501
Views
3
CrossRef citations to date
0
Altmetric
Disease control/Moyens de lutte

Application of plant growth-promoting rhizobacteria combined with compost as a management strategy against Verticillium dahliae in tomato

, , , , ORCID Icon &
Pages 806-827 | Accepted 23 May 2022, Published online: 28 Jun 2022

References

  • Aalipour H, Nikbakht A, Etemadi N, Rejali F, Soleimani M. 2020. Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci Hortic. 261:108923. doi:10.1016/j.scienta.2019.108923.
  • Abd El-Razek E, Haggag LF, El-Hady ES, Shahin MFM. 2020. Effect of soil application of humic acid and bio-humic on yield and fruit quality of “Kalamata” olive trees. Bullet Nat Res Centre. 44(1):1–8. doi:10.1186/s42269-020-00318-8.
  • Abdel Latef AAH, Tahjib-Ul-Arif M, Rhaman MS. 2021. Exogenous Auxin-mediated salt stress Alleviation in Faba Bean (Vicia faba L.). Agronomy. 11(3):547. doi:10.3390/agronomy11030547.
  • Aebi H. 1984. Catalase in vitro. Meth Enzymol. 105:121–126. doi:10.1016/s0076-6879(84)05016-3.
  • Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 26(1):1–20. doi:10.1016/j.jksus.2013.05.001.
  • Ait Rahou Y, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ben-Laouane R, Douira A, Benkirane R, El Modafar C, Meddich A. 2021. Use of mycorrhizal fungi and compost for improving the growth and yield of tomato and its resistance to Verticillium dahliae. Arch Phytopathol Plant Prot. 1:26. doi:10.1080/03235408.2020.1854938.
  • Ait-El-Mokhtar M, Baslam M, Ben-Laouane R, Anli M, Boutasknit A, Mitsui T, Wahbi S, Meddich A. 2020. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front Sustain Food Syst. 4:131. doi:10.3389/fsufs.2020.00131.
  • Akhtar N, Naveed M, Iqbal MZ, Khalid M, Waraich EA. 2016. Effect of consortium of plant growth promoting and compost inhabiting bacteria on physicochemical changes and defense response of maize in fungus infested soil. Pak J Agric Sci. 53(1):59–68. doi:10.21162/PAKJAS/16.4700.
  • Alfano G, Lustrato G, Lima G, Vitullo D, Ranalli G. 2011. Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biological Control. 58(3):199–207. doi:10.1016/j.biocontrol.2011.05.001.
  • Ali M, Ahmad H, Hayat S, Ghani MI, Amin B, Atif MJ, Wali K, Cheng Z. 2021. Application of garlic allelochemicals improves growth and induces defense responses in eggplant (Solanum melongena) against Verticillium dahliae. Ecotoxicol Environ Saf. 215:112132. doi:10.1016/j.ecoenv.2021.112132.
  • Alikhani HA, Saleh-Rastin N, Antoun H. 2006. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil. 287(1–2):35–41. doi:10.1007/s11104-006-9059-6.
  • Almaghrabi OA, Massoud SI, Abdelmoneim TS. 2013. Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci. 20(1):57–61. doi:10.1016/j.sjbs.2012.10.004.
  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait-Rahou Y, et al. 2020. Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci. 11:516818. doi:10.3389/fpls.2020.516818.
  • Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS. 2017. Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci. 8:2022. doi:10.3389/fpls.2017.02022.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. J Plant Physiol. 24(1):1. doi:10.1104/pp.24.1.1.
  • Attia MS, El-Sayyad GS, Abd Elkodous M, El-Batal AI. 2020. The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani causing early blight disease in tomato plant. Sci Hortic. 266:109289. doi:10.1016/j.scienta.2020.109289.
  • Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. 2020. Photosynthesis in a changing global climate: scaling up and scaling down in crops. Front Plant Sci. 11:882. doi:10.3389/fpls.2020.00882.
