411
Views
0
CrossRef citations to date
0
Altmetric
Fundamental Research / Recherche fondamentale

Seasonal Predictions of Regional and Pan-Antarctic Sea Ice With a Dynamical Forecast System

, , &
Pages 273-292 | Received 04 Nov 2022, Accepted 18 Aug 2023, Published online: 05 Sep 2023

References

  • Behringer, D. W., Ji, M., & Leetmaa, A. (1998). An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Monthly Weather Review, 126(4), 1013–1021. https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2
  • Blockley, E. W., & Peterson, K. A. (2018). Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. The Cryosphere, 12(11), 3419–3438. https://doi.org/10.5194/tc-12-3419-2018
  • Bonan, D. B., Bushuk, M., & Winton, M. (2019). A spring barrier for regional predictions of summer Arctic sea ice. Geophysical Research Letters, 46(11), 5937–5947. https://doi.org/10.1029/2019GL082947
  • Buehner, M., McTaggart-Cowan, R., Beaulne, A., Charette, C., Garand, L., Heilliette, S., Lapalme, E., Laroche, S., Macpherson, S. R., Morneau, J., & Zadra, A. (2015). Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at environment Canada. Part I: The global system. Monthly Weather Review, 143(7), 2532–2559. https://doi.org/10.1175/MWR-D-14-00354.1
  • Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A., & Gudgel, R. (2018). Regional Arctic sea–ice prediction: Potential versus operational seasonal forecast skill. Climate Dynamics, 52(5–6), 2721–2743. https://doi.org/10.1007/s00382-018-4288-y
  • Bushuk, M., Winton, M., Bonan, D. B., Blanchard-Wrigglesworth, E., & Delworth, T. L. (2020). A mechanism for the Arctic sea ice spring predictability Barrier. Geophysical Research Letters, 47(13). https://doi.org/10.1029/2020GL088335
  • Bushuk, M., Winton, M., Haumann, F. A., Delworth, T., Lu, F., Zhang, Y., Jia, L., Zhang, L., Cooke, W., Harrison, M., Hurlin, B., Johnson, N. C., Kapnick, S. B., McHugh, C., Murakami, H., Rosati, A., Tseng, K.-C., A. T. Wittenberg, Yang, X., & Zeng, F. (2021). Seasonal prediction and predictability of regional Antarctic sea ice. Journal of Climate, 34(15), 6207–6233. https://doi.org/10.1175/JCLI-D-20-0965.1
  • Cavanagh, R. D., Melbourne-Thomas, J., Grant, S. M., Barnes, D. K. A., Hughes, K. A., Halfter, S., Meredith, M. P., Murphy, E. J., Trebilco, R., & Hill, S. (2021). Future risk for Southern Ocean ecosystem services under climate change. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.615214
  • Chen, D., & Yuan, X. (2004). A Markov model for seasonal forecast of Antarctic sea ice. Journal of Climate, 17(16), 3156–3168. https://doi.org/10.1175/1520-0442(2004)017<3156:AMMFSF>2.0.CO;2
  • Day, J. J., Hawkins, E., & Tietsche, S. (2014). Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophysical Research Letters, 41(21), 7566–7575. https://doi.org/10.1002/2014GL061694
  • Dirkson, A., Denis, B., Sigmond, M., & Merryfield, W. J. (2021). Development and calibration of seasonal probabilistic forecasts of ice-free dates and freeze-up dates. Weather and Forecasting, 36(1), 301–324. https://doi.org/10.1175/WAF-D-20-0066.1
  • Dirkson, A., Merryfield, W. J., & Monahan, A. (2017). Impacts of sea ice thickness initialization on seasonal Arctic sea ice predictions. Journal of Climate, 30(3), 1001–1017. https://doi.org/10.1175/JCLI-D-16-0437.1
  • Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., & Chereskin, T. K. (2016). Mean Antarctic circumpolar current transport measured in Drake Passage. Geophysical Research Letters, 43(22), 11760–11767. https://doi.org/10.1002/2016GL070319
  • Flato, G. M., & Hibler, W. (1992). Modeling pack ice as a cavitating fluid. Journal of Physical Oceanography, 22(6), 626–651. https://doi.org/10.1175/1520-0485(1992)022<0626:MPIAAC>2.0.CO;2
