger, S., Marks, F., Dodge, P., & Businger, J. A. (2005). An observational case for the prevalence of roll vortices in the hurricane boundary layer. Journal of the Atmospheric Sciences, 62(8), 2662–2673. https://doi.org/10.1175/JAS3508.1
  • Moss, M. S. (1978). Low-level turbulence structure in the vicinity of a hurricane. Monthly Weather Review, 106(6), 841–849. https://doi.org/10.1175/1520-0493(1978)106%3C0841:LLTSIT%3E2.0.CO;2
  • Moss, M. S., & Merceret, F. (1976). A note on several low-layer features of Hurricane Eloise (1975). Monthly Weather Review, 104(7), 967–971. https://doi.org/10.1175/1520-0493(1976)104%3C0967:ANOSLL%3E2.0.CO;2
  • Moss, M. S., & Merceret, F. (1977). A comparison of velocity spectra from hot film anemometer and gust-probe measurements. Journal of Applied Meteorology, 16(3), 319–320. https://doi.org/10.1175/1520-0450(1977)016%3C0319:ACOVSF%3E2.0.CO;2
  • Murakami, H., Vecchi, G., Delworth, T., Paffendorf, K., Jia, L., Gudgel, R., & Zeng, F. (2015). Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season. Bulletin of the American Meteorological Society, 96(12), S115–S119. https://doi.org/10.1175/BAMS-D-15-00119.1
  • Navarro, E. L., Hakim, G., & Willoughby, H. (2017). Balanced response of an axisymmetric tropical cyclone to periodic diurnal heating. Journal of the Atmospheric Sciences, 74(10), 3325–3337. https://doi.org/10.1175/JAS-D-16-0279.1
  • NCAR Tropical Cyclone Guidance Project Global Repository. (2018). http://hurricanes.ral.ucar.edu/repository/
  • Newell, R. E., Hu, W., Wu, Z. X., Zhu, Y., Akimoto, H., Anderson, B. E., Browell, E. V., Gregory, G. L., Sachse, G. W., Shipham, M. C., & Bachmeier, A. S. (1996). Atmospheric sampling of supertyphoon Mireille with NASA DC-8 aircraft on September 27, 1991, during PEM-West A. Journal of Geophysical Research, 101, 1853–1871. https://doi.org/10.1029/95JD01374
  • Nguyen, L. T., Rogers, R. F., & Reasor, P. D. (2017). Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Monthly Weather Review, 145(11), 4423–4446. https://doi.org/10.1175/MWR-D-17-0073.1
  • Nguyen, S. V., Smith, R. K., & Montgomery, M. T. (2008). Tropical cyclone intensification and predictability in three dimensions. Quarterly Journal of the Royal Meteorological Society, 134, 563–82. https://doi.org/10.1002/qj.235
  • Nicholls, N. (1979). A possible method for predicting seasonal tropical cyclone activity in the Australian region. Monthly Weather Review, 107(9), 1221–1224. https://doi.org/10.1175/1520-0493(1979)107%3C1221:APMFPS%3E2.0.CO;2
  • Nicholls, N. (1985). Predictability of interannual variations of Australian seasonal tropical cyclone activity. Monthly Weather Review, 113(7), 1144–1149. https://doi.org/10.1175/1520-0493(1985)113%3C1144:POIVOA%3E2.0.CO;2
  • Nicholls, N., Landsea, C., & Gill, J. (1998). Recent trends in Australian region tropical cyclone activity. Meteorology and Atmospheric Physics, 65, 197–205. https://doi.org/10.1007/BF01030788
  • NOAA National Centers for Environmental Information (NCEI). (2018). State of the climate: Hurricanes and tropical storms for annual 2017. Published online January 2018. Retrieved August 29, 2018, from https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201713
  • Nong, S., & Emanuel, K. (2003). A numerical study of the genesis of concentric eyewalls in hurricanes. Quarterly Journal of the Royal Meteorological Society, 129, 3323–3338. https://doi.org/10.1256/qj.01.132
  • Nyberg, J., Malmgren, B., Winter, A., Jury, M., Kilbourne, K., & Quinn, T. (2007). Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature, 447, 698–701. https://doi.org/10.1038/nature05895
  • Ooyama, K. (1969). Numerical simulation of the life cycle of tropical cyclones. Journal of the Atmospheric Sciences, 26(1), 3–40. https://doi.org/10.1175/1520-0469(1969)026%3C0003:NSOTLC%3E2.0.CO;2
  • Ooyama, K. (1982). Conceptual evolution of theory and modeling of the tropical cyclone. Journal of the Meteorological Society of Japan, 60(1), 369–379. https://doi.org/10.2151/jmsj1965.60.1_369
  • Ooyama, K. V. (1964). A dynamical model for the study of tropical cyclone development. Geofisica Internacional, 4, 187–198.
  • Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3, 26–39.
