287
Views
3
CrossRef citations to date
0
Altmetric
Symposium contribution/Contribution à un symposium

Genome-wide analysis of parasitic fitness traits in a non-model tree pathogen

Pages 153-163 | Accepted 11 Feb 2016, Published online: 23 Mar 2016

References

  • Andrivon D. 1993. Nomenclature for pathogenicity and virulence: the need for precision. Phytopathology. 83:889–890.
  • Aoun M, Jacobi V, Boyle B, Bernier L. 2010. Identification and monitoring of Ulmus americana transcripts during in vitro interactions with the Dutch elm disease pathogen Ophiostoma novo-ulmi. Physiol Mol Plant Pathol. 74:254–266.
  • Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L. 2012. Microbial chemical signaling: a current perspective. Crit Rev Microbiol. 38:217–249.
  • Bernier L, Aoun M, Bouvet GF, Comeau A, Dufour J, Naruzawa ES, Nigg M, Plourde KV. 2015. Genomics of the Dutch elm disease pathosystem: are we there yet? iForest. 8:149–157.
  • Bernier L, Jeng RS, Hubbes M. 1983. Differentiation of aggressive and non-aggressive strains of Ceratocystis ulmi by polyacrylamide gel electrophoresis of intramycelial enzymes. Mycotaxon. 17:456–472.
  • Berrocal A, Navarrete J, Oviedo C, Nickerson KW. 2012. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. J Appl Microbiol. 113:126–134.
  • Binz T, Canevascini G. 1996. Xylanases from the Dutch elm disease pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi. Physiol Mol Plant Pathol. 49:159–175.
  • Binz T, Canevascini G. 1997. Purification and partial characterization of the extracellular laccase from Ophiostoma novo-ulmi. Curr Microbiol. 35:278–281.
  • Blumenstein K, Macaya-Sanz D, Martín JA, Albrectsen BR, Witzell J. 2015. Phenotype MicroArrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Front Microbiol. 6:1033.
  • Bouvet GF, Jacobi V, Bernier L. 2007. Characterization of three DNA transposons in the Dutch elm disease fungi and evidence of repeat-induced point (RIP) mutations. Fungal Genet Biol. 44:430–443.
  • Bouvet GF, Jacobi V, Plourde KV, Bernier L. 2008. Stress-induced mobility of OPHIO1 and OPHIO2, DNA transposons of the Dutch elm disease fungi. Fungal Genet Biol. 45:565–578.
  • Bowden CG, Smalley E, Guries RP, Hubbes M, Temple B, Horgen PA. 1996. Lack of association between cerato-ulmin production and virulence in Ophiostoma novo-ulmi. Mol Plant-Microbe Interact. 9:556–564.
  • Brasier CM. 1991. Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia. 115:151–161.
  • Brasier CM, Gibbs JN. 1976. Inheritance of pathogenicity and cultural characters in Ceratocystis ulmi: hybridization of aggressive and non-aggressive strains. Ann Appl Biol. 83:31–37.
  • Brasier CM, Kirk SA. 2001. Designation of the EAN and NAN races of Ophiostoma novo-ulmi as subspecies. Mycol Res. 105:547–554.
  • Brasier CM, Kirk SA. 2010. Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol. 59:186–199.
  • Brasier CM, Kirk SA, Pipe ND, Buck KW. 1998. Rare interspecific hybrids in natural populations of the Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi. Mycol Res. 102:45–57.
  • Brasier CM, Mehrotra MD. 1995. Ophiostoma himal-ulmi sp. nov., a new species of Dutch elm disease fungus endemic to the Himalayas. Mycol Res. 99:205–215.
  • Brunton AH, Gadd GM. 1989. The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3ʹ:5ʹ-cyclic monophosphate (cyclic AMP) in the yeast mycelium transition of Ceratocystis (= Ophiostoma) ulmi. FEMS Microbiol Lett. 60:49–53.
