234
Views
1
CrossRef citations to date
0
Altmetric
Population biology / Biologie des populations

Genetic and pathogenic variation of Botrytis cinerea, the causal agent of grey mould on Panax ginseng in China

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 744-753 | Accepted 13 Apr 2022, Published online: 06 May 2022

References

  • AbuQamar S, Khaled M, Tran LSP. 2016. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit Rev Biotechnol. 37(2):262–274. doi:10.1080/07388551.2016.1271767.
  • Asadollahi M, Fekete E, Karaffa L, Flipphi M, Árnyasi M, Esmaeili M, Váczy KZ, Sándor E. 2013. Comparison of Botrytis cinerea populations isolated from two open-field cultivated host plants. Microbiol Res. 168(6):379–388. doi:10.1016/j.micres.2012.12.008.
  • Bardas GA, Veloukas T, Koutita O, Karaoglanidis GS. 2010. Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag Sci. 66(9):967–973. doi:10.1002/ps.1968.
  • Bardin M, Decognet V, Nicot P. 2014. Remarkable predominance of a small number of genotypes in greenhouse populations of Botrytis cinerea. Phytopathology. 104(8):859–864. doi:10.1094/PHYTO-10-13-0271-R.
  • Bardin M, Leyronas C, Troulet C, Morris CE. 2018. Striking similarities between Botrytis cinerea from non-agricultural and from agricultural habitats. Front Plant Sci. 9:1820. doi:10.3389/fpls.2018.01820.
  • Cho HS, Jeon YH, Do GR, Cho DH. 2008. Mycological characteristics of Botrytis cinerea causing gray mold on ginseng in Korea. J Ginseng Res. 32(1):26–32.
  • Decognet V, Bardin M, Trottin-Caudal Y, Nicot PC. 2009. Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse. Phytopathology. 99(2):185–193. doi:10.1094/PHYTO-99-2-0185.
  • Dong LL, Xu J, Li Y, Fang HL, Niu WH, Li XW, Zhang YJ, Ding WL, Chen SL. 2018. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biol Biochem. 125(10):64–74. doi:10.1016/j.soilbio.2018.06.028.
  • Fekete É, Fekete E, Irinyi L, Karaffa L, Árnyasi M, Asadollahi M, Sándor E. 2012. Genetic diversity of a Botrytis cinerea cryptic species complex in Hungary. Microbiol Res. 167(5):283–291. doi:10.1016/j.micres.2011.10.006.
  • Fournier E, Giraud T, Albertini C, Brygoo Y. 2005. Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia. 97(6):1251–1267. doi:10.1080/15572536.2006.11832734.
  • Fournier E, Levis C, Fortin D, Leroux P, Giraud T, Brygoo Y. 2003. Characterization of Bc-hch, the Botrytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus, and its use as a population marker. Mycologia. 95:251–261. doi:10.2307/3762036.
  • Giraud T, Fortini D, Levis C, Leroux P, Brygoo Y. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Mol Biol Evol. 14:1177–1185. doi:10.1093/oxfordjournals.molbev.a025727.
  • Jung J, Kim KH, Yang K, Bang KH, Yang TJ. 2014. Practical application of DNA markers for high-throughput authentication of Panax ginseng and Panax quinquefolius from commercial ginseng products. J Ginseng Res. 38:123–129. doi:10.1016/j.jgr.2013.11.017.
  • Kim JH, Kim GH, Kim HT. 2011. Sensitivity of Botrytis cinerea isolated from infected leaves of ginseng to tolyfluanid. Korean J Pestic Sci. 15(2):188–193.
  • Kim JH, Min JY, Bae YS, Kim HT. 2009. Molecular analysis of Botrytis cinerea causing ginseng grey mold resistant to carbendazim and the mixture of carbendazim plus diethofencarb. Plant Pathol J. 25(4):322–327. doi:10.5423/PPJ.2009.25.4.322.
  • Kirkpatrick LA, Butler L. 2015. A simple guide to IBM SPSS Statistics - Version 23.0. United States: CENGAGE Learning Custom Publishing.
  • Korolev N, Elad Y. 2016. Vegetative incompatibility in Botrytis. In: Fillinger S, Elad Y, editors. Botrytis – the fungus, the pathogen and its management in agricultural systems. Cham: Springer International Publishing; p. 55–70.
  • Kumar M. 2018. Assessment of genetic diversity and population structure in gladiolus (Gladiolus hybridus Hort.) by ISSR markers. Physiol Mol Biol Plants. 24(3):493–501. doi:10.1007/s12298-018-0519-2.
  • Kumari S, Tayal P, Sharma E, Kapoor R. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates. Microbiol Res. 169(11):862–872. doi:10.1016/j.micres.2014.02.012.
  • Levis C, Fortini D, Brygoo Y. 1997. Flipper, a mobile Fot1-like transposable element in Botrytis cinerea. Mol Gen Genet. 254:674–680. doi:10.1007/s004380050465.
  • Leyronas C, Bryone F, Duffaud M, Troulet C, Nicot PC. 2015. Assessing host specialization of Botrytis cinerea on lettuce and tomato by genotypic and phenotypic characterization. Plant Pathol. 64(1):119–127. doi:10.1111/ppa.12234.
  • Li XY, Li Y. 2010. Biological characteristics of ginseng Botrytis cinerea Pers. Plant Dis Pests. 1(5):10–14.
  • Liu K, Li Y, Wang R, Chen BW, Wang TY, Ding WL. 2020. Preliminary report of the resistance of Botrytis cinerea isolates from ginseng producing area to four fungicides in China. Plant Prot. 46(2):196–198.