  • Palmer, C. E. (1952). Tropical meteorology. Quarterly Journal of the Royal Meteorological Society, 78, 126–164. https://doi.org/10.1002/qj.49707833603
  • Pan, Y. H., & Oort, A. (1983). Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–73 period. Monthly Weather Review, 111(6), 1244–1258. https://doi.org/10.1175/1520-0493(1983)1111244:GCVCWS>2.0.CO;2
  • Patricola, C. M., Camargo, S., Klotzbach, P. J., Saravanan, R., & Chang, P. (2018). The influence of ENSO flavors on western North Pacific tropical cyclone activity. Journal of Climate, 31(14), 5395–5416. https://doi.org/10.1175/JCLI-D-17-0678.1
  • Patricola, C. M., Chang, P., & Saravanan, R. (2015). Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nature Geoscience, 9, 155–160. https://doi.org/10.1038/ngeo2624
  • Peirano, C. M., Corbosiero, K., & Tang, B. (2016). Revisiting trough interactions and tropical cyclone intensity change. Geophysical Research Letters, 43, 5509–5515. https://doi.org/10.1002/2016GL069040
  • Pendergrass, A. G., & Willoughby, H. (2009). Diabatically induced secondary flows in tropical cyclones. Part I: Quasi- steady forcing. Monthly Weather Review, 137(3), 805–821. https://doi.org/10.1175/2008MWR2657.1
  • Penn, S. (1965). Ozone and temperature structure in a hurricane. Journal of Applied Meteorology, 4(2), 212–216. https://doi.org/10.1175/1520-0450(1965)004%3C0212:OATSIA%3E2.0.CO;2
  • Penn, S. (1966). Temperature and ozone variations near tropopause level over hurricane Isbell October 1964. Journal of Applied Meteorology, 5(4), 407–410. https://doi.org/10.1175/1520-0450(1966)005%3C0407:TAOVNT%3E2.0.CO;2
  • Pfeffer, R. L., & Challa, M. (1981). A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. Journal of the Atmospheric Sciences, 38(11), 2393–2398. https://doi.org/10.1175/1520-0469(1981)038%3C2393:ANSOTR%3E2.0.CO;2
  • Piddington, H. (1848). The Sailor's horn-book for the law of storms: Being a practical exposition of the theory of the law of storms, and its uses to mariners of all classes in all parts of the world, shown by transparent storm cards and useful lessons (2nd ed.). John Wiley. 79 pp.
  • Pielke, R. A., Jr., & Landsea, C. (1999). La Nina, El Nino and Atlantic hurricane damages in the United States. Bulletin of the American Meteorological Society, 80(10), 2027–2033. https://doi.org/10.1175/1520-0477(1999)080%3C2027:LNAENO%3E2.0.CO;2
  • Pielke, R. A., Jr., Landsea, C., Mayfield, M., Laver, J., & Pasch, R. (2005). Hurricanes and global warming. Bulletin of the American Meteorological Society, 86(11), 1571–1575. https://doi.org/10.1175/BAMS-86-11-1571
  • Poey, A. (1855). A chronological table, comprising 400 cyclonic hurricanes which have occurred in the West Indies in the North Atlantic within 362 years, from 1493 to 1855. Journal of the Royal Geographical Society, 25, 291–328. https://doi.org/10.2307/1798124
  • Powell, M. D. (1982). The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Monthly Weather Review, 110(12), 1912–1932. https://doi.org/10.1175/1520-0493(1982)110%3C1912:TTOTHF%3E2.0.CO;2
  • Powell, M. D. (1990a). Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Monthly Weather Review, 118(4), 891–917. https://doi.org/10.1175/1520-0493(1990)118%3C0891:BLSADI%3E2.0.CO;2
  • Powell, M. D. (1990b). Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Monthly Weather Review, 118(4), 918–938. https://doi.org/10.1175/1520-0493(1990)118%3C0918:BLSADI%3E2.0.CO;2
  • Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283. https://doi.org/10.1038/nature01481
  • Prieto, R., McNoldy, B., Fulton, S., & Schubert, W. (2003). A classification of binary tropical-cyclone-like vortex interactions. Monthly Weather Review, 131(11), 2656–2666. https://doi.org/10.1175/1520-0493(2003)131%3C2656:ACOBTC%3E2.0.CO;2
  • Qian, W. H., Huang, J., & Zhang, G. (2016). Reexamining the binary interaction of four pairs of tropical cyclones in the Northwest Pacific. Journal of the Meteorological Society of Japan, 94(3), 303–322. https://doi.org/10.2151/jmsj.2016-016
  • Ramage, C. S. (1974a). Monsoonal influences on the annual variation of tropical cyclone development over the Indian and Pacific Oceans. Monthly Weather Review, 102(11), 745–753. https://doi.org/10.1175/1520-0493(1974)102%3C0745:MIOTAV%3E2.0.CO;2
  • Ramage, C. S. (1974b). The typhoons of October 1970 in the South China Sea: Intensification, decay, and ocean interaction. Journal of Applied Meteorology, 13(7), 739–751. https://doi.org/10.1175/1520-0450(1974)013%3C0739:TTOOIT%3E2.0.CO;2
  • Ramsay, H. A., Camargo, S., & Kim, D. (2012). Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dynamics, 39, 897–917. https://doi.org/10.1007/s00382-011-1225-8
  • Rappaport, E. N., Jiing, J., Landsea, C., Murillo, S., & Franklin, J. (2012). The joint Hurricane test bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bulletin of the American Meteorological Society, 93(3), 371–380. https://doi.org/10.1175/BAMS-D-11-00037.1
  • Raymond, D. J., & Lopez Carillo, C. (2011). The vorticity budget of developing typhoon Nuri (2008). Atmospheric Chemistry and Physics, 11, 147–63. https://doi.org/10.5194/acp-11-147-2011
  • Redfield, W. (1831). Remarks on the prevailing storms of the Atlantic coast of the North American States. American Journal of Science and Arts, 20(1), 17–51.
  • Redfield, W. (1854). On the first hurricane of September 1853, in the Atlantic; with a chart; and notice of other storms. American Journal of Science and Arts, 18(52), 1–18.
  • Reid, W. (1838). An Attempt to Develop the Law of Storms by Means of Facts, Arranged According to Place and Time; and Hence to Point Out a Cause for the Variable Winds, With a View to Practical Use in Navigation. John Weale, London, 572 pp.
  • Reid, W. (1846). An attempt to develop the law of storms by means of facts, arranged according to place and time; and hence to point out a cause for the variable winds, with a view to practical use in navigation. J. Weale.
  • Reid, W. (1849). The progress of the development of the law of storms, and of the variable winds: With the practical application of the subject to navigation. John Weale. 190 pp.