  • Bensidhoum L, Nabti E, Tabli N, Kupferschmied P, Weiss A, Rothballer M, Schmid M, Keel C, Hartmann A. 2016. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol. 75:38–46. doi:10.1016/j.ejsobi.2016.04.006.
  • Bermúdez-Cardona MB, Filho JAW, Rodrigues FA. 2015. Leaf gas exchange and chlorophyll a fluorescence in maize leaves infected with Stenocarpella macrospora. Phytopathology. 105(1):26–34. doi:10.1094/PHYTO-04-14-0096-R.
  • Beyer WF, Fridovich I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 161(2):559–566. doi:10.1016/0003-2697(87)90489-1.
  • Bonilla N, Gutiérrez-Barranquero JA, De Vicente A, Cazorla FM. 2012. Enhancing soil quality and plant health through suppressive organic amendments. Diversity. 4(4):475–491. doi:10.3390/d4040475.
  • Boutaj H, Meddich A, Wahbi S, Moukhli A, El Alaoui-Talibi Z, Douira A, Filali-Maltouf A, El Modafar C. 2019. Effect of Arbuscular Mycorrhizal Fungi on Verticillium wilt development of olive trees caused by Verticillium dahliae. J Biotechnol. 14(8):79-–88.
  • Bulgari R, Franzoni G, Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 9(6):306. doi:10.3390/agronomy9060306.
  • Campbell CL, Madden LV. 1990. Introduction to plant disease epidemiology. New York (NY): John Wiley & Sons.
  • Campestrini LH, Melo PS, Peres LEP, Calhelha RC, Ferreira ICFR, Alencar SM. 2019. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon. 5(11):e02831. doi:10.1016/j.heliyon.2019.e02831.
  • Chafi A, Benabbes R, Bouakka M, Hakkou A, Kouddane N, Berrichi A. 2015. Pomological study of dates of some date palm varieties cultivated in Figuig oasis. J Mater Environ Sci. 6:1266–1275.
  • Chandrasekaran M, Chun SC, Oh JW, Paramasivan M, Saini RK, Sahayarayan JJ. 2019. Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agronomy. 9(12):838. doi:10.3390/agronomy9120838.
  • Chavan VA, Yumlembam RA, Sewakram K, Borkar S. 2017. Fungicide resistance in Alternaria leaf blight pathogen in tomato crop grown in Satara District. J Pharmacogn Phytochem. 6:1736–1739.
  • Chen JY, Klosterman SJ, Hu XP, Dai XF, Subbarao KV. 2021. Key insights and research prospects at the Dawn of the population genomics era for Verticillium dahliae. Annu Rev Phytopathol. 59(1):31–51. doi:10.1146/annurev-phyto-020620-121925.
  • Chung KR. 2012. Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica. 2012:1–17. doi:10.6064/2012/635431.
  • Çolak NG, Eken NT, Ülger M, Frary A, Doganlar S. 2020. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Sci. 292:110393. doi:10.1016/j.plantsci.2019.110393.
  • Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 16(9):537–552. doi:10.1038/nri.2016.77.
  • Cucu MA, Gilardi G, Pugliese M, Matic S, Ulrich G, Gullino ML, Garibaldi A. 2018. Influence of different biological control agents and compost on total and nitrification driving microbial communities at rhizosphere and soil level in a lettuce- Fusarium oxysporum f. sp. Lactucae pathosystem. J App Microb. 126(3):905–918. doi:10.1111/jam.14153.
  • De Corato U, Patruno L, Avella N, Lacolla G, Cucci G. 2019. Composts from green sources show an increased suppressiveness to soil borne plant pathogenic fungi: relationships between physicochemical properties, disease suppression, and the microbiome. Crop Prot. 124:104870. doi:10.1016/j.cropro.2019.104870.
  • De Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Thomma BP. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci USA. 109(13):5110–5115. doi:10.1073/pnas.1119623109.
  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity. 12(10):370. doi:10.3390/d12100370.