  • Buisman CJ. 1932. Ceratostomella ulmi, de geslachtelijke vorm van Graphium ulmi Schwarz [Ceratostomella ulmi, the sexual form of Graphium ulmi Schwarz]. Tijdschr PlZiekt. 38:1–8. Dutch.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233–D238.
  • Carneiro JS, de la Bastide PY, Chabot M, Lerch L, Hintz WE. 2010. Suppression of polygalacturonasegene expression in the phytopathogenic fungus Ophiostoma novo-ulmi by RNA interference. Fungal Genet Biol. 47:399–405.
  • Carneiro JS, de la Bastide PY, Hintz WE. 2013. Regulated gene silencing in the fungal pathogen Ophiostoma novo-ulmi. Physiol Mol Plant Pathol. 82:28–34.
  • Comeau AM, Dufour J, Bouvet GF, Nigg M, Jacobi V, Henrissat B, Laroche J, Levesque RC, Bernier L. 2015. Functional annotation of the Ophiostoma novo-ulmi genome: insights into the phytopathogenicity of the fungal agent of Dutch elm disease. Genome Biol Evol. 7:410–430.
  • Dai L, Li Z, Yu J, Ma M, Zhang R, Chen H, Pham T. 2015. The CYP51F1 gene of Leptographium qinlingensis: sequence characteristic, phylogeny and transcript levels. Int J Mol Sci. 16:12014–12034.
  • Dalpé Y. 1983. L’influence de la carence en pyridoxine sur la morphologie et l’ultrastructure cellulaire de Ceratocystis ulmi [Influence of pyridoxine deficiency on the morphology and cellular ultrastructure of Ceratocystis ulmi]. Can J Bot. 61:2079–2084. French.
  • de Hoog GS, Scheffer RJ. 1984. Ceratocystis versus Ophiostoma: a reappraisal. Mycologia. 76:292–299.
  • de Salas F, Martínez MJ, Barriuso J. 2015. Quorum-sensing mechanisms mediated by farnesol in Ophiostoma piceae: effect on secretion of sterol esterase. Appl Environ Microbiol. 81:4351–4357.
  • Dewar K, Bernier L. 1993. Electrophoretic karyotypes of the elm tree pathogen Ophiostoma ulmi (sensu lato). Mol Gen Genet. 238:43–48.
  • Dewar K, Bernier L. 1995. Inheritance patterns of nonhomologous chromosomes in Ophiostoma ulmi sensu lato. Curr Genet. 27:541–549.
  • Dewar K, Bousquet J, Dufour J, Bernier L. 1997. A meiotically reproducible chromosome length polymorphism in the ascomycete fungus Ophiostoma ulmi (sensu lato). Mol Gen Genet. 255:38–44.
  • DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Massoumi Alamouti S, et al. 2011. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci USA. 108:2504–2509.
  • Et-Touil A, Brasier CM, Bernier L. 1999. Localization of a pathogenicity gene in Ophiostoma novo-ulmi and evidence that it may be introgressed from O. ulmi. Mol Plant-Microbe Inter. 12:6–15.
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caernorhabditis elegans. Nature. 391:806–811.
  • Forgetta V, Leveque G, Dias J, Grove D, Lyons Jr R, Genik S, Wright C, Singh S, Peterson N, Zianni M, et al. 2013. Comparison of multiple genome sequencing centers and analysis of the Dutch elm disease fungus genome using the Roche/454 GS-FLX titanium system. J Biomol Tech. 24:39–49.
  • Fulbright DW. 1984. Effect of eliminating ds-RNA in hypovirulent Endothia parasitica. Phytopathology. 74:722–724.
  • Gauthier GM. 2015. Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog. 11:e1004608.
  • Gibbs JN, Brasier CM. 1973. Correlation between cultural characters and pathogenicity in Ceratocystis ulmi from Britain, Europe and America. Nature. 241:381–383.
  • Haridas S, Wang Y, Lim L, Massoumi Alamouti S, Jackman S, Docking R, Robertson G, Birol I, Bohlmann J, Breuil C. 2013. The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics. 14:373.