  • Graham, R. M., Itkin, P., Meyer, A., Sundfjord, A., Spreen, G., Smedsrud, L. H., G. E. Liston, Cheng, B., Cohen, L., Divine, D., Fer, I., Fransson, A., Gerland, S., Haapala, J., Hudson, S. R., Johansson, A. M., King, J., Merkouriadi, I., Peterson, A. K., …Granskog, M. A. (2019). Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Scientific Reports, 9(1), 9222. https://doi.org/10.1038/s41598-019-45574-5
  • Grant, S. M., Hill, S. L., Trathan, P. N., & Murphy, E. J. (2013). Ecosystem services of the Southern Ocean: Trade-offs in decision-making. Antarctic Science, 25(5), 603–617. https://doi.org/10.1017/S0954102013000308
  • Holland, M. M., Blanchard-Wrigglesworth, E., Kay, J., & Vavrus, S. (2013). Initial-value predictability of Antarctic sea ice in the Community Climate System Model 3. Geophysical Research Letters, 40(10), 2121–2124. https://doi.org/10.1002/grl.50410
  • Holland, M. M., Landrum, L., Bailey, D., & Vavrus, S. (2019). Changing seasonal predictability of Arctic summer sea ice area in a warming climate. Journal of Climate, 32(16), 4963–4979. https://doi.org/10.1175/JCLI-D-19-0034.1
  • Holland, M. M., Landrum, L., Raphael, M., & Stammerjohn, S. (2017). Springtime winds drive Ross Sea ice variability and change in the following autumn. Nature Communications, 8(1), 731–738. https://doi.org/10.1038/s41467-017-00820-0
  • Holland, P. R., & Kwok, R. (2012). Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5(12), 872–875. https://doi.org/10.1038/ngeo1627
  • Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., & Phillips, T. (2013). The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. Journal of Climate, 26(17), 6633–6648. https://doi.org/10.1175/JCLI-D-12-00813.1
  • Hunke, E., & Lipscomb, W. (2010). CICE: The Los Alamos sea ice model documentation and software user's manual version 4.1 LA-CC-06-012 (Technical Report). LA-CC-06-012.
  • Kacimi, S., & Kwok, R. (2020). The Antarctic sea ice cover from ICESat-2 and CryoSat-2: Freeboard, snow depth, and ice thickness. The Cryosphere, 14(12), 4453–4474. https://doi.org/10.5194/tc-14-4453-2020
  • Kohout, A. L., Williams, M. J. M., Dean, S. M., & Meylan, M. H. (2014). Storm-induced sea-ice breakup and the implications for ice extent. Nature (London), 509(7502), 604–607. https://doi.org/10.1038/nature13262
  • Libera, S., Hobbs, W., Klocker, A., Meyer, A., & Matear, R. (2022). Ocean-sea ice processes and their role in multi-month predictability of Antarctic sea ice. Geophysical Research Letters, 49(8), e2021GL097047. https://doi.org/10.1029/2021GL097047
  • Lin, H., Gagnon, N., Beauregard, S., Muncaster, R., Markovic, M., Denis, B., & Charron, M. (2016). GEPS-based monthly prediction at the Canadian Meteorological Centre. Monthly Weather Review, 144(12), 4867–4883. https://doi.org/10.1175/MWR-D-16-0138.1
  • Lin, H., Merryfield, W. J., Muncaster, R., Smith, G. C., Markovic, M., Dupont, F., Roy, F., Lemieux, J.-F., Dirkson, A., Kharin, V. V., Lee, W.-S., Charron, M., & Erfani, A. (2020). The Canadian seasonal to interannual prediction system version 2 (CanSIPSv2). Weather and Forecasting, 35(4), 1317–1343. https://doi.org/10.1175/WAF-D-19-0259.1
  • Maksym, T. (2019). Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annual Review of Marine Science, 11(1), 187–213. https://doi.org/10.1146/annurev-marine-010816-060610
  • Marchi, S., Fichefet, T., & Goosse, H. (2020). Respective influences of perturbed atmospheric and ocean-sea ice initial conditions on the skill of seasonal Antarctic sea ice predictions: A study with NEMO3.6-LIM3. Ocean Modelling (Oxford), 148, 101591. https://doi.org/10.1016/j.ocemod.2020.101591
  • Marchi, S., Fichefet, T., Goosse, H., Zunz, V., Tietsche, S., Day, J. J., & Hawkins, E. (2018). Reemergence of Antarctic sea ice predictability and its link to deep ocean mixing in global climate models. Climate Dynamics, 52(5-6), 2775–2797. https://doi.org/10.1007/s00382-018-4292-2
  • Martin, J. Z., Sigmond, M., & Monahan, A. (2022). Improved seasonal forecast skill of Arctic sea ice in CanSIPS version 2. Weather and Forecasting.
