519
Views
1
CrossRef citations to date
0
Altmetric
Symposium contribution/Contribution à un symposium

Plant pathogenic oomycetes: counterbalancing resistance, susceptibility and adaptation

&
Pages 31-40 | Accepted 29 Jan 2016, Published online: 02 Mar 2016

References

  • Adhikari BN, Savory EA, Vaillancourt B, Childs KL, Hamilton JP, Day B, Buell CR. 2012. Expression profiling of Cucumis sativus in response to infection by Pseudoperonospora cubensis. PLoS ONE. 7:e34954.
  • Ali A, Alexandersson E, Sandin M, Resj S, Lenman M, Hedley P, Levander F, Andreasson E. 2014. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans incompatible and incompatible interactions. BMC Gen. 15:1–18.
  • Asai S, Rallapalli G, Piquerez SJM, Caillaud M-C, Furzer OJ, Ishaque N, Wirthmueller L, Fabro G, Shirasu K, Jones JDG. 2014. Expression profiling during Arabidopsis/downy mildew interaction reveals a highly-expressed effector that attenuates responses to salicylic acid. PLoS Pathog. 10:e1004443.
  • Axtell MJ. 2013. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 64:137–159.
  • Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, et al. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science. 330:1549–1551.
  • Berkeley MJ, Curtis MA. 1868. Peronospora cubensis. Bot J Linn Soc. 10:363.
  • Boer den E, Pelgrom KTB, Zhang NW, Visser RGF, Niks RE, Jeuken MJW. 2014. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up. Theor Appl Genet. 127:1805–1816.
  • Boer den E, Zhang NW, Pelgrom K, Visser RGF, Niks RE, Jeuken MJW. 2013. Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theor Appl Genet. 126:2995–3007.
  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I. 2013. Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol. 13:31.
  • Buermans HPJ, Dunnen den JT. 2014. Biochimica et Biophysica Acta. BBA - Mol Basis Disease. 1842:1932–1941.
  • Burkhardt A, Buchanan A, Cumbie JS, Savory EA, Chang JH, Day B. 2015. Alternative splicing in the obligate biotrophic oomycete pathogen Pseudoperonospora cubensis. Mol Plant Microbe Interact. 28:298–309.
  • Burkhardt A, Day B. 2016. Transcriptome and Small RNAome Dynamics during a Resistant and Susceptible Interaction between Cucumber and Downy Mildew. Plant Genome. 9:1–19.
  • Burki F, Okamoto N, Pombert J-F, Keeling PJ. 2012. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci. 279:2246–2254.
  • Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G. 2011. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS ONE. 6:e19328.
  • Call AD, Criswell AD, Wehner TC, Ando K, Grumet R. 2012a. Resistance of cucumber cultivars to a new strain of cucurbit downy mildew. HortScience. 47:171–178.
  • Call AD, Criswell AD, Wehner TC, Klosinska U, Kozik EU. 2012b. Screening cucumber for resistance to downy mildew caused by (Berk. and Curt.). Rostov Crop Sci. 0:1.
  • Chen XR, Xing YP, Li YP, Tong YH, Xu JY. 2013. RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici. PLoS ONE. 8:e74588.
  • Chisholm S, Coaker G, Day B, Staskawicz BJ. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 124:803–814.
  • Coates ME, Beynon JL. 2010. Hyaloperonospora arabidopsidis as a pathogen model. Annu Rev Phytopathol. 48:329–345.
  • Cohen Y, Van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U. 2015. Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology. 105:998–1012.
  • Costanzo S, Ospina-Giraldo MD, Deahl KL, Baker CJ, Jones RW. 2007. Alternate intron processing of family 5 endoglucanase transcripts from the genus Phytophthora. Curr Genet. 52:115–123.
  • Dangl JL, Horvath DM, Staskawicz BJ. 2013. Pivoting the plant immune system from dissection to deployment. Science. 341:746–751.
  • Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature. 411:826–833.
  • Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. 2014. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies. Front Plant Sci. 5:1–18.
  • Derevnina L, Reyes-Chin Wo S, Martin F, Wood K, Froenicke L, Spring O, Michelmore RW. 2015. Genome sequence and architecture of the tobacco downy mildew pathogen, Peronospora tabacina. Mol Plant Microbe Interact. 28:1198–1215.