  • Douira A, Ben Kirane R, Ouazzani Touhami A, Okeke B, Elhaloui NE. 1995. Verticillium wilt of pepper (Capsicum annuum) in Morocco. J Phytopathol. 143(8):467–470. doi:10.1111/j.1439-0434.1995.tb04556.x.
  • El Said SH, Hegazi AA, Allatif AMA. 2012. Resistance of some olive cultivars to Verticillium wilt. J Appl Sci Res. 8:2758–2765.
  • FAOSTAT. 2021. Crops. [accessed 2021 Sept 20]. http://www.fao.org/faostat/en/#data/QC.
  • Fradin EF, Thomma BPHJ. 2006. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol. 7(2):71–86. doi:10.1111/j.1364-3703.2006.00323.x.
  • Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Thomma BP. 2009. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150(1):320–332. doi:10.1104/pp.109.136762.
  • Geetha K, Rajithasri AB, Bhadraiah B. 2014. Isolation of plant growth promoting rhizobacteria from rhizosphere soils of green gram, biochemical characterization and screening for antifungal activity against pathogenic fungi. J Pharm Sci Invent. 3:47–54.
  • Gilardi G, Demarchi S, Gullino ML, Garibaldi A. 2015. Nursery treatments with non-conventional products against crown and root rot, caused by Phytophthora capsici, on zucchini. Phytoparasitica. 43(4):501–508. doi:10.1007/s12600-015-0461-6.
  • Gong S, Wang C, Jiang P, Hu L, Lei H, Chen Q. 2018. Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systems. J Mater Chem A. 6(27):13254–13262. doi:10.1039/c8ta04564j.
  • González-Hernández AI, Suárez-Fernández MB, Pérez-Sánchez R, Gómez-Sánchez MÁ, Morales-Corts MR. 2021. Compost tea induces growth and resistance against Rhizoctonia solani and Phytophthora capsici in pepper. Agronomy. 11(4):781. doi:10.3390/agronomy11040781.
  • Goswami D, Thakker JN, Dhandhukia PC. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. 2:1–19. doi:10.1080/23311932.2015.1127500.
  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X. 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol. 83(19):e01075–17. doi:10.1128/aem.01075-17.
  • Gupta DK, Palma JM, Corpas FJ. 2015. Reactive oxygen species and oxidative damage in plants under stress. Heidelberg (Germany): Springer.
  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P. 2017. Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol. 55(1):565–589. doi:10.1146/annurev-phyto-080516-035623.
  • Haldar S, Sanghamitra S. 2015. Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J. 9(1):1–7. doi:10.2174/1874285801509010001.
  • Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. 2020a. Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci. 21(22):8695. doi:10.3390/ijms21228695.
  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. 2020b. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 9(8):681. doi:10.3390/antiox9080681.
  • Helaly MN, El-Sheery NI, El-Hoseiny H, Rastogi A, Kalaji HM, Zabochnicka-Świątek M. 2018. Impact of treated wastewater and salicylic acid on physiological performance, malformation and yield of two Mango cultivars. Sci Hortic. 233:159–177. doi:10.1016/j.scienta.2018.01.001.
  • Hilares RT, Dos Santos JG, Shiguematsu NB, Ajaz AM, da Silva SS, Dos Santos JC. 2019. Low-pressure homogenization of tomato juice using hydrodynamic cavitation technology: effects on physical properties and stability of bioactive compounds. Ultrason Sonochem. 54:192–197. doi:10.1016/j.ultsonch.2019.01.039.
  • Hori K, Wada A, Shibuta T. 1997. Changes in phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura Fusiformis (Homoptera: Eriosomatidae). Appl Entomol Zool. 32(2):365–371. doi:10.1303/aez.32.365.
  • Inderbitzin P, Subbarao KV. 2014. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology. 104(6):564–574. doi:10.1094/phyto-11-13-0315-ia.
