259
Views
0
CrossRef citations to date
0
Altmetric
Reviews and symposia articles / Articles de Revue

Genome exploration and ecological competence are key to developing effective Pseudomonas-based biocontrol inoculants

ORCID Icon, & ORCID Icon
Pages 330-339 | Accepted 21 Feb 2023, Published online: 10 Mar 2023

References

  • Anderson AJ, Kim YC. 2020. Insights into plant-beneficial traits of probiotic Pseudomonas chlororaphis isolates. J Med Microbiol. 69(3):361–371. doi:10.1099/jmm.0.001157.
  • Arseneault T, Goyer C, Filion M. 2015. Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology. 105(10):1311–1317. doi:10.1094/PHYTO-12-14-0358-R.
  • Arseneault T, Roquigny R, Novinscak A, Goyer C, Filion M. 2020. Phenazine-1-carboxylic acid-producing Pseudomonas synxantha LBUM223 alters the transcriptome of Streptomyces scabies, the causal agent of potato common scab. Physiol Mol Plant Pathol. 110:101480. doi:10.1016/j.pmpp.2020.101480.
  • Aziz U, Rehmani MS, Wang L, Luo X, Xian B, Wei S, Wang G, Shu K. 2021. Toward a molecular understanding of rhizosphere, phyllosphere, and spermosphere interactions in plant growth and stress response. CRC Crit Rev Plant Sci. 40(6):479–500. doi:10.1080/07352689.2022.2031728.
  • Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. 2021. Biocontrol activity of Bacillus spp. and Pseudomonas spp. against Botrytis cinerea and other cannabis fungal pathogens. Phytopathology. 112(3):549–560. doi:10.1094/PHYTO-03-21-0128-R.
  • Bangera MG, Thomashow LS. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol. 181(10):3155–3163. doi:10.1128/JB.181.10.3155-3163.1999.
  • Barret M, Morrissey JP, O’gara F. 2011. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils. 47(7):729–743. doi:10.1007/s00374-011-0605-x.
  • Bernal P, Llamas MA, Filloux A. 2018. Type VI secretion systems in plant-associated bacteria. Environ Microbiol. 20(1):1–15. doi:10.1111/1462-2920.13956.
  • Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C. 2018. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res Int. 25(30):29953–29970. doi:10.1007/s11356-017-1152-2.
  • Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Jošić D, Filion M. 2019. Diversity of phytobeneficial traits revealed by whole‐genome analysis of worldwide‐isolated phenazine‐producing Pseudomonas spp. Environ Microbiol. 21(1):437–455. doi:10.1111/1462-2920.14476.
  • Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel, GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49(W1):W29–35. doi:10.1093/nar/gkab335.
  • Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C. 2007. A cryptic PKS–NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem. 5(14):2211–2213. doi:10.1039/B707762A.
  • Brisbane PG, Janik LJ, Tate ME, Warren RF. 1987. Revised structure for the phenazine antibiotic from Pseudomonas fluorescens 2-79 (NRRL B-15132). Antimicrob Agents Chemother. 31(12):1967–1971. doi:10.1128/AAC.31.12.1967.
  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat, EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 64(1):807–838. doi:10.1146/annurev-arplant-050312-120106.
  • Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, et al. 2017. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15(9):e2002860. doi:10.1371/journal.pbio.2002860.
  • De Vrieze M, Varadarajan AR, Schneeberger K, Bailly A, Rohr RP, Ahrens CH, Weisskopf L. 2020. Linking comparative genomics of nine potato-associated Pseudomonas isolates with their differing biocontrol potential against late blight. Front Microbiol. 11:857. doi:10.3389/fmicb.2020.00857.
  • Dhankhar R, Mohanty A, Gulati P. 2021. Microbial diversity of phyllosphere: exploring the unexplored. In: Verma A, Saini J, Hesham A Singh H, editors. Phytomicrobiome interactions and sustainable agriculture. 1st ed. Hoboken (NJ): John Wiley & Sons, Ltd.; pp. 66–90. doi:10.1002/9781119644798.ch5.
  • Espinosa‐urgel M. 2022. Connecting environmental and evolutionary microbiology for the development of new agrobiotechnological tools. Environ Microbiol. 25(1):87–90. doi:10.1111/1462-2920.16197.
  • Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8(9):623–633. doi:10.1038/nrmicro2415.
  • Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R, Redondo-Nieto M. 2016. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One. 11(2):e0150183. doi:10.1371/journal.pone.0150183.
  • Ghequire MGK, De Mot R. 2014. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev. 38(4):523–568. doi:10.1111/1574-6976.12079.
  • Gross H, Loper JE. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 26(11):1408–1446. doi:10.1039/b817075b.
  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH. 2007. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol. 14(1):53–63. doi:10.1016/j.chembiol.2006.11.007.
  • Haas D, Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 3(4):307–319. doi:10.1038/nrmicro1129.
  • Hartmann A, Rothballer M, Schmid M. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil. 312(1):7–14. doi:10.1007/s11104-007-9514-z.
  • Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N, Elbourne LDH, Paulsen IT, et al. 2018. Genome‐based evolutionary history of Pseudomonas spp. Environ Microbiol. 20(6):2142–2159. doi:10.1111/1462-2920.14130.
  • Höfte M. 2021. The use of Pseudomonas spp. as bacterial biocontrol agents to control plant disease. In: Köhl J Ravensberg W, editors. Microbial bioprotectants for plant disease management. Cambridge, UK: Burleigh Dodds Science Publishing Limited; pp. 1–74. doi:10.19103/AS.2021.0093.11.
  • Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. 2012. Experimental evolution. Trends Ecol Evol. 27(10):547–560. doi:10.1016/j.tree.2012.06.001.
  • Lalucat J, Mulet M, Gomila M, García-Valdés E. 2020. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes. 11(2):139. doi:10.3390/genes11020139.
  • Legein M, Smets W, Vandenheuvel D, Eilers T, Muyshondt B, Prinsen E, Samson R, Lebeer S. 2020. Modes of action of microbial biocontrol in the phyllosphere. Front Microbiol. 11:1619. doi:10.3389/fmicb.2020.01619.
  • Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl Environ Microbiol. 69(4):1875–1883. doi:10.1128/AEM.69.4.1875-1883.2003.
  • Ling N, Wang T, Kuzyakov Y. 2022. Rhizosphere bacteriome structure and functions. Nat Commun. 13(1):836. doi:10.1038/s41467-022-28448-9.
  • Liszkay A, van der Zalm E, Schopfer P. 2004. Production of reactive oxygen intermediates (O2•−, H2O2, and •OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136(2):3114–3123. doi:10.1104/pp.104.044784.
  • Loper JE, Henkels MD, Shaffer BT, Valeriote FA, Gross H. 2008. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol. 74(10):3085–3093. doi:10.1128/AEM.02848-07.
  • Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS. 1998. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol. 180(9):2541–2548. doi:10.1128/JB.180.9.2541-2548.1998.
  • Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, Elbourne LDH, LeTourneau MK, Gang DR, Paulsen IT, Weller DM, et al. 2021. Root exudates alter the expression of diverse metabolic, transport, regulatory, and stress response genes in rhizosphere Pseudomonas. Front Microbiol. 12:651282. doi:10.3389/fmicb.2021.651282.
  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol. 58(8):2616–2624. doi:10.1128/aem.58.8.2616-2624.1992.
  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14(1):60. doi:10.1186/1471-2105-14-60.
  • Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50(D1):D801–807. doi:10.1093/nar/gkab902.
  • Melnyk RA, Hossain SS, Haney CH. 2019. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. Isme J. 13(6):1575–1588. doi:10.1038/s41396-019-0372-5.
  • Mulet M, Lalucat J, García-Valdés E. 2010. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol. 12(6):1513–1530. doi:10.1111/j.1462-2920.2010.02181.x.
  • Nordgaard M, Blake C, Maróti G, Hu G, Wang Y, Strube ML, Át K. 2022. Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience. 25(6):104406. doi:10.1016/j.isci.2022.104406.
  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, et al. 2005. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 23(7):873–878. doi:10.1038/nbt1110.
  • Peix A, Ramírez-Bahena M-H, Velázquez E. 2009. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol. 9(6):1132–1147. doi:10.1016/j.meegid.2009.08.001.
  • Peix A, Ramírez-Bahena M-H, Velázquez E. 2018. The current status on the taxonomy of Pseudomonas revisited: an update. Infect Genet Evol. 57:106–116. doi:10.1016/j.meegid.2017.10.026.
  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M. 2007. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol. 103(4):1007–1020. doi:10.1111/j.1365-2672.2007.03345.x.
  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 52(1):347–375. doi:10.1146/annurev-phyto-082712-102340.
  • Quesada JM, Fernández M, Soriano MI, Barrientos-Moreno L, Llamas MA, Espinosa-Urgel M. 2016. Rhizosphere selection of Pseudomonas putida KT2440 variants with increased fitness associated to changes in gene expression. Environ Microbiol Rep. 8(5):842–850. doi:10.1111/1758-2229.12447.
  • Romano I, Ventorino V, Pepe O. 2020. Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci. 11:6. doi:10.3389/fpls.2020.00006.
  • Roquigny R, Novinscak A, Arseneault T, Joly DL, Filion M. 2018. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223. BMC Genomics. 19(1):474. doi:10.1186/s12864-018-4852-1.
  • Santamaría‐hernando S, De Bruyne L, Höfte M, Ramos‐gonzález M. 2022. Improvement of fitness and biocontrol properties of Pseudomonas putida via an extracellular heme peroxidase. Microb Biotechnol. 15(10):2652–2666. doi:10.1111/1751-7915.14123.
  • Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. 2016. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 47(1):1–24. doi:10.1146/annurev-ecolsys-121415-032238.
  • Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA. 1991. Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol. 57(10):2928–2934. doi:10.1128/aem.57.10.2928-2934.1991.
  • Vorholt JA. 2012. Microbial life in the phyllosphere. Nat Rev Microbiol. 10(12):828–840. doi:10.1038/nrmicro2910.
  • Weller DM. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology. 97(2):250–256. doi:10.1094/PHYTO-97-2-0250.
  • Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44(D1):D646–653. doi:10.1093/nar/gkv1227.
  • Zboralski A, Biessy A, Filion M. 2022. Bridging the gap: type III secretion systems in plant-beneficial bacteria. Microorganisms. 10(1):187. doi:10.3390/microorganisms10010187.
  • Zboralski A, Biessy A, Savoie M-C, Novinscak A, Filion M. 2020. Metabolic and genomic traits of phytobeneficial phenazine-producing Pseudomonas spp. are linked to rhizosphere colonization in Arabidopsis thaliana and Solanum tuberosum. Appl Environ Microbiol. 86(4): e02443-19. doi:10.1128/AEM.02443-19.
  • Zboralski A, Filion M. 2020. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J. 18:3539–3554. doi:10.1016/j.csbj.2020.11.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.