  • Hintz W, Pinchback M, De La Bastide P, Burgess S, Jacobi V, Hamelin R, Breuil C, Bernier L. 2011. Functional categorization of unique expressed sequence tags obtained from the yeast-like growth phase of the elm pathogen Ophiostoma novo-ulmi. BMC Genomics. 12:431.
  • Hintz WE, Jeng RS, Hubbes M, Horgen PA. 1991. Identification of three populations of Ophiostoma ulmi (aggressive subgroup) by mitochondrial DNA restriction-site mapping and nuclear DNA fingerprinting. Exp Mycol. 15:316–325.
  • Hoegger PJ, Binz T, Heiniger U. 1996. Detection of genetic variation between Ophiostoma ulmi and the NAN and EAN races of O. novo-ulmi in Switzerland using RAPD markers. Eur J For Pathol. 26:57–68.
  • Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW. 2004. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol. 70:1356–1359.
  • Hudler GW, Banik MT, Miller SG. 1987. Unusual epidemic of tar spot on Norway maple in upstate New York. Plant Dis. 71:65–68.
  • Jacobi V, Dufour J, Bouvet GF, Aoun M, Bernier L. 2010. Identification of transcripts upregulated in asexual and sexual fruiting bodies of the Dutch elm disease pathogen Ophiostoma novo-ulmi. Can J Microbiol. 56:697–705.
  • Jeng RS, Hubbes M. 1983. Identification of aggressive and non-aggressive strains of Ceratocystis ulmi by polyacrylamide gradient gel electrophoresis of intramycelial proteins. Mycotaxon. 17:445–455.
  • Jensen EC, Ogg C, Nickerson KW. 1992. Lipoxygenase inhibitors shift the yeast/mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol. 58:2505–2508.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821.
  • Khoshraftar S, Hung S, Khan S, Gong Y, Tyagi V, Parkinson J, Sain M, Moses AM, Christendat D. 2013. Sequencing and annotation of the Ophiostoma ulmi genome. BMC Genomics. 14:162.
  • Klug L, Daum G. 2014. Yeast lipid metabolism at a glance. FEMS Yeast Res. 14:369–388.
  • Kulkarni RK, Nickerson KW. 1981. Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol. 5:148–154.
  • Muthukumar G, Nickerson KW. 1984. Ca(II)-calmodulin regulation of fungal dimorphism in Ceratocystis ulmi. J Bacteriol. 159:390–392.
  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 320:1344–1349.
  • Naruzawa ES 2015. Bases moléculaires du dimorphisme levure-mycélium chez le champignon phytopathogène Ophiostoma novo-ulmi [Molecular bases of yeast-mycelium dimorphism in the plant pathogenic fungus Ophiostoma novo-ulmi] [dissertation]. Quebec City (QC): Université Laval. French.
  • Naruzawa ES, Bernier L. 2014. Control of yeast-mycelium dimorphism in vitro in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biol. 118:872–884.
  • Naruzawa ES, Malagnac F, Bernier L. 2016. Effect of linoleic acid on reproduction and yeast-mycelium dimorphism in the Dutch elm disease pathogens. Botany. 94:31–39.
  • Nelson DR. 2009. The cytochrome P450 homepage. Hum Genomics. 4:59–65.
  • Nigg M, Laroche J, Landry CR, Bernier L. 2015. RNAseq analysis highlights specific transcriptome signatures of yeast and mycelial growth phases in the Dutch elm disease fungus Ophiostoma novo-ulmi. G3 (Bethesda). 5:2487–2495.
  • Ninomiya Y, Suzuki K, Ishii C, Inoue H. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA. 101:12248–12253.
  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. 2015. A CRISPR-Cas9 system for genetic engineering of filamentous Fungi. PLoS One. 10:e0133085.