  • Revell, C., & Goulter, S. (1986). South Pacific tropical cyclones and the Southern Oscillation. Monthly Weather Review, 114(6), 1138–1144. https://doi.org/10.1175/1520-0493(1986)114%3C1138:SPTCAT%3E2.0.CO;2
  • Riehl, H. (1948). On the formation of typhoons. Journal of the Atmospheric Sciences, 5(6), 247–265. https://doi.org/10.1175/1520-0469(1948)005%3C0247:OTFOT%3E2.0.CO;2
  • Riehl, H. (1950). A model of hurricane formation. Journal of Applied Physics, 21, 917–925. https://doi.org/10.1063/1.1699784
  • Riemer, M., Montgomery, M., & Nicholls, M. (2010). A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmospheric Chemistry and Physics, 10, 3163–3188. https://doi.org/10.5194/acp-10-3163-2010
  • Ritchie, E. A., & Holland, G. (1993). On the interaction of tropical-cyclone-scale vortices. II: Discrete vortex patches. Quarterly Journal of the Royal Meteorological Society, 119, 1363–1379. https://doi.org/10.1002/qj.49711951407
  • Ritchie, E. A., & Holland, G. (1999). Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Monthly Weather Review, 127(9), 2027–2043. https://doi.org/10.1175/1520-0493(1999)127%3C2027:LSPAWT%3E2.0.CO;2
  • Robe, F. R., & Emanuel, K. (2001). The effect of vertical wind shear on radiative-convective equilibrium states. Journal of the Atmospheric Sciences, 58(11), 1427–1445. https://doi.org/10.1175/1520-0469(2001)058%3C1427:TEOVWS%3E2.0.CO;2
  • Rodgers, E. B., Stout, J., Steranka, J., & Chang, S. (1990). Tropical cyclone-upper atmospheric interaction as inferred from satellite total ozone observations. Journal of Applied Meteorology, 29(9), 934–954. https://doi.org/10.1175/1520-0450(1990)029%3C0934:TCUAIA%3E2.0.CO;2
  • Rogers, R. F., Lorsolo, S., Reasor, P., Gamache, J., & Marks, F., Jr. (2012). Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Monthly Weather Review, 140(1), 77–99. https://doi.org/10.1175/MWR-D-10-05075.1
  • Rogers, R. F., Reasor, P., & Lorsolo, S. (2013). Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Monthly Weather Review, 141(9), 2970–2991. https://doi.org/10.1175/MWR-D-12-00357.1
  • Rogers, R., Reasor, P., & Zhang, J. (2015). Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Monthly Weather Review, 143(2), 536–562. https://doi.org/10.1175/MWR-D-14-00175.1
  • Rogers, R., Zhang, J., Zawislak, J., Jiang, H., Alvey, G., III, Zipser, E., & Stevenson, S. (2016). Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Monthly Weather Review, 144(9), 3355–3376. https://doi.org/10.1175/MWR-D-16-0017.1
  • Rosenthal, S. L. (1964). Some attempts to simulate the development of tropical cyclones by numerical methods. Monthly Weather Review, 92(1), 1–21. https://doi.org/10.1175/1520-0493(1964)092%3C0001:SATSTD%3E2.3.CO;2
  • Rosenthal, S. L. (1971). The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions and domain size. Monthly Weather Review, 99(10), 767–777. https://doi.org/10.1175/1520-0493(1971)099%3C0767:TROATC%3E2.3.CO;2
  • Rossby, C.-G. (1948). On displacement and intensity changes of atmospheric vortices. Journal of Marine Research, 7, 175–187. https://images.peabody.yale.edu/publications/jmr/jmr07-03-05.pdf
  • Rotunno, R., & Emanuel, K. (1987). An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a non-hydrostatic axisymmetric numerical model. Journal of the Atmospheric Sciences, 44(3), 542–561. https://doi.org/10.1175/1520-0469(1987)044%3C0542:AAITFT%3E2.0.CO;2
  • Rotunno, R., Klemp, J., & Weisman, M. (1988). A theory for strong, long-lived squall lines. Journal of the Atmospheric Sciences, 45(3), 463–485. https://doi.org/10.1175/1520-0469(1988)045%3C0463:ATFSLL%3E2.0.CO;2
  • Royer, J.-F., Chauvin, F., Timbal, B., Araspin, P., & Grimal, D. (1998). A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307–343. https://doi.org/10.1023/A:1005386312622
  • Sadler, J. C. (1964). Tropical cyclones of the eastern North Pacific as revealed by TIROS observations. Journal of Applied Meteorology, 3(4), 347–366. https://doi.org/10.1175/1520-0450(1964)003%3C0347:TCOTEN%3E2.0.CO;2
  • Sadler, J. C. (1976). A role of the tropical upper tropospheric trough in early season typhoon development. Monthly Weather Review, 104(10), 1266–1278. https://doi.org/10.1175/1520-0493(1976)104%3C1266:AROTTU%3E2.0.CO;2
  • Sadler, J. C. (1978). Mid-season typhoon development and intensity changes and the tropical upper tropospheric trough. Monthly Weather Review, 106(8), 1137–1152. https://doi.org/10.1175/1520-0493(1978)106%3C1137:MSTDAI%3E2.0.CO;2
  • Samsury, C. E., & Zipser, E. (1995). Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Monthly Weather Review, 123(12), 3502–3517. https://doi.org/10.1175/1520-0493(1995)123%3C3502:SWMIHA%3E2.0.CO;2
  • Sanford, T. B., Price, J., & Girton, J. (2011). Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. Journal of Physical Oceanography, 41(6), 1041–1056. https://doi.org/10.1175/2010JPO4313.1
  • Sanger, N. T., Montgomery, T. M., Smith, R. K., & Bell, M. M. (2014). An observational study of tropical cyclone spinup in Supertyphoon Jangmi (2008) from 24 to 27 September. Monthly Weather Review, 142(1), 3–28. https://doi.org/10.1175/MWR-D-12-00306.1
  • Saunders, M. A., Chandler, R., Merchant, C., & Roberts, F. (2000). Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophysical Research Letters, 27(8), 1147–1150. https://doi.org/10.1029/1999GL010948
  • Schade, L. R. (1994). Comments on “hurricane spiral bands”. Journal of the Atmospheric Sciences, 51(23), 3543–3544. https://doi.org/10.1175/1520-0469(1994)051%3C3543:COSB%3E2.0.CO;2
