374
Views
3
CrossRef citations to date
0
Altmetric
Host-pathogen interactions/Interactions hôte-pathogène

Physalis peruviana responses to Phytophthora infestans are typical of an incompatible interaction

, , , , , , , & show all
Pages 106-117 | Accepted 06 Oct 2014, Published online: 17 Nov 2014

References

  • Adam L, Somerville SC. 1996. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J. 9:341–356. doi:10.1046/j.1365-313X.1996.09030341.x
  • Adler NE, Erselius LJ, Chacón MG, Flier WG, Ordoñez ME, Kroon LP, Forbes GA. 2004. Genetic diversity of Phytophthora infestans sensu lato in Ecuador provides new insight into the origin of this important plant pathogen. Phytopathology. 94:154–162. doi:10.1094/PHYTO.2004.94.2.154
  • Andrivon D, Avendaño-Córcoles J, Cameron AM, Carnegie SF, Cooke LR, Corbière R, Detourné D, Dowley LJ, Evans D, Forisekova K, et al.. 2011. Stability and variability of virulence of Phytophthora infestans assessed in a ring test across European laboratories. Plant Pathol. 60:556–565. doi:10.1111/j.1365-3059.2010.02392.x
  • Becktell MC, Smart CD, Haney CH, Fry WE. 2006. Host-pathogen interactions between Phytophthora infestans and the solanaceous hosts Calibrachoa x hybridus, Petunia x hybrida and Nicotiana benthamiana. Plant Dis. 90:24–32. doi:10.1094/PD-90-0024
  • Bonilla ML, Espinosa K, Posso AM, Vásquez HD, Muñoz JE. 2008. Morphological characterization of 24 accessions of cape gooseberry from the national university campus Palmira’s gemplasm bank. Acta Agron. 57:101–108.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Cárdenas ME, Medina E, Tabima J, Vargas A, Lopera C, Bernal A, Restrepo S. 2011. First report of Phytophthora infestans causing late blight on Solanum viarum in Colombia. Plant Dis. 95:875. doi:10.1094/PDIS-11-10-0853
  • Caten CE, Jinks JL. 1968. Spontaneous variability of single isolates of Phytophthora infestans. I. Cultural variation. Can J Bot. 46:329–348. doi:10.1139/b68-055
  • Chacón MG, Adler NE, Jarrin F, Flier WG, Gessler C, Forbes GA. 2006. Genetic structure of the population of Phytophthora infestans attacking Solanum ochranthum in the highlands of Ecuador. Eur J Plant Pathol. 115:235–245. doi:10.1007/s10658-006-9012-9
  • Chen C-Q, Huang -L-L, Buchenauer H, Zhao H-Y, Zuo Y-H, Kang Z-S. 2009. Diversity among single zoospores isolates derived from single-zoosporangia of Phytophthora sojae Kauf. and Gerd. J Phytopathol. 157:181–187. doi:10.1111/j.1439-0434.2008.01462.x
  • Colon IT, Eijlander R, Budding DJ, Ijzendoorn MT, Pieters MMJ, Hoogendoorn J. 1993. Resistance to potato late blight (Phytophthora infestans (Mont.) de Bary) in Solanum nigrum, S. villosum and their sexual hybrids with S. tuberosum and S. demissum. Euphytica. 66:55–64. doi:10.1007/BF00023508
  • Espinosa K, Bonilla ML, Muñoz JE, Posso AM, Vásquez HD. 2004. Colección, caracterización fenotípica y molecular de poblaciones de uchuva Physalis peruviana. Facultad de ciencias agropecuarias. 2:72–78.
  • Fry W. 2007. The canon of potato science: 10. Late blight and early blight. Potato Res. 50:243–245. doi:10.1007/s11540-008-9046-9
  • Fry W. 2008. Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol. 9:385–402. doi:10.1111/j.1364-3703.2007.00465.x
  • Goodwin SB, Sujkowski LS, Fry WE. 1995. Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytopathology. 85:669–676. doi:10.1094/Phyto-85-669
  • Herrera AM, Fischer G, Chacón MG. 2012. Agronomical evaluation of cape gooseberries (Physalis peruviana l.) from central and North-Eastern Colombia. Agronomía Colombiana. 30:15–24.
  • Iglesias VA, Meins Jr F. 2000. Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J. 21:157–166. doi:10.1046/j.1365-313x.2000.00658.x
  • Jinks JL, Grindle M. 1963. Changes induced by training in Phytophthora infestans. Heredity. 18:245–264. doi:10.1038/hdy.1963.29
  • Joseph L, Koon T, Man WS. 1998. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species. Botany. 76:2119–2124.
  • Kim YJ, Hwang BK. 1997. Isolation of a basic 34 kilodalton β-1,3-glucanase with inhibitory activity against Phytophthora capsici from pepper stems. Physiol Mol Plant Pathol. 50:103–115. doi:10.1006/pmpp.1996.0073
  • Liu DQ, He X, Li WX, Chen CY, Ge F. 2013. A β-1,3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. Eur J Plant Pathol. 135:265–277. doi:10.1007/s10658-012-0083-5
  • Małolepsza U. 2006. Induction of disease resistance by acibenzolar-s-methyl and o-hydroxyethylorutin against Botrytis cinerea in tomato plants. Crop Prot. 25:956–962. doi:10.1016/j.cropro.2005.12.009
  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. 2003. Gene expression analysis of plant host-pathogen interactions by Supersage. Proc Natl Acad Sci USA. 100:15718–15723. doi:10.1073/pnas.2536670100
  • Novoa RH, Bojacá M, Galvis JA, Fischer G. 2006. La madurez del fruto y el secado del cáliz influyen en el comportamiento poscosecha de la uchuva (Physalis peruviana) almacenada a 12°C. Agronomía Colombiana. 24:77–86.
  • Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. 2013. A novel role of pr2 in abscisic acid (aba) mediated, pathogen induced callose deposition in Arabidopsis thaliana. New Phytol. 200:1187–1199. doi:10.1111/nph.12436
  • Orozco-Cardenas M, Ryan CA. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA. 96:6553–6557. doi:10.1073/pnas.96.11.6553
  • Peng JLM, Koon TT, Man WS. 1998. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species. Can J Bot. 76:2119–2124.
  • Peng M, Kuc J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology. 82:696–699. doi:10.1094/Phyto-82-696
  • Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acids Res. 30:36e–36. doi:10.1093/nar/30.9.e36
  • R development core team. 2008. R: A language and environment for statistical computing. r foundation for statistical computing. Vienna, Austria: Institute for Statistics and Mathematics of WU (Wirtschaftsuniversität Wien). ISBN 3-900051-07-0, url http://www.r-project.org.).
  • Reddick D, Crosier W. 1933. Biological specialization in Phytophthora infestans. Am Pot J. 10:129–134. doi:10.1007/BF02884488
  • Restrepo S, Myers K, Del Pozo O, Martin GB, Hart AL, Buell CR, Fry WE, Smart CD. 2005. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol Plant-Microbe Interact. 18:913–922. doi:10.1094/MPMI-18-0913
  • Rozen S, Skaletsky H. 2000. Primer3 on the www for general users and for biologist programmers. Meth Mol Biol. 132:365–386.
  • Runno-Paurson E, Fry WE, Remmel T, Mänd M, Myers KL. 2010. Phenotypic and genotypic characterization of Estonian isolates of Phytophthora infestans in 2004-2007. J Plant Pathol. 92:375–384.
  • Samen A-E, Secor GA, Gudmestad NC. 2003. Variability in virulence among asexual progenies of Phytophthora infestans. Phytopathology. 93:293–304. doi:10.1094/PHYTO.2003.93.3.293
  • Scharte J, Schon H, Weis E. 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 28:1421–1435. doi:10.1111/j.1365-3040.2005.01380.x
  • Schnabel G, Strittmatter G, Noga G. 1998. Changes in photosynthetic electron transport in potato cultivars with different field resistance after infection with Phytophthora infestans. J Phytopathol. 146:205–210. doi:10.1111/j.1439-0434.1998.tb04681.x
  • Schroder M, Hahlbrock K, Kombrink E. 1992. Temporal and spatial patterns of 1, 3-beta-glucanase and chitinase induction in potato leaves infected by Phytophthora infestans. Plant J. 2:161–172. doi:10.1111/j.1365-313X.1992.00161.x
  • Slaymaker DH, Navarre DA, Clark D, Del Pozo O, Martin GB, Klessig DF. 2002. The tobacco salicylic acid-binding protein 3 (sabp3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA. 99:11640–11645. doi:10.1073/pnas.182427699
  • Smart CD, Myers KL, Restrepo S, Martin GB, Fry WE. 2003. Partial resistance of tomato to Phytophthora infestans is not dependent upon ethylene, jasmonic acid, or salicylic acid signaling pathways. Mol Plant-Microbe Interact. 16:141–148. doi:10.1094/MPMI.2003.16.2.141
  • Smart CD, Willmann MR, Mayton H, Mizubuti ESG, Sandrock RW, Muldoon AE, Fry WE. 1998. Self-fertility in two clonal lineages of Phytophthora infestans. Fungal Genet Biol. 25:134–142. doi:10.1006/fgbi.1998.1099
  • Thangavelu R, Palaniswami A, Doraiswamy S, Velazhahan R. 2003. The effect of Pseudomonas fluorescens and Fusarium oxysporum f. sp. cubense on induction of defense enzymes and phenolics in banana. Biol Plant. 46:107–112. doi:10.1023/A:1022374520121
  • Torres M, Dangl J. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol. 8:397–403. doi:10.1016/j.pbi.2005.05.014
  • Vargas AM, Correa A, Lozano DC, González A, Bernal AJ, Restrepo S. 2007. First report of late blight caused by Phytophthora infestans on Cape gooseberry (Physalis peruviana) in Colombia. Plant Dis. 91:464. doi:10.1094/PDIS-91-4-0464B
  • Vargas AM, Quesada Ocampo LM, Céspedes MC, Carreño N, González A, Rojas A, Zuluaga AP, Myers K, Fry WE, Jiménez P, et al. 2009. Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type. Phytopathology. 99:82–88. doi:10.1094/PHYTO-99-1-0082
  • Vleeshouwers VGA, Van Dooijeweert W, Govers F, Kamoun S, Colon LT. 2000. The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta. 210:853–864. doi:10.1007/s004250050690
  • Voigt CA, Somerville SC. 2009. Callose in biotic stress (pathogenesis): biology, biochemistry and molecular biology of callose in plant defence: Callose deposition and turnover in plant–pathogen interactions. In: Bacic A, Fincher GB, Stone BA, editors. Chemistry, biochemistry, and biology of 1-3 beta glucans and related polysaccharides. London, NY: Academic Press.
  • Wilson UE, Coffey MD. 1980. Cytological evaluation of general resistance to Phytophthora infestans in potato foliage. Ann Bot. 45:81–90.
  • Wojtaszek P. 1997. Oxidative burst: An early plant response to pathogen infection. Biochem J. 322:681–692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.