  • Martinson, D. G. (2012). Antarctic circumpolar current's role in the Antarctic ice system: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 335-336, 71–74. https://doi.org/10.1016/j.palaeo.2011.04.007
  • Massonnet, F., Barreira, S., Barthélemy, A., Bilbao, R., Blanchard-Wrigglesworth, E., Blockley, E., Bromwich, D. H., Bushuk, M., Dong, X., Goessling, H. F., Hobbs, W., Iovino, D., Lee, W.-S., Li, C., Meier, W. N., Merryfield, W. J., Moreno-Chamarro, E., Morioka, Y., Li, X., …Yuan, X. (2023). SIPN South: Six years of coordinated seasonal Antarctic sea ice predictions. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1148899
  • Massonnet, F., Reid, P., Lieser, J. L., Bitz, C. M., Fyfe, J., & Hobbs, W. (2018). Assessment of February 2018 sea-ice forecasts for the Southern Ocean (Technical Report). University of Tasmania. https://doi.org/10.4226/77/5b343caab0498
  • Massonnet, F., Reid, P., Lieser, J. L., Bitz, C. M., Fyfe, J., & Hobbs, W. (2019). Assessment of summer 2018–2019 sea-ice forecasts for the Southern Ocean (Technical Report). University of Tasmania. https://doi.org/10.25959/100.00029984
  • Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A.Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., & Schuur, E. A. G. (2019). Polar regions. Chapter 3, IPCC special report on the ocean and cryosphere in a changing climate. https://doi.org/10.1017/9781009157964.005
  • Merryfield, W. J., Lee, W. S., Boer, G. J., Kharin, V. V., Scinocca, J. F., Flato, G. M., Ajayamohan, R. S., Fyfe, J. C., Tang, Y., & Polavarapu, S. (2013). The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Monthly Weather Review, 141(8), 2910–2945. https://doi.org/10.1175/MWR-D-12-00216.1
  • Morioka, Y., Iovino, D., Cipollone, A., Masina, S., & Behera, S. K. (2021). Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization. Scientific Reports, 11(1), 11475–11475. https://doi.org/10.1038/s41598-021-91042-4
  • Mulholland, D. P., Laloyaux, P., Haines, K., & M. A. Balmaseda (2015). Origin and impact of initialization shocks in coupled atmosphere-ocean forecasts. Monthly Weather Review, 143(11), 4631–4644. https://doi.org/10.1175/MWR-D-15-0076.1
  • Parkinson, C. L. (2019). A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences – PNAS, 116(29), 14414–14423. https://doi.org/10.1073/pnas.1906556116
  • Pehlke, H., Brey, T., Konijnenberg, R., & Teschke, K. (2022). A tool to evaluate accessibility due to sea-ice cover: A case study of the Weddell Sea, Antarctica. Antarctic Science, 34(1), 97–104. https://doi.org/10.1017/S0954102021000523
  • Perovich, D. K., & Polashenski, C. (2012). Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters, 39(8). https://doi.org/10.1029/2012GL051432
  • Pertierra, L., Santos-Martin, F., Hughes, K. A., Avila, C., Caceres, J. O., De Filippo, D., Gonzalez, S., Grant, S. M., Lynch, H., Marina-Montes, C., Quesada, A., Tejedo, P., Tin, T., & Benayas, J. (2021). Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities. Ecosystem Services, 49, 101299. https://doi.org/10.1016/j.ecoser.2021.101299
  • Reiss, C. S., Cossio, A., Santora, J. A., Dietrich, K. S., Murray, A., Mitchell, B. G., Walsh, J., Weiss, E. L., Gimpel, C., Jones, C. D., & Watters, G. M. (2017). Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: Implications for top predators and fishery management. Marine Ecology. Progress Series (Halstenbek), 568, 1–16. https://doi.org/10.3354/meps12099
  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  • Roemmich, D., Riser, S., Davis, R., & Desaubies, Y. (2004). Autonomous profiling floats: Workhorse for broad-scale ocean observations. Marine Technology Society Journal, 38(2), 21–29. https://doi.org/10.4031/002533204787522802
  • Sigmond, M., Fyfe, J. C., Flato, G. M., Kharin, V. V., & Merryfield, W. J. (2013). Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophysical Research Letters, 40(3), 529–534. https://doi.org/10.1002/grl.50129
