434
Views
0
CrossRef citations to date
0
Altmetric
Reviews and symposia articles / Articles de Revue

Applications of genome editing in plant virus disease management: CRISPR/Cas9 plays a central role

, , , , , , , & show all
Pages 463-474 | Accepted 13 May 2023, Published online: 31 May 2023

References

  • Abdul‐Razzak A, Guiraud T, Peypelut M, Walter J, Houvenaghel MC, Candresse T, Le Gall O, German‐Retana S. 2009. Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E‐mediated resistance against Lettuce mosaic potyvirus. Mol Plant Pathol. 10(1):109–113. doi:10.1111/j.1364-3703.2008.00513.x.
  • Ahmad M, Ali Q, Hafeez MM, Malik A. 2021. Improvement for biotic and abiotic stress tolerance in crop plants. Biol Clin Sci Res J. 2021(1). doi:10.54112/bcsrj.v2021i1.50.
  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. 2015. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16(1):1–11. doi:10.1186/s13059-015-0799-6.
  • Ali Z, Ali S, Tashkandi M, Zaidi SSEA, Mahfouz MM. 2016. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Scientific Rep. 6(1):1–13. doi:10.1038/srep26912.
  • Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M. 2018. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 19(1):1–9. doi:10.1186/s13059-017-1381-1.
  • Aouida M, Li L, Mahjoub A, Alshareef S, Ali Z, Piatek A, Mahfouz MM. 2015. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae. J Biosci Bioeng. 120(4):364–371. doi:10.1016/j.jbiosc.2015.02.017.
  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. 2015. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants. 1(10):1–4. doi:10.1038/nplants.2015.145.
  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1709–1712. doi:10.1126/science.1138140.
  • Bastet A, Zafirov D, Giovinazzo N, Guyon‐debast A, Nogué F, Robaglia C, Gallois JL. 2019. Mimicking natural polymorphism in eIF 4E by CRISPR‐Cas9 base editing is associated with resistance to potyviruses. Plant Biotech J. 17(9):1736–1750. doi:10.1111/pbi.13096.
  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. 2015. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech. 32:76–84. doi:10.1016/j.copbio.2014.11.007.
  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 326(5959):1509–1512. doi:10.1126/science.1178811.
  • Boettcher M, McManus MT. 2015. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell. 58(4):575–585. doi:10.1016/j.molcel.2015.04.028.
  • Bogdanove AJ, Schornack S, Lahaye T. 2010. TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol. 13(4):394–401. doi:10.1016/j.pbi.2010.04.010.
  • Burgyán J, Havelda Z. 2011. Viral suppressors of RNA silencing. Trends Plant Sci. 16(5):265–272. doi:10.1016/j.tplants.2011.02.010.
  • Cao Y, Zhou H, Zhou X, Li F. 2020. Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Front Microbiol. 11:2613. doi:10.3389/fmicb.2020.593700.
  • Cao Y, Zhou H, Zhou X, Li F. 2021. Conferring resistance to plant RNA viruses with the CRISPR/CasRx system. Virol Sin. 36(4):1–4. doi:10.1007/s12250-020-00338-8.
  • Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics. 188(4):773–782. doi:10.1534/genetics.111.131433.
  • Carte J, Wang R, Li H, Terns RM, Terns MP. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22(24):3489–3496. doi:10.1101/gad.1742908.
  • Ceasar SA, Rajan V, Prykhozhij SV, Berman JN, Ignacimuthu S. 2016. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta. 1863(9):2333–2344. doi:10.1016/j.bbamcr.2016.06.009.
  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39(12):e82. doi:10.1093/nar/gkr218.
  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal‐on A. 2016. Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. 17(7):1140–1153. doi:10.1111/mpp.12375.
  • Chauhan P, Singla K, Rajbhar M, Singh A, Das N, Kumar K. 2019. A systematic review of conventional and advanced approaches for the control of plant viruses. J Appl Biol Biotechnol. 7(4):89–98.
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339(6121):819–823. doi:10.1126/science.1231143.
  • Cong L, Zhang F. 2015. Genome engineering using CRISPR-Cas9 system. Chromosomal mutagenesis. New York (NY): Humana Press; p. 197–217.
  • Faal PG, Farsi M, Seifi A, Kakhki AM. 2020. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol Biol Rep. 47(5):3369–3376. doi:10.1007/s11033-020-05409-3.
  • Gaj T, Gersbach CA, Barbas III CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31(7):397–405. doi:10.1016/j.tibtech.2013.04.004.
  • Gal-On A, Shiboleth YM. 2006. Cross-protection. In: Loebenstein G, Carr J, editors. Natural resistance mechanisms of plants to viruses. Dordrecht (Netherlands): Springer; p. 261–288.
  • Galvez LC, Banerjee J, Pinar H, Mitra A. 2014. Engineered plant virus resistance. Plant Sci. 228:11–25. doi:10.1016/j.plantsci.2014.07.006.