  • Scheitlin, K. N., Elsner, J. B., Malmstadt, J. C., Hodges, R. E., & Jagger, T. H. (2010). Toward increased utilization of historical hurricane chronologies. Journal of Geophysical Research, 115, D03108. https://doi.org/10.1029/2009JD012424
  • Schneider, R. S., & Barnes, G. (2005). Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Bonnie (1998) at landfall. Monthly Weather Review, 133(2), 3243–3259. https://doi.org/10.1175/2008MWR2531.1
  • Schreck, C. J., Knapp, K., & Kossin, J. (2014). The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Monthly Weather Review, 142(10), 3881–3899. https://doi.org/10.1175/MWR-D-14-00021.1
  • Schubert, W. H., & Hack, J. (1983). Transformed Eliassen balanced vortex model. Journal of the Atmospheric Sciences, 40(6), 1571–1583. https://doi.org/10.1175/1520-0469(1983)040%3C1571:TEBVM%3E2.0.CO;2
  • Schubert, W. H., Slocum, C., Vigh, J., McNoldy, B., & Kossin, J. (2007). On the distribution of subsidence in the hurricane eye. Quarterly Journal of the Royal Meteorological Society, 133(624), 595–605. https://doi.org/10.1002/qj.49
  • Schwendike, J., & Kepert, J. D. (2008). The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Monthly Weather Review, 136(8), 3168–3192. https://doi.org/10.1175/2007MWR2296.1
  • Scott, D. B., Collins, E. S., Gayes, P. T., & Wright, E. (2003). Records of prehistoric hurricanes on the South Carolina coast based on micropaleontological and sedimentological evidence, with comparison to other Atlantic Coast record. Geological Society of America Bulletin, 115, 1027–1039. https://doi.org/10.1130/B25011.1
  • Shapiro, L. J. (1987). Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Monthly Weather Review, 115(11), 2598–14. https://doi.org/10.1175/1520-0493(1987)1152598:MTMVOT>2.0.CO;2
  • Shapiro, L. J., & Willoughby, H. (1982). The response of balanced hurricanes to local sources of heat and momentum. Journal of the Atmospheric Sciences, 39(2), 378–394. https://doi.org/10.1175/1520-0469(1982)039%3C0378:TROBHT%3E2.0.CO;2
  • Shi, J. J., Chang, S., & Raman, S. (1997). Interaction between Hurricane Florence (1988) and an upper-tropospheric westerly trough. Journal of the Atmospheric Sciences, 54(9), 1231–1247. https://doi.org/10.1175/1520-0469(1997)054%3C1231:IBHFAA%3E2.0.CO;2
  • Shieh, O. H., Fiorino, M., Kucas, M., & Wang, B. (2013). Extreme rapid intensification of Typhoon Vicente (2012) in the South China Sea. Weather and Forecasting, 28(6), 1578–1587. https://doi.org/10.1175/WAF-D-13-00076.1
  • Simpson, R. H. (1947). A note on the movement and structure of the Florida hurricane of October 1946. Monthly Weather Review, 75(4), 53–58. https://doi.org/10.1175/1520-0493(1947)075%3C0053:ANOTMA%3E2.0.CO;2
  • Simpson, R. H., & Riehl, H. (1958). Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proceedings of Technical Conference on Hurricanes, American Meteorological Society, D4.1-D4.10.
  • Simpson, R. H., & Starrett, L. G. (1955). Further studies of hurricane structure by aircraft reconnaissance. Bulletin of the American Meteorological Society, 36(9), 459–468. https://doi.org/10.1175/1520-0477-36.9.459
  • Singh, O. P., Ali Khan, T. M., & Rahman, M. S. (2000). Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorology and Atmospheric Physics, 75(1–2), 11–20. https://doi.org/10.1007/s007030070011
  • Sitkowski, M., Kossin, J., & Rozoff, C. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Monthly Weather Review, 139(12), 3829–3847. https://doi.org/10.1175/MWR-D-11-00034.1
  • Sitkowski, M., Kossin, J., Rozoff, C., & Knaff, J. (2012). Hurricane eyewall replacement cycle thermodynamics and the relict inner eyewall circulation. Monthly Weather Review, 140(12), 4035–4045. https://doi.org/10.1175/MWR-D-11-00349.1
  • Smith, R. K. (1997). On the theory of CISK. Quarterly Journal of the Royal Meteorological Society, 123(538), 407–418. https://doi.org/10.1002/qj.49712353808
  • Smith, R. K., Montgomery, M., & Bui, H. (2018). Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. Journal of the Atmospheric Sciences, 75(9), 3169–3189. https://doi.org/10.1175/JAS-D-17-0179.1
  • Smith, R. K., Montgomery, M. T., & Nguyen, S. V. (2009). Tropical-cyclone spin up revisited. Quarterly Journal of the Royal Meteorological Society, 135(642), 1321–35. https://doi.org/10.1002/qj.428
  • Smith, R. K., Montgomery, M., & Vogl, S. (2008). A critique of Emanuel's hurricane model and potential intensity theory. Quarterly Journal of the Royal Meteorological Society, 134(632), 551–561. https://doi.org/10.1002/qj.241
  • Smith, R. K., & Wang, S. (2018). Axisymmetric balance dynamics of tropical cyclone intensification: Diabatic heating versus surface friction. Quarterly Journal of the Royal Meteorological Society, 144(716), 2350–2357. https://doi.org/10.1002/qj.3389
  • Sobel, A. H., & Camargo, S. (2005). Influence of western North Pacific tropical cyclones on their large-scale environment. Journal of the Atmospheric Sciences, 62(9), 3396–3407. https://doi.org/10.1175/JAS3539.1
  • Sobel, A. H., Camargo, S., Hall, T., Lee, C., Tippett, M., & Wing, A. (2016). Human influence on tropical cyclone intensity. Science, 353(6296), 242–246. https://doi.org/10.1126/science.aaf6574
  • Southey, T. (1827). Chronological history of the West Indies. Cass Library of West Indian Studies, No. 4, Frank Cass and Co., Ltd., London, Vol. 3, published 1968.