  • Smith, G. C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D., Belanger, J.-M., Skachko, S., Liu, Y., Dupont, F., Lemieux, J.-F., Beaudoin, C., Tranchant, B., Drévillon, M., Garric, G., Testut, C.-E., Lellouche, J.-M., Pellerin, P., Ritchie, H., …Lajoie, M. (2016). Sea ice forecast verification in the Canadian global ice ocean prediction system. Quarterly Journal of the Royal Meteorological Society, 142(695), 659–671. https://doi.org/10.1002/qj.2555
  • Smith, T. M., & Reynolds, R. W. (2004). Improved extended reconstruction of SST (1854–1997). Journal of Climate, 17(12), 2466–2477. https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2
  • Smith Jr, W. O., & Comiso, J. C. (2008). Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. Journal of Geophysical Research, 113(C5), C05S93-n/a. https://doi.org/10.1029/2007JC004251
  • Steele, M., & Boyd, T. (1998). Retreat of the cold halocline layer in the Arctic Ocean. Journal of Geophysical Research: Oceans, 103(C5), 10419–10435. https://doi.org/10.1029/98JC00580
  • Steele, M., Morley, R., & Ermold, W. (2001). PHC: A global ocean hydrography with a high-quality Arctic Ocean. Journal of Climate, 14(9), 2079–2087. https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
  • Steiner, N. S., Bowman, J., Campbell, K., Chierici, M., Eronen-Rasimus, E., Falardeau, M., Flores, H., Fransson, A., Herr, H., Insley, S. J., Kauko, H. M., Lannuzel, D., Loseto, L., Lynnes, A., Majewski, A., Meiners, K. M., Miller, L. A., L. N. Michel, Moreau, S., …Wongpan, P. (2021, October). Climate change impacts on sea-ice ecosystems and associated ecosystem services. Elementa: Science of the Anthropocene, 9(1), 00007. https://doi.org/10.1525/elementa.2021.00007
  • Titchner, H. A., & Rayner, N. A. (2014). The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. Journal of Geophysical Research: Atmospheres, 119(6), 2864–2889. https://doi.org/10.1002/2013JD020316
  • Tivy, A., Howell, S. E. L., Alt, B., McCourt, S., Chagnon, R., Crocker, G., Carrieres, T., & Yackel, J. J. (2011). Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive, 1960–2008 and 1968–2008. Journal of Geophysical Research, 116(C3). https://doi.org/10.1029/2009JC005855
  • Uotila, P., Goosse, H., Haines, K., Chevallier, M., Barthélemy, A., Bricaud, C., Carton, J., Fuckar, N., Garric, G., Iovino, D., Kauker, F., Korhonen, M., Lien, V. S., Marnela, M., Massonnet, F., Mignac, D., Peterson, K. A., Sadikni, R., Shi, L., …Zhang, Z. (2019). An assessment of ten ocean reanalyses in the polar regions. Climate Dynamics, 52(3-4), 1613–1650. https://doi.org/10.1007/s00382-018-4242-z
  • Uotila, P., Vihma, T., Pezza, A. B., Simmonds, I., Keay, K., & Lynch, A. H. (2011). Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. Journal of Geophysical Research, 116(D7). https://doi.org/10.1029/2010JD015358
  • Valkonen, E., Cassano, J., & Cassano, E. (2021). Arctic cyclones and their interactions with the declining sea ice: A recent climatology. Journal of Geophysical Research: Atmospheres, 126(12). https://doi.org/10.1029/2020JD034366
  • Zampieri, L., Goessling, H. F., & Jung, T. (2019). Predictability of Antarctic sea ice edge on subseasonal time scales. Geophysical Research Letters, 46(16), 9719–9727. https://doi.org/10.1029/2019GL084096
  • Zhang, Y. F., Bushuk, M., Winton, M., Hurlin, B., Delworth, T., Harrison, M., Jia, L., Lu, F., Rosati, A., & Yang, X. (2022). Subseasonal-to-seasonal Arctic sea ice forecast skill improvement from sea ice concentration assimilation. Journal of Climate, 35(13), 4233–4252. https://doi.org/10.1175/JCLI-D-21-0548.1
  • Zhang, Y. F., Bushuk, M., Winton, M., Hurlin, B., Yang, X., Delworth, T., & Jia, L. (2021). Assimilation of satellite-retrieved sea ice concentration and prospects for September predictions of Arctic sea ice. Journal of Climate, 34(6), 2107–2126. https://doi.org/10.1175/JCLI-D-20-0469.1
  • Zuo, H., Balmaseda, M. A., & Mogensen, K. (2017). The new eddy-permitting ORAP5 ocean reanalysis: Description, evaluation and uncertainties in climate signals. Climate Dynamics, 49(3), 791–811. https://doi.org/10.1007/s00382-015-2675-1