  • Feussner I, Polle A. 2015. What the transcriptome does not tell - proteomics and metabolomics are closer to the plants’ patho-phenotype. Curr Opin Plant Biol. 26:26–31.
  • Flor HH. 1955. Host-parasite interaction in flax rust - its genetics and other implications. Phytopathology. 45:680–685.
  • Gao D, Appiano M, Huibers RP, Chen X, Loonen AE, Visser RG, Wolters AM, Bai Y. 2014. Activation tagging of ATHB13 in Arabidopsis thaliana confers broad-spectrum disease resistance. Plant Mol Biol. 86:641–653.
  • Göker M, Voglmayr H, Riethmüller A, Oberwinkler F. 2007. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fun Gen Biol. 44:105–122.
  • Gunnaiah R, Kushalappa AC. 2014. Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiol Biochem. 83:40–50.
  • Guttman DS, McHardy AC, Schulze-Lefert P. 2014. Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet. 15:797–813.
  • Gyetvai G, Sonderkaer M, Gobel U, Basekow R, Ballvora A, Imhoff M, Kersetn B, Nielsen K-L, Gebhardt C. 2012. The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS ONE. doi:10.1371/journal.pone.0031526
  • Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature. 461:393–398.
  • Hale IL, Broders K, Iriarte G. 2014. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity. Front Plant Sci. 5:492.
  • Hammerschmidt R. 1999. Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol. 37:285–306.
  • Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS. 2013. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 197:805–814.
  • Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabieres F, Attard A, Ris N, Clement M, Barlet X, et al. 2014. The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiol. 166:1506–1518.
  • Hok S, Danchin EG, Allasia V, Panabieres F, Attard A, Keller H. 2011. An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ. 34:1944–1957.
  • Holmes GJ, Wehner TC, Thornton A. 2006. An old enemy re-emerges. Disease Manag. 2:14–15.
  • Hu J, Sun L, Zhu Z, Zheng Y, Xiong W, Ding Y. 2014. Characterization of conserved microRNAs from five different cucurbit species using computational and experimental analysis. Biochimie. 102:137–144.
  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni Y, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature. 41:1275–1281.
  • Jin W, Wu F. 2015. Identification and characterization of cucumber microRNAs in response to Pseudoperonospora cubensis infection. Gene. 569:225–232.
  • Jones J, Dangl JL. 2006. The plant immune system. Nature. 444:323–329.
  • Judelson HS. 2012. Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. Eukaryot Cell. 11:1304–1312.
  • Kanetis L, Holmes GJ, Ojiambo PS. 2010. Survival of Pseudoperonospora cubensis sporangia exposed to solar radiation. Plant Pathol. 59:313–323.
  • Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. 2013. Function of alternative splicing. Gene. 514:1–30.
  • König S, Feussner K, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I. 2014. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 202:823–837.
  • Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D, Staskawicz BJ. 2011. Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. PLoS ONE. 6:e28765.
  • Kunjeti SG, Evans TA, Marsh AG, Gregory NF, Kunjeti S, Meyers BC, Kalavacharia VS, Donofrio NM. 2012. RNA-Seq reveals infection-related global gene changes in Phytophthora phaseoli, the causal agent of lima bean downy mildew. Mol Plant Pathol. 13:454–466.
  • Lapin D, Meyer RC, Takahashi H, Bechtold U, Van den Ackerveken G. 2012. Broad-spectrum resistance of Arabidopsis C24 to downy mildew is mediated by different combinations of isolate-specific loci. New Phytol. 196:1171–1181.
  • Lebeda A, Cohen Y. 2011. Cucurbit downy mildew (Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control. Eur J Plant Pathol. 129:157–192.
  • Li C, Li Y, Bai L, Zhang T, He C, Yan Y, Yu X. 2014. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Physiol Plant. 151:406–422.
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15:550.
  • Macho AP, Zipfel C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol. 23:14–22.
  • Mao W, Li Z, Xia X, Li Y, Yu J. 2012. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS ONE. 7:e33040.
  • Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet M-F, Delrot S, Lauvergeat V. 2013. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE. 8:e54185.
  • Martínez G, Forment J, Llave C, Pallás V, Gómez G. 2011. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS ONE. 6:e19523.
  • McGuire AM, Pearson MD, Neafsey DE, Galagan JE. 2008. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol. 9:R50.