  • Sparks, N., Hon, K. K., Chan, P. W., Wang, S., Chan, J. C., Lee, T. C., & Toumi, R. (2019). Aircraft observations of tropical cyclone boundary layer turbulence over the South China Sea. Journal of the Atmospheric Sciences, 76(12), 3773–3783. https://doi.org/10.1175/JAS-D-19-0128.1
  • Stern, D. P., Brisbois, J., & Nolan, D. (2014). An expanded dataset of hurricane eyewall sizes and slopes. Journal of the Atmospheric Sciences, 71(7), 2747–2762. https://doi.org/10.1175/JAS-D-13-0302.1
  • Stevenson, S. N., Corbosiero, K., & Abarca, S. (2016). Lightning in eastern North Pacific tropical cyclones: A comparison to the North Atlantic. Monthly Weather Review, 144(1), 225–239. https://doi.org/10.1175/MWR-D-15-0276.1
  • Stevenson, S. N., Corbosiero, K., DeMaria, M., & Vigh, J. (2018). A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change. Weather and Forecasting, 33(1), 23–36. https://doi.org/10.1175/WAF-D-17-0096.1
  • Stevenson, S. N., Corbosiero, K., & Molinari, J. (2014). The convective evolution and rapid intensification of Hurricane Earl (2010). Monthly Weather Review, 142(11), 4364–4380. https://doi.org/10.1175/MWR-D-14-00078.1
  • Stout, J., & Rodgers, E. (1992). Nimbus-7 total ozone observations of western North Pacific tropical cyclones. Journal of Applied Meteorology, 31(7), 758–783. https://doi.org/10.1175/1520-0450(1992)031%3C0758:TOOOWN%3E2.0.CO;2
  • Studholme, J., & Gulev, S. (2018). Concurrent changes to Hadley circulation and the meridional distribution of tropical cyclones. Journal of Climate, 31(11), 4367–4389. https://doi.org/10.1175/JCLI-D-17-0852.1
  • Sundqvist, H. (1970). Numerical simulation of the development of tropical cyclones with a ten-level model. Part I. Tellus, 22, 359–389. https://doi.org/10.3402/tellusa.v22i4.10230
  • Sutton, R. T., McCarthy, G., Robson, J., Sinha, B., Archibald, A., & Gray, L. (2018). Atlantic multidecadal variability and the U.K. ACSIS Program. Bulletin of the American Meteorological Society, 99(2), 415–425. https://doi.org/10.1175/BAMS-D-16-0266.1
  • Syono, S. (1953). On the formation of tropical cyclones. Tellus, 5, 179–195. https://doi.org/10.1111/j.2153-3490.1953.tb01047.x
  • Tang, B., & Emanuel, K. (2010). Midlevel ventilation's constraint on tropical cyclone intensity. Journal of the Atmospheric Sciences, 67(6), 1817–1830. https://doi.org/10.1175/2010JAS3318.1
  • Tang, B. H., & Neelin, J. D. (2004). ENSO influence on Atlantic hurricanes via tropospheric warming. Geophysical Research Letters, 31(24), L24204. https://doi.org/10.1029/2004GL021072
  • Tang, J., Zhang, J., Aberson, S., Marks, F., & Lei, X. (2018). Multilevel tower observations of vertical eddy diffusivity and mixing length in the ropical cyclone boundary layer during landfalls. Journal of the Atmospheric Sciences, 75(9), 3159–3168. https://doi.org/10.1175/JAS-D-17-0353.1
  • Tao, C., & Jiang, H. (2015). Distributions of shallow to very deep precipitation-convection in rapidly intensifying tropical cyclones. Journal of Climate, 28(22), 8791–8824. https://doi.org/10.1175/JCLI-D-14-00448.1
  • Tao, C., Jiang, H., & Zawislak, J. (2017). The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Monthly Weather Review, 145(3), 795–809. https://doi.org/10.1175/MWR-D-16-0316.1
  • Tepper, M. (1958). A theoretical model for hurricane radar bands. Preprints, 7th Weather Radar Conference (pp. K56–65). American Meteorological Society.
  • Terry, J. P. (2007). Tropical cyclones: Climatology and impacts in the South Pacific. Springer Science and Business Media.