  • Lu XH, Jiao XL, Hao JJ, Chen AJ, Gao WW. 2016. Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. Eur J Plant Pathol. 144(3):467–476. doi:10.1007/s10658-015-0786-5.
  • Moyano C, Alfonso C, Gallego J, Raposo R, Melgarejo P. 2003. Comparison of RAPD and AFLP marker analysis as a means to study the genetic structure of Botrytis cinerea populations. Eur J Plant Pathol. 109(5):515–522. doi:10.1023/A:1024211112831.
  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89:583–590. doi:10.1093/genetics/89.3.583.
  • O’Neill TM, Shtienberg D, Elad Y. 1997. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis. 81(1):36–40. doi:10.1094/PDIS.1997.81.1.36.
  • Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 28(19):2537–2539. doi:10.1093/bioinformatics/bts460.
  • Petrasch S, Knapp SJ, Van Kan JAL, Blanco-Ulate B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol. 20(6):877–892. doi:10.1111/mpp.12794.
  • Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA. 2014. Efficacy of combined formulations of fungicides with different modes of action in controlling Botrytis gray mold disease in Chickpea. Sci World J. 2014:639246. doi:10.1155/2014/639246.
  • Rigotti S, Gindro K, Richter H, Viret O. 2002. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: fr. in strawberry (Fragaria × ananassa Duch.) using PCR. FEMS Microbiol Lett. 209(2):169–174. doi:10.1111/j.1574-6968.2002.tb11127.x.
  • Samuel S, Veloukas T, Papavasileiou A, Karaoglanidis G. 2012. Differences in frequency of transposable elements presence in Botrytis cinerea population from several hosts in Greece. Plant Dis. 96(9):1286–1290. doi:10.1094/PDIS-01-12-0103-RE.
  • Shao WY, Zhao YF, Ma ZH. 2020. Advances in Understanding Fungicide Resistance in Botrytis cinerea in China. Phytopathology. 111(3):455–463. doi:10.1094/PHYTO-07-20-0313-IA.
  • Soltis NE, Atwell S, Shi G, Fordyce R, Gwinner R, Gao D, Shafi A, Kliebenstein DJ. 2019. Interactions of tomato and Botrytis cinerea genetic diversity: parsing the contributions of host differentiation, domestication and pathogen variation. Plant Cell. 31:502–519. doi:10.1105/tpc.18.00857.
  • Sun W, Dong H, Gao YB, Su QF, Qian HT, Bai HY, Zhang ZT, Cong B. 2015. Genetic variation and geographic differentiation among populations of the nonmigratory agricultural pest Oedaleus infernalis (Orthoptera: acridoidea) in China. J Insect Sci. 15(1):150. doi:10.1093/jisesa/iev132.
  • Tang YJ, Cao WJ, Wu KL. 2015. Genetic diversity analysis and molecular identification card construction of Chinese cymbidium germplasms based on SRAP markers. Sci Agr Sinica. 48(9):1795–1806.
  • Tiago PV, Medeiros LV, Leão MPC, Santos ACDS. 2016. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats (ISSR). Biocontrol Sci Technol. 26(10):1–20. doi:10.1080/09583157.2016.1210084.
  • Van Kan JAL. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Sci. 11(5):247–253. doi:10.1016/j.tplants.2006.03.005.
  • Van Kan JAL, Shaw MW, Downton RG. 2014. Botrytis species: relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol. 15:1–5. doi:10.1111/mpp.12086.
  • Walker AS, Ravigné V, Rieux A, Ali S, Carpentier F, Fournier E. 2017. Fungal adaptation to contemporary fungicide applications: the case of Botrytis cinerea populations from Champagne vineyards (France). Mol Ecol. 26:1919–1935. doi:10.1111/mec.14072.
  • White TJ, Bruns T, Lee SW, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods & Applications. New York: Academic Press; p. 315–322.
  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. 2007. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol. 8(5):561–580. doi:10.1111/j.1364-3703.2007.00417.x.
  • Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. 2003. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 26:1277–1294. doi:10.2337/diacare.26.4.1277.
  • Yeh FC, Yang R, Boyle T, Ye Z, Mao JX. 1999. POPGENE, version 1.32: the user-friendly software for population genetic analysis. Edmonton (AB, Canada): Molecular Biology and Biotechnology Centre, University of Alberta.
  • Yuan Y, Zhou RJ, Fu JF, Lu ZH, Shi XQ, Li ZB. 2016. Comparison of the biological characteristics and pathogenicity of Botrytis cinerea isolates. J Shenyang Agric Univ. 47(3):271–277.
  • Zhang YJ, Li XH, Shen FY, Xu HP, Li YN, Liu DQ. 2018. Characterization of Botrytis cinerea isolates from grape vineyards in China. Plant Dis. 102(1):40–48. doi:10.1094/PDIS-01-17-0062-RE.
  • Zhang XK, Wu DX, Duan YB, Ge CY, Wang JX, Zhou MG, Chen CJ. 2014. Biological characteristics and resistance analysis of the novel fungicide SYP-1620 against Botrytis cinerea. Pestic Biochem Physiol. 114:72–78. doi:10.1016/j.pestbp.2014.06.012.
  • Zhou M, Lu BH, Liu LP, Bai QR, Gao J. 2020. Phenotypic and genotype diversity of Botrytis cinerea on ginseng. J Huazhong Agric Univ. 39(3):45–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.