  • Melo-Braga MN, Verano-Braga T, León IR, Antonacci D, Nogueira FCS, Thelen JJ, Larsen MR, Palmisano G. 2012. Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection. Mol Cell Proteom. 11:945–956.
  • Merz PR, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, Bogs J. 2014. The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plant. 153:365–380.
  • Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM. 2010. The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. Mol Plant-Microbe Interact. 23:1303–1315.
  • Nemri A, Atwell S, Tarone AM, Huang YS, Zhao K, Studholme DJ, Nordborg M, Jones JDG. 2010. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. Proc Nat Acad Sci. USA. 107:10302–10307.
  • Neufeld KN, Ojiambo PS. 2012. Interactive effects of temperature and leaf wetness duration on sporangia germination and infection of cucurbit hosts by Pseudoperonospora cubensis. Plant Dis. 96:345–353.
  • Nilsen TW, Graveley BR. 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature. 463:457–463.
  • Ojiambo PS, Gent DH, Quesada-Ocampo LM, Hausbeck MK, Holmes GJ. 2015. Epidemiology and population biology of Pseudoperonospora cubensis: a model system for management of downy mildews. Annu Rev Phytopathol. 53:223–246.
  • Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DG. 2013. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biol. 14:211.
  • Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nature. 45:330–333.
  • Raffaele S, Win J, Cano LM, Kamoun S. 2010. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genom. 11:637.
  • Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, et al. 2015. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria triticion wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 167:1158–1185.
  • Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR, Day B. 2012a. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS ONE. 7:e35796.
  • Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B. 2010. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol Plant Pathol. 12:217–226.
  • Savory EA, Zou C, Adhikari BN, Hamilton JP, Buell CR, Shiu S-H, Day B. 2012b. Alternative splicing of a multi-drug transporter from Pseudoperonospora cubensis generates an RXLR effector protein that elicits a rapid cell death. PLoS ONE. 7:e34701.
  • Shen D, Ye W, Dong S, Wang Y, Dou D. 2011. Characterization of intronic structures and alternative splicing in Phytophthora sojae by comparative analysis of expressed sequence tags and genomic sequences. Can J Microbiol. 57:84–90.
  • Simko I, Atallah AJ, Ochoa OE, Antonise R, Galeano CH, Truco MJ, Michelmore RW. 2013. Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Sci Rep. 3:2875.
  • Simpson AGB, Roger AJ. 2004. The real “kingdoms” of eukaryotes. Curr Biol. 14:R693–R696.
  • Stassen JHM, Van den Ackerveken G. 2011. How do oomycete effectors interfere with plant life? Curr Opin Plant Biol. 14:407–414.
  • Sumner LW, Mendes P, Dixon RA. 2003. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry. 62:817–836.
  • Taler D, Galperin M, Benjamin I, Cohen Y, Kenigsbuch D. 2004. Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell. 16:172–184.
  • Tian M, Win J, Savory E, Burkhardt A, Held M, Brandizzi F, Day B. 2011. 454 Genome sequencing of Pseudoperonospora cubensis reveals effector proteins with a QXLR translocation motif. Mol Plant-Microbe Interact. 24:543–553.
  • Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NAR, van West P, Kamoun S. 2003. EST mining and functional expression assays identiy extracellular effector proteins from the plant pathogen Phytophthora. Gen Res. 13:1675–1685.
  • van Damme M, Huibers RP, Elberse J, Van den Ackerveken G. 2008. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 54:785–793.
  • van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, Van den Ackerveken G. 2009. Downy mildew resistance in Arabidopsis by mutation of homoserine kinase. Plant Cell. 21:2179–2189.
  • van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. Trends Gen. 30:418–426.
  • Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63.
  • Wawrzynska A, Rodibaugh NL, Innes RW. 2010. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. Mol Plant-Microbe Interact. 23:578–584.
  • Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, Kaloshian I, Huang H-D, Jin H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 342:118–123.
  • Wroblewski T, Piskurewicz U, Tomczak A, Ochoa O, Michelmore RW. 2007. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities. Plant J. 51:803–818.
  • Yoshioka Y, Sakata Y, Sugiyama M, Fukino N. 2014. Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica. 198:265–276.
  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Wehner TC, Gu XF. 2013. Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis. 97:245–251.
  • Zuluaga AP, Vega-Arreguin JC, Fei Z, Ponnala L, Lee SJ, Matas AJ, Patev S, Fry WE, Rose JK. 2016. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Mol Plant Pathol. 17:29–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.