  • Terwey, W. D., & Montgomery, M. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. Journal of Geophysical Research, 113, D12112. https://doi.org/10.1029/2007JD008897
  • Thorncroft, C. D., & Hodges, K. (2001). African easterly wave variability and its relationship to Atlantic tropical cyclone activity. Journal of Climate, 14(6), 1166–1179. https://doi.org/10.1175/1520-0442(2001)014%3C1166:AEWVAI%3E2.0.CO;2
  • Timmermann, A., Latif, M., Voss, R., & Groetzner, A. (1998). Northern Hemispheric interdecadal variability: A coupled air-sea mode. Journal of Climate, 11(8), 1906–1931. https://doi.org/10.1175/1520-0442(1998)011%3C1906:NHIVAC%3E2.0.CO;2
  • Tippett, M. K., Camargo, S., & Sobel, A. (2011). A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. Journal of Climate, 24(9), 2335–2357. https://doi.org/10.1175/2010JCLI3811.1
  • Toomey, M. R., Donnelly, J. P., & Woodruff, J. D. (2013). Reconstructing mid-late Holocene cyclone variability in the Central Pacific using sedimentary records from Tahaa, French Polynesia. Quaternary Science Reviews, 77, 181–189. https://doi.org/10.1016/j.quascirev.2013.07.019
  • Toomey, M. R., Donnelly, J., & Tierney, J. (2016). South Pacific hydrologic and cyclone variability during the last 3000 years. Paleoceanography, 31(4), 491–504. https://doi.org/10.1002/2015PA002870
  • van Hengstum, P. J., Donnelly, J. P., Toomey, M. R., Albury, N. A., Lane, P., & Kakuk, B. (2013). Heightened hurricane activity on the Little Bahama Bank from 1350 to 1650 AD. Continental Shelf Research, 86, 103–115. https://doi.org/10.1016/j.csr.2013.04.032
  • Ventrice, M. J., Thorncroft, C., & Roundy, P. (2011). The Madden-Julian oscillation's influence on African easterly waves and downstream tropical cyclogenesis. Monthly Weather Review, 139(9), 2704–2722. https://doi.org/10.1175/MWR-D-10-05028.1
  • Vickery, P. J., Wadhera, D., Powell, M. D., & Chen, Y. (2009). A hurricane boundary layer and wind field model for use in engineering applications. Journal of Applied Meteorology and Climatology, 48(2), 381–405. https://doi.org/10.1175/2008JAMC1841.1
  • Vigh, J. L., & Schubert, W. (2009). Rapid development of the tropical cyclone warm core. Journal of the Atmospheric Sciences, 66(11), 3335–3350. https://doi.org/10.1175/2009JAS3092.1
  • Wadler, J. B., Rogers, R., & Reasor, P. (2018). The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Monthly Weather Review, 146(3), 761–780. https://doi.org/10.1175/MWR-D-17-0213.1
  • Wadler, J. B., Zhang, J. A., Jaimes, B., & Shay, L. K. (2018). Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Monthly Weather Review, 146(11), 3545–3565. https://doi.org/10.1175/MWR-D-18-0090.1
  • Walsh, K. J. E., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T. C., Sobel, A., & Sugi, M. (2016). Tropical cyclones and climate change. WIREs Climate Change, 7(1), 65–89. https://doi.org/10.1002/wcc.371
  • Wang, B., & Chan, J. (2002). How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15(13), 1643–1658. https://doi.org/10.1175/1520-0442(2002)015%3C1643:HSEEAT%3E2.0.CO;2
  • Wang, S., Smith, R., & Montgomery, M. (2020). Upper-tropospheric inflow layers in tropical cyclones. Quarterly Journal of the Royal Meteorological Society, 146(732), 3466–3487. https://doi.org/10.1002/qj.3856
  • Wang, Z. (2018). What is the key feature of convection leading up to tropical cyclone formation? Journal of the Atmospheric Sciences, 75(5), 1609–1629. https://doi.org/10.1175/JAS-D-17-0131.1
  • Wang, Z., & Hankes, I. (2014). Characteristics of tropical easterly wave pouches during tropical cyclone formation. Monthly Weather Review, 142(2), 626–633. https://doi.org/10.1175/MWR-D-13-00267.1
  • Webster, P. J., Holland, G., Curry, J., & Chang, H. (2005). Changes in tropical cyclone number and intensity in a warming environment. Science, 309(5742), 1844–1846. https://doi.org/10.1126/science.1116448
  • Weightman, R. H. (1919). The West Indies hurricane of September, 1919, in light of sounding observations. Monthly Weather Review, 47(10), 717–720. https://doi.org/10.1175/1520-0493(1919)47%3C717:TWIHOS%3E2.0.CO;2
  • Weinkle, J., Maue, R., & Pielke, R. A., Jr. (2012). Historical global tropical cyclone landfalls. Journal of Climate, 25(13), 4729–4735. https://doi.org/10.1175/JCLI-D-11-00719.1
  • Wexler, H. (1945). The structure of the September, 1944, hurricane when off Cape Henry, Virginia. Bulletin of the American Meteorological Society, 26(5), 156–159. https://doi.org/10.1175/1520-0477-26.5.156
  • Wexler, H. (1947). Structure of hurricanes as determined by radar. Annals of the New York Academy of Sciences, 48(8), 821–844. https://doi.org/10.1111/j.1749-6632.1947.tb38495.x
  • Wheeler, M., & Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of the Atmospheric Sciences, 56(3), 374–399. https://doi.org/10.1175/1520-0469(1999)0560374:CCEWAO>2.0.CO;2
  • Whitney, L. D., & Hobgood, J. (1997). The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. Journal of Climate, 10(11), 2921–2930. https://doi.org/10.1175/1520-0442(1997)010%3C2921:TRBSST%3E2.0.CO;2
  • Willoughby, H. E. (1977). Inertia-buoyancy waves in hurricanes. Journal of the Atmospheric Sciences, 34(7), 1028–1039. https://doi.org/10.1175/1520-0469(1977)034%3C1028:IBWIH%3E2.0.CO;2
  • Willoughby, H. E. (1978a). Possible mechanism for the formation of hurricane rainbands. Journal of the Atmospheric Sciences, 35(5), 838–848. https://doi.org/10.1175/1520-0469(1978)035%3C0838:APMFTF%3E2.0.CO;2
  • Willoughby, H. E. (1978b). Vertical structure of hurricane rainbands and their interaction with the mean vortex. Journal of the Atmospheric Sciences, 35(5), 849–858. https://doi.org/10.1175/1520-0469(1978)035%3C0849:TVSOHR%3E2.0.CO;2
  • Willoughby, H. E. (1979). Excitation of spiral bands in hurricanes by interaction between the symmetric mean vortex and a shearing environmental steering current. Journal of the Atmospheric Sciences, 36(7), 1226–1235. https://doi.org/10.1175/1520-0469(1979)036%3C1226:EOSBIH%3E2.0.CO;2
  • Willoughby, H. E. (1988). The dynamics of the tropical cyclone core. Australian Meteorological Magazine, 36, 183–191.