  • Jha Y. 2019. The importance of zinc-mobilizing rhizosphere bacteria to the enhancement of physiology and growth parameters for Paddy under salt-stress conditions. Jordan J Biol Sci. 12:167–173.
  • Jones JB, Zitter TA, Momol TM, Miller SA. 2016. Compendium of tomato diseases and ests. 2nd ed. St. Paul (MN): APS Press.
  • Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. 2021. Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia. 76(9):2687–2709. doi:10.1007/s11756-021-00806-w.
  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, Van Rooijen G, Waterer DR, Prüfer D. 2001. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA. 98(11):6511–6515. doi:10.1073/pnas.091114198.
  • Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P. 2019. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates Cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere. 230:628–639. doi:10.1016/j1.
  • Kierul K, Borriss R, Chen X-H, Voigt B, Carvalhais LC, Albrecht D. 2015. Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology. 161(1):131–147. doi:10.1099/mic.0.083576-0.
  • Kim JH, Castroverde CDM. 2020. Diversity, function and regulation of cell surface and intracellular immune receptors in Solanaceae. Plants. 9(4):434. doi:10.3390/plants9040434.
  • Klimes A, Dobinson KF, Thomma BPHJ, Klosterman SJ. 2015. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. Annu Rev Phytopathol. 53(1):181–198. doi:10.1146/annurev-phyto-080614-120224.
  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. 2009. Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol. 47(1):39–62. doi:10.1146/annurev-phyto-080508-081748.
  • Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci. 10:845. doi:10.3389/fpls.2019.00845.
  • Koné SB, Dionne A, Tweddell RJ, Antoun H, Avis TJ. 2010. Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biol Control. 52(2):167–173. doi:10.1016/j.biocontrol.2009.10.
  • Kowalska B. 2021. Management of the soil-borne fungal pathogen–Verticillium dahlia Kleb. causing vascular wilt diseases. Plant Pathol. 103(4):1185–1194. doi:10.1007/s42161-021-00937-8.
  • Lanna-Filho R, Souza RM, Alves E. 2017. Induced resistance in tomato plants promoted by two endophytic bacilli against bacterial speck. Trop Plant Pathol. 42(2):96–108. doi:10.1007/s40858-017-0141-9.
  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH. 2007a. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot. 58(6):1271–1279. doi:10.1093/jxb/erl280.
  • Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. 2007b. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol. 65(6):1474–1484. doi:10.1111/j.1365-2958.2007.05879.x.
  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. 2011. Biochar effects on soil biota – a review. Soil Biol Biochem. 43(9):1812–1836. doi:10.1016/j.soilbio.2011.04.022.
  • Lian Q, Zhang J, Gan L, Ma Q, Zong Z, Wang Y. 2017. The biocontrol efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in tomato. Bio Med Res Int. 2017:1–11. doi:10.1155/2017/9486794.
  • López-Moral A, Agustí-Brisach C, Trapero A. 2021. Plant biostimulants: new insights into the biological control of Verticillium Wilt of olive. Front Plant Sci. 12:782. doi:10.3389/fpls.2021.662178.
  • Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signalling. Mol Cell. 54(2):263–272. doi:10.1016/j.molcel.2014.03.028.
  • Markakis EA, Fountoulakis MS, Daskalakis GC, Kokkinis M, Ligoxigakis EK. 2016. The suppressive effect of compost amendments on Fusarium oxysporum f.sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Prot. 79:70–79. doi:10.1016/j.cropro.2015.10.015.
  • Mauro RP, Agnello M, Distefano M, Sabatino L, San Bautista Primo A, Leonardi C, Giuffrida F. 2020. Chlorophyll fluorescence, photosynthesis and growth of tomato plants as affected by long-term oxygen root zone deprivation and grafting. Agronomy. 10(1):137. doi:10.3390/agronomy10010137.
  • McKellar ME, Nelson EB. 2003. Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities. Appl Environ Microbiol. 69(1):452–460. doi:10.1128/AEM.69.1.452-460.2003.
  • McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. 2019. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heteroderaglycines. Plant Physiol Biochem. 137:25–41. doi:10.1016/j.plaphy.2019.01.018.
  • Meena M, Swapnil P, Divyanshu K, Kumar S, Harish TYN, Zehra A, Marwal A, Upadhyay RS. 2020. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol. 60(10):828–861. doi:10.1002/jobm.202000370.
  • Mekonnen H, Kibret M. 2021. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem Biol Technol Agric. 8(1):1–11. doi:10.1186/s40538-021-00213-y.
  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. 2018. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 9:112. doi:10.3389/fpls.2018.00112.
  • Mishra S, Singh A, Keswani C, Saxena A, Sarma BK, Singh HB. 2015. Harnessing plant-microbe interactions for enhanced protection against phytopathogens. In: Arora NK, editor. Plant microbes symbiosis: applied facets. New Delhi (India): Springer; p. 111–125.
  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci. 104(49):19613–19618. doi:10.1073/pnas.0705147104.
  • Murali Sankar P, Shreedevasena S, Kaviyarathinam T, Syamala M. 2021. A multi-trait mechanisms of PGPR in plant disease management. Biotica Research Today. 3(5):382–385.
  • Nardi S, Schiavon M, Francioso O. 2021. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules. 26(8):2256. doi:10.3390/molecules26082256.
  • Okatan V. 2020. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: a comparative study. Folia Hort. 32(1):79–85. doi:10.2478/fhort-2020-0008.
  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ. 140682. doi:10.1016/j.scitotenv.2020.140.
  • On A, Wong F, Ko Q, Tweddell RJ, Antoun H, Avis TJ. 2015. Antifungal effects of compost tea microorganisms on tomato pathogens. Biol Control. 80:63–69. doi:10.1016/j.biocontrol.2014.09.017.
  • Ouazzani CA, Chliyeh M, Mouria B, Dahmani J, Ouazzani Touhami A, Benkirane R, Achbani EH, Douira A. 2014. Vitro and in vivo effect of salinity on the antagonist potential of Trichoderma harzianum and sensitivity of tomato to Verticillium wilt. Int J Recent Sci Res. 5:780–791.
  • Panno S, Davino S, Caruso AG, Bertacca S, Crnogorac A, Mandić A, Matić S. 2021. A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean Basin. Agronomy. 11(11):2188. doi:10.3390/agronomy11112188.
  • Pant AP, Radovich TJK, Hue NV, Paull RE. 2012. Biochemical properties of compost tea associated with compost quality and effects on pakchoi growth. Sci Hortic. 148:138–146. doi:10.1016/j.scienta.2012.09.019.
  • Pascual I, Azcona I, Morales F, Aguirreolea J, Sánchez-Díaz M. 2009. Growth, yield and physiology of Verticillium-inoculated pepper plants treated with ATAD and composted sewage sludge. Plant Soil. 319(1–2):291–306. doi:10.1007/s11104-008-9870-3.
  • Pastori PL, Figueiras RMC, Oster AH, Barbosa MG, Silveira MRSD, Paiva LGG. 2017. Postharvest quality of tomato fruits bagged with nonwoven fabric (TNT). Rev Colomb Cienc Hortícolas. 11(1):80–88. doi:10.17584/rcch.2017v11i1.5839.
  • Pathania P, Rajta A, Singh PC, Bhatia R. 2020. Role of plant growth-promoting bacteria in sustainable agriculture. Biocatal Agric Biotechnol. 101842. doi:10.1016/j.bcab.2020.101842.
  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 52(1):347–375. doi:10.1146/annurev-phyto-082712-102340.
  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK. 2019. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Singh AK, Kumar A, Singh PK, editors. PGPR amelioration in sustainable agriculture. Sawston, UK: Woodhead Publishing; p. 129–157.
  • Raaijmakers JM, Mazzola M. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol. 50(1):403–424. doi:10.1146/annurev-phyto-081211-172908.