  • Paoletti M, Buck KW, Brasier CM. 2006. Selective acquisition of novel mating type and vegetative incompatibility genes via interspecies gene transfer in the globally invading eukaryote Ophiostoma novo-ulmi. Mol Ecol. 15:249–262.
  • Perdiguero P, Venturas M, Cervera MT, Gil L, Collada C. 2015. Massive sequencing of Ulmus minor’s transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Front Plant Sci. 6:541.
  • Pereira V, Royer JC, Hintz WE, Field D, Bowden C, Kokurewicz K, Hubbes M, Horgen PA. 2000. A gene associated with filamentous growth in Ophiostoma novo-ulmi has RNA-binding motifs and is similar to a yeast gene involved in mRNA splicing. Curr Genet. 37:94–103.
  • Plourde KV, Bernier L. 2014. Inoculation of apple (Malus x domestica ‘Golden Delicious’) fruits provides a rapid virulence assay for the Dutch elm disease fungus Ophiostoma novo-ulmi. Plant Pathol. 63:1078–1085.
  • Plourde KV, Jacobi V, Bernier L. 2008. Use of insertional mutagenesis to tag putative parasitic fitness genes in the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. Can J Microbiol. 54:797–802.
  • Proctor RH, Guries RP, Smalley EB. 1994. Lack of association between tolerance to the elm phytoalexin mansonone E and virulence in Ophiostoma novo-ulmi. Can J Bot. 72:1355–1364.
  • Richards WC. 1994. Nonsporulation in the Dutch elm disease fungus Ophiostoma ulmi: evidence for control by a single nuclear gene. Can J Bot. 72:461–467.
  • Royer JC, Dewar K, Hubbes M, Horgen PA. 1991. Analysis of a high frequency transformation system for Ophiostoma ulmi, the causal agent of Dutch elm disease. Mol Gen Genet. 225:168–176.
  • Scheffer RJ, Liem JI, Elgersma DM. 1987. Production in vitro of phytotoxic compounds by non-aggressive and aggressive isolates of Ophiostoma ulmi, the Dutch elm disease pathogen. Physiol Mol Plant Pathol. 30:321–335.
  • Schwarz MB. 1922. Das zweigensterben der olmen, trauerweiden und pfirschbäume [The twig dying of the elms, willows, and peach trees]. Meded phytopath Lab Willie Commelin Scholten. 5:1–73. Dutch.
  • Solla A, Dacasa MC, Nasmith C, Hubbes M, Gil L. 2008. Analysis of Spanish populations of Ophiostoma ulmi and O. novo-ulmi using phenotypic characteristics and RAPD markers. Plant Pathol. 57:33–44.
  • Svaldi R, Elgersma DM. 1982. Further studies on the activity of cell wall degrading enzymes of aggressive and non-aggressive isolates of Ophiostoma ulmi. Eur J For Pathol. 12:29–36.
  • Tadesse Y, Bernier L, Hintz WE, Horgen PA. 2003. Real time RT-PCR quantification and Northern analysis of Cerato ulmin (CU) gene transcription in different strains of the phytopathogens Ophiostoma ulmi and O. novo ulmi. Mol Genet Gen. 269:789–796.
  • Temple B, Bernier L, Hintz WE. 2009. Characterization of the polygalacturonase gene of the Dutch elm disease pathogen Ophiostoma novo-ulmi. N Z J For Sci. 39:29–37.
  • Temple B, Horgen PA, Bernier L, Hintz WE. 1997. Cerato-ulmin, a hydrophobin secreted by the causal agents of Dutch elm disease, is a parasitic fitness factor. Fungal Genet Biol. 22:39–53.
  • Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack K. 2015. The pathogen-host interactions database: additons and future developments. Nucl Acids Res. 43:D645–D655.
  • Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63.
  • Wedge ME, Naruzawa ES, Nigg M, Bernier L. 2016. Diversity in yeast-mycelium dimorphism response of the Dutch elm disease pathogens: the inoculum size effect. Can J Microbiol. (In Press). doi:10.1139/cjm-2015-0795

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.