  • Willoughby, H. E. (1990). Gradient balance in tropical cyclones. Journal of the Atmospheric Sciences, 47(2), 265–274. https://doi.org/10.1175/1520-0469(1990)047%3C0265:GBITC%3E2.0.CO;2
  • Willoughby, H. E. (2009). Diabatically induced secondary flows in tropical cyclones. Part II: Periodic forcing. Monthly Weather Review, 137(3), 822–835. https://doi.org/10.1175/2008MWR2658.1
  • Willoughby, H. E., Clos, J., & Shoreibah, M. (1982). Concentric eyes, secondary wind maxima, and the evolution of the hurricane vortex. Journal of the Atmospheric Sciences, 39(2), 395–411. https://doi.org/10.1175/1520-0469(1982)039%3C0395:CEWSWM%3E2.0.CO;2
  • Willoughby, H. E., Marks, F., Jr., & Feinberg, R. (1984). Stationary and moving convective bands in hurricanes. Journal of the Atmospheric Sciences, 41(22), 3189–3211. https://doi.org/10.1175/1520-0469(1984)041%3C3189:SAMCBI%3E2.0.CO;2
  • Willoughby, H. E., & Rahn, M. (2004). Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Monthly Weather Review, 132(12), 3033–3048. https://doi.org/10.1175/MWR2831.1
  • Wong, M., & Chan, J. (2004). Tropical cyclone intensity in vertical wind shear. Journal of the Atmospheric Sciences, 61(15), 1859–1876. https://doi.org/10.1175/1520-0469(2004)061%3C1859:TCIIVW%3E2.0.CO;2
  • Wroe, D. R., & Barnes, G. (2003). Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Monthly Weather Review, 131(8), 1600–1612. https://doi.org/10.1175//2547.1
  • Wu, C.-C., & Cheng, H. (1999). An observational study of environmental influences on the intensity changes of Typhoons Flo (1990) and Gene (1990). Monthly Weather Review, 127(12), 3003–3031. https://doi.org/10.1175/1520-0493(1999)127%3C3003:AOSOEI%3E2.0.CO;2
  • Wu, C.-C., Huang, T., Huang, W., & Chou, K. (2003). A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of tropical storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Monthly Weather Review, 131(7), 1289–1300. https://doi.org/10.1175/1520-0493(2003)131%3C1289:ANLATB%3E2.0.CO;2
  • Wu, C.-C., Huang, Y., & Lien, G. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Monthly Weather Review, 140(2), 506–527. https://doi.org/10.1175/MWR-D-11-00057.1
  • Wu, G., & Lau, N. (1992). A GCM simulation of the relationship between tropical-storm formation and ENSO. Monthly Weather Review, 120(6), 958–977. https://doi.org/10.1175/1520-0493(1992)120%3C0958:AGSOTR%3E2.0.CO;2
  • Wu, L., & Braun, S. (2004). Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. Journal of the Atmospheric Sciences, 61(24), 3065–3081. https://doi.org/10.1175/JAS-3343.1
  • Wu, L., Zong, H., & Liang, J. (2013). Observational analysis of tropical cyclone formation associated with monsoon gyres. Journal of the Atmospheric Sciences, 70(4), 1023–1034. https://doi.org/10.1175/JAS-D-12-0117.1
  • Wu, M. C., Chang, W., & Leung, W. (2004). Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. Journal of Climate, 17(6), 1419–1428. https://doi.org/10.1175/1520-0442(2004)0171419:IOENOE>2.0.CO;2
  • Wurman, J., & Winslow, J. (1998). Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science, 280(5363), 555–557. https://doi.org/10.1126/science.280.5363.555
  • Xu, W., Rutledge, S., & Zhang, W. (2017). Relationships between total lightning, deep convection, and tropical cyclone intensity change. Journal of Geophysical Research-Atmosphere, 122(13), 7047–7063. https://doi.org/10.1002/2017JD027072
  • Yamasaki, M. (1968). Numerical simulation of tropical cyclone development with the use of primitive equations. Journal of the Meteorological Society of Japan, 46, 178–201. https://doi.org/10.2151/jmsj1965.46.3_178
  • Yanai, M. (1961). A detailed analysis of typhoon formation. Journal of the Meteorological Society of Japan, 39, 187–214. https://doi.org/10.2151/jmsj1923.39.4_187
  • Yang, C.-C., Wu, C., Chou, K., & Lee, C. (2008). Binary interaction between typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Monthly Weather Review, 136(12), 4593–4611. https://doi.org/10.1175/2008MWR2496.1
  • Yang, Y.-T., Kuo, H., Hendricks, E., & Peng, M. (2013). Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Monthly Weather Review, 141(8), 2632–2648. https://doi.org/10.1175/MWR-D-12-00251.1
  • Yang, Y.-T., Kuo, H., Hendricks, E., & Peng, M. (2014). Long-lived concentric eyewalls in Typhoon Soulik (2013). Monthly Weather Review, 142(9), 3365–3371. https://doi.org/10.1175/MWR-D-14-00085.1
  • Yokoi, S., & Takayabu, Y. N. (2010). Environmental and external factors in the genesis of tropical cyclone Nargis in April 2008 over the Bay of Bengal. Journal of the Meteorological Society of Japan, 88(3), 425–435. https://doi.org/10.2151/jmsj.2010-310
  • Zagrodnik, J. P., & Jiang, H. (2014). Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. Journal of the Atmospheric Sciences, 71(8), 2789–2809. https://doi.org/10.1175/JAS-D-13-0314.1
  • Zawislak, J., Jiang, H., Alvey, G., Zipser, E., Rogers, R., Zhang, J., & Stevenson, S. (2016). Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Monthly Weather Review, 144(9), 3333–3354. https://doi.org/10.1175/MWR-D-16-0018.1
  • Zawislak, J., & Zipser, E. (2014). A multisatellite investigation of the convective properties of developing and nondeveloping tropical disturbances. Monthly Weather Review, 142(12), 4624–4645. https://doi.org/10.1175/MWR-D-14-00028.1
  • Zehr, R. M. (1992). Tropical cyclogenesis in the western North Pacific. NOAA Technical Report NESDIS 61, 181 pp. https://repository.library.noaa.gov/view/noaa/13116/noaa_13116_DS1.pdf
  • Zhang, D. (2013). A syllogism of China's “Meteorological record over the past 3000 years”. Jiangsu Education Press (in Chinese).