  • Rahi AA, Anjum MA, Iqbal Mirza J, Ahmad Ali S, Marfo TD, Fahad S, Datta R. 2021. Yield enhancement and better micronutrients uptake in tomato fruit through potassium humate combined with micronutrients mixture. Agriculture. 11(4):357. doi:10.3390/agriculture11040357.
  • Raklami A, Bechtaoui N, Tahiri A, Anli M, Meddich A, Oufdou K. 2019. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol. 10:1106. doi:10.3389/fmicb.2019.01106.
  • Sadler G, Davis J, Dezman D. 1990. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J Food Sci. 55(5):1460–1461. doi:10.1111/j.1365-2621.1990.tb03958.x.
  • Sadras VO, Quiroz F, Echarte L, Escande A, Pereyra VR. 2000. Effect of Verticillium dahliae on photosynthesis, leaf expansion and senescence of field-grown sunflower. Ann Bot. 86(5):1007–1015. doi:10.1006/anbo.2000.1267.
  • Salehi B, Sharifi-Rad R, Sharopov F, Namiesnik J, Roointan A, Kamle M, Kumar P, Martins N, Sharifi-Rad J. 2019. Beneficial effects and potential risks of tomatoes consumption for human health: an overview. Nutrition. 62:201–208. doi:10.1016/j.nut.2019.01.012.
  • Samet M, Charfeddine M, Kamoun L, Nouri-Ellouze O, Gargouri-Bouzid R. 2018. Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environ Sci Pollut Res. 25(19):18921–18937. doi:10.1007/s11356-018-1960-z.
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160(1):47–56. doi:10.1016/0003-2697(87)90612-9.
  • Shafique HA, Sultana V, Ara J, Ehteshamul-Haque S, Athar M. 2015. Role of antagonistic microorganisms and organic amendment in stimulating the defense system of okra against root rotting fungi. Polish J Microbiol. 64(2):157–162. doi:10.33073/pjm-2015-023.
  • Shen Z, Zhong S, Wang Y, Wang B, Mei X, Li R, Ruan Y, Shen Q. 2013. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur J Soil Biol. 57:1–8. doi:10.1016/j.ejsobi.2013.03.006.
  • Shen T, Lei Y, Pu X, Zhang S, Du Y. 2021. Identification and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease. Appl Soil Ecol. 157:103724. doi:10.1016/j.apsoil.2020.103724.
  • Shi L, Du N, Yuan Y, Shu S, Sun J, Guo S. 2016. Vinegar residue compost as a growth substrate enhances cucumber resistance against the Fusarium wilt pathogen Fusarium oxysporum by regulating physiological and biochemical responses. Environ Sci Pollut Res. 23(18):18277–18287. doi:10.1007/s11356-016-6798-7.
  • Singh JS, Strong PJ. 2016. Biologically derived fertilizer: a multifaceted bio-tool in methane mitigation. Ecotoxicol Environ Saf. 124:267–276. doi:10.1016/j.ecoenv.2015.10.018.
  • SinghD, Ghosh P, Kumar J, Kumar A. 2019. Rhizosphere, microbiome and agroecology. In: SinghD, Gupta V, Prabha R, editors. Microbia interventions in agriculture and environment. Singapore: Springer Nature; p. 205–227.
  • Sreenivasulu R, Reddy MSP, Tomar D, Sanjay MSS, Reddy BB. 2019. Managing of early blight of tomato caused by Alternaria solani through fungicides and bioagents. Int J Curr Microbiol. App Sci. 8(6):1442–1452. doi:10.20546/ijcmas.2019.806.175.
  • Tabli N, Rai A, Bensidhoum L, Palmieri G, Gogliettino M, Cocca E, Consiglio C, Cillo F, Bubici G, Nabti E. 2018. Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol Control. 117:78–86. doi:10.1016/j.biocontrol.2017.10.010.
  • Talaat NB. 2019. Role of reactive oxygen species signaling in plant growth and development. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M, editors. Reactive oxygen nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Hoboken (NJ): John Wiley & Sons Ltd; p. 225–266.
  • Tang F, Fu YY, Ye JR. 2015. The effect of methyl salicylate on the induction of direct and indirect plant defense mechanisms in poplar (Populus euramericana “Nanlin 895”). Plant Interact. 10(1):93–100. doi:10.1080/17429145.2015.1020024.
  • Tejera García NA, Olivera M, Iribarne C, Lluch C. 2004. Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. Plant Physiol Biochem. 42(7–8):585–591. doi:10.1016/j.plaphy.2004.04.004.
  • Tigist M, Workneh TS, Woldetsadik K. 2011. Effects of variety on the quality of tomato stored under ambient conditions. J Food Sci Technol. 50(3):477–486. doi:10.1007/s13197-011-0378-0.
  • Tubeileh AM, Stephenson GT. 2020. Soil amendment by composted plant wastes reduces the Verticillium dahliae abundance and changes soil chemical properties in a bell pepper cropping system. Curr Plant Biol. 22:100148. doi:10.1016/j.cpb.2020.100148.
  • Ullah S, Ashraf M, Asghar HN, Iqbal Z, Ali R. 2019. Plant growth promoting rhizobacteria mediated amelioration of drought in crop plants: a review. Plant Soil Environ. 38(1):1–20. doi:10.25252/SE/19/71760.
  • Vallad GE, Subbarao KV. 2008. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology. 98(8):871–885. doi:10.1094/phyto-98-8-0871.
  • Van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL. 2007. Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol. 45:43–72. doi:10.1146/annurev.phyto.45.062806.094430.
  • Velikova V, Yordanov I, Edreva A 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151:59–66. doi:10.1016/S01689452(99)00197-1.
  • Vitullo D, Altieri R, Esposito A, Nigro F, Ferrara M, Alfano G, Ranalli G, De Cicco V, Lima G. 2013. Suppressive biomasses and antagonist bacteria for an eco-compatible control of Verticilliumdahliae on nursery-grown olive plants. International Journal of Environmental Science and Technology. 10(2):209–220. doi:10.1007/s13762-012-0145-4.
  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kim YH, Choi KS, Lee IJ. 2015. Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. Eur J Plant Pathol. 141(4):803–824. doi:10.1007/s10658-014-0581-8.
  • Wu X, Song X, Qiu Z, He Y. 2016. Mapping of TBARS distribution in frozen–thawed pork using NIR hyperspectral imaging. Meat Sci. 113:92–96. doi:10.1016/j.meatsci.2015.11.008.
  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. 2019. The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int. 2019:1–11. doi:10.1155/2019/9732325.
  • Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, Kowalchuk GA, Shen Q. 2017. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 114:238–247. doi:10.1016/j.soilbio.2017.07.016.
  • Yogev A, Raviv M, Hadar Y, Cohen R, Wolf S, Gil L, Katan J. 2010. Induced resistance as a putative component of compost suppressiveness. Biol Control. 54(1):46–51. doi:10.1016/j.biocontrol.2010.03.004.
  • Yu YY, Li SM, Qiu JP, Li JG, Luo YM, Guo JH. 2019. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. J Plant Nutr Soil Sci. 182(4):560–569. doi:10.1002/jpln.201800223.
  • Zarco-Tejada PJ, Poblete T, Camino C, Gonzalez-Dugo V, Calderon R, Hornero A, Hernandez-Clemente R, Román-Écija M, Velasco-Amo MP, Landa BB, et al. 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across species. Nat Commun. 12(1):1–11. doi:10.1038/s41467-021-26335-3.
  • Zhang A. 2006. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. J Plant Physiol. 141(2):475–487. doi:10.1104/pp.105.075416.
  • Zhang Q, Gao X, Ren Y, Ding X, Qiu J, Li N, Chu Z. 2018. Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int J Mol Sci. 19(1):241. doi:10.3390/ijms19010241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.