  • Zhang, F., Tao, D., Sun, Y. Q., & Kepert, J. D. (2017). Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. Journal of Advances in Modeling Earth Systems, 9(1), 89–112. https://doi.org/10.1002/2016MS000729
  • Zhang, J. A., Black, P., French, J., & Drennan, W. (2008). First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophysical Research Letters, 35(14), L14813. https://doi.org/10.1029/2008GL034374
  • Zhang, J. A., & Drennan, W. (2012). An observational study of vertical eddy diffusivity in the hurricane boundary layer. Journal of the Atmospheric Sciences, 69(11), 3223–3236. https://doi.org/10.1175/JAS-D-11-0348.1
  • Zhang, J. A., Drennan, W., Black, P., & French, J. (2009). Turbulence structure of the hurricane boundary layer between the outer rainbands. Journal of the Atmospheric Sciences, 66(8), 2455–2467. https://doi.org/10.1175/2009JAS2954.1
  • Zhang, J. A., Katsaros, K. B., Black, P. G., Lehner, S., French, J. R., & Drennan, W. M. (2008). Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Boundary-Layer Meteorology, 128(2), 173–189. https://doi.org/10.1007/s10546-008-9281-2
  • Zhang, J. A., Marks, F., Montgomery, M., & Lorsolo, S. (2011). An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Monthly Weather Review, 139(5), 1447–1462. https://doi.org/10.1175/2010MWR3435.1
  • Zhang, J. A., Rogers, R. F., Reasor, P., Uhlhorn, E., & Marks, F. D. (2013). Asymmetric hurricane boundary layer structure from drop-sonde composites in relation to the environmental vertical wind shear. Monthly Weather Review, 141(11), 3968–3984. https://doi.org/10.1175/MWR-D-12-00335.1
  • Zhang, J. A., Rogers, R., Nolan, D., & Marks, F., Jr. (2011). On the characteristic height scales of the hurricane boundary layer. Monthly Weather Review, 139(8), 2523–2535. https://doi.org/10.1175/MWR-D-10-05017.1
  • Zhang, J. A., & Uhlhorn, E. (2012). Hurricane sea surface inflow angle and an observation-based parametric model. Monthly Weather Review, 140(11), 3587–3605. https://doi.org/10.1175/MWR-D-11-00339.1
  • Zhang, R., & Delworth, T. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33(17), L17712. https://doi.org/10.1029/2006GL026267
  • Zhang, W., Vecchi, G. A., Murakami, H., Villarini, G., Delworth, T. L., Yang, X., & Jia, L. (2018). Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL076397
  • Zhao, K., Lin, Q., Lee, W., Sun, Y., & Zhang, F. (2016). Doppler radar analysis of triple eyewalls in Typhoon Usagi (2013). Bulletin of the American Meteorological Society, 97(1), 25–30. https://doi.org/10.1175/BAMS-D-15-00029.1
  • Zhong, W., Zhang, D.-L., & Lu, H.-C. (2009). A theory for mixed vortex Rossby-gravity waves in tropical cyclones. Journal of the Atmospheric Sciences, 66(11), 3366–3381. https://doi.org/10.1175/2009JAS3060.1
  • Zhou, X., Liu, Z., Yan, Q., Zhang, X., Yi, L., Yang, W., Xiang, R., He, Y., Hu, B., Liu, Y., & Shen, Y. (2019). Enhanced tropical cyclone intensity in the western North Pacific during warm periods over the last two millennia. Geophysical Research Letters. https://doi.org/10.1029/2019GL083504
  • Zhu, X., & Yu, H. (2020). Environmental influences on the intensity and configuration of tropical cyclone concentric eyewalls in the western north Pacific. Journal of the Meteorological Society of Japan, 97(1), 153–173. https://doi.org/10.2151/jmsj.2019-008
  • Zipser, E. J. (1977). Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Monthly Weather Review, 105(12), 1568–1589. https://doi.org/10.1175/1520-0493(1977)1051568:MACDAD>2.0.CO;2
  • Zong, H., & Wu, L. (2015a). Re-examination of tropical cyclone formation in monsoon troughs over the western North Pacific. Advances in Atmospheric Sciences, 32(7), 924–934. https://doi.org/10.1007/s00376-014-4115-2
  • Zong, H., & Wu, L. (2015b). Synoptic-scale influences on tropical cyclone formation within the western North Pacific monsoon trough. Monthly Weather Review, 143(9), 3421–3433. https://doi.org/10.1175/MWR-D-14-00321.1
  • Zou, X., & Wu, Y. (2005). On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes. Journal of Geophysical Research: Atmospheres, 110, D06109. https://doi.org/10.1029/2004JD005019