  • Gao C. 2019. Precision plant breeding using genome editing technologies. Transgenic Res. 28(Suppl 2):53–55. doi:10.1007/s11248-019-00132-7.
  • García-Arenal F, McDonald BA. 2003. An analysis of the durability of resistance to plant viruses. Phytopathol. 93(8):941–952. doi:10.1094/PHYTO.2003.93.8.941.
  • Ghoshal B, Sanfaçon H. 2015. Symptom recovery in virus-infected plants: revisiting the role of RNA silencing mechanisms. Virology. 479:167–179. doi:10.1016/j.virol.2015.01.008.
  • Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms Ncbp-1 and Ncbp-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J. 17(2):421–434. doi:10.1111/pbi.12987.
  • Green JC, Hu JS. 2017. Editing plants for virus resistance using CRISPR-Cas. Acta Virol. 61(2):138–142. doi:10.4149/av_2017_02_02.
  • Hamza M, Khan MZ, Mustafa R, Kamal H, Hussain A, Mansoor S, Amin I 2021. Engineering resistance against Cotton Leaf Curl Kokhran Virus-Burewala strain using CRISPR-Cas9 system in Nicotiana benthamiana. doi:10.21203/rs.3.rs-604666/v1.
  • Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol. 11(11):777–788. doi:10.1038/nrmicro3117.
  • Hassan Z, Sajid M, Ali Q, Nadeem T, Sehrai GH, Salman S. 2017. Crispr cas9 system: a novel genome editing tool. Sci Int. 29(3):639–639.
  • Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science. 329(5997):1355–1358. doi:10.1126/science.1192272.
  • Herrera-Estrella L, Alvarez-Morales A. 2001. Genetically modified crops: hope for developing countries? EMBO Rep. 2(4):256–258. doi:10.1093/embo-reports/kve075.
  • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157(6):1262–1278. doi:10.1016/j.cell.2014.05.010.
  • Jia R, Zhao H, Huang J, Kong H, Zhang Y, Guo J, Huang Q, Guo Y, Wei Q, Zuo J, et al. 2017. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep. 7(1):1–9. doi:10.1038/s41598-017-13049-0.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337(6096):816–821. doi:10.1126/science.1225829.
  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C. 2015. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 1(10):1–4. doi:10.1038/nplants.2015.144.
  • Jones RA, Naidu RA. 2019. Global dimensions of plant virus diseases: current status and future perspectives. Ann Rev Virol. 6(1):387–409. doi:10.1146/annurev-virology-092818-015606.
  • Kalinina NO, Khromov A, Love AJ, Taliansky ME. 2020. CRISPR Applications in plant virology: virus resistance and beyond. Phytopathol. 110(1):18–28. doi:10.1094/PHYTO-07-19-0267-IA.
  • Kanchiswamy CN. 2016. DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep. 35(7):1469–1474. doi:10.1007/s00299-016-1982-2.
  • Khatodia S, Bhatotia K, Tuteja N. 2017. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered. 8(3):274–279. doi:10.1080/21655979.2017.1297347.
  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z. 2019. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J. 17(6):1004–1006. doi:10.1111/pbi.13077.
  • Koonin EV, Makarova KS, Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 37:67–78. doi:10.1016/j.mib.2017.05.008.
  • Liu H, Soyars CL, Li J, Fei Q, He G, Peterson BA, Meyers BC, Nimchuk ZL, Wang X. 2018. CRISPR/Cas9‐mediated resistance to cauliflower mosaic virus. Plant Direct. 2(3):e00047. doi:10.1002/pld3.47.
  • Macovei A, Sevilla N, Cantos C, Jonson GB, Slamet-Loedin I, Ĉermák T, Voytas DF, Choi I-R, Chadha-Mohanty P. 2018. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J. 16(11):1918–1927. doi:10.1111/pbi.12927.
  • Maeder ML, Gersbach CA. 2016. Genome-editing technologies for gene and cell therapy. Mol Ther. 24(3):430–446. doi:10.1038/mt.2016.10.
  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 13(11):722–736. doi:10.1038/nrmicro3569.
  • Malzahn A, Lowder L, Qi Y. 2017. Plant genome editing with TALEN and CRISPR. Cell Biosci. 7(1):1–18. doi:10.1186/s13578-017-0148-4.
  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu JK. Application of the CRISPR–Cas system for efficient genome engineering in plants. Mol Plant. 2013;6(6):2008.
  • Mehta D, Stürchler A, Anjanappa RB, Zaidi SSEA, Hirsch-Hoffmann M, Gruissem W, Vanderschuren H. 2019. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol. 20(1):1–10. doi:10.1186/s13059-019-1678-3.
  • Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature. 431(7006):343–349. doi:10.1038/nature02873.
  • Meziadi C, Blanchet S, Geffroy V, Pflieger S. 2017. Genetic resistance against viruses in Phaseolus vulgaris L.: state of the art and future prospects. Plant Sci. 265:39–50. doi:10.1016/j.plantsci.2017.08.009.
  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, et al. 2007. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25(7):778–785. doi:10.1038/nbt1319.
  • Mori T, Takenaka K, Domoto F, Aoyama Y, Sera T. 2013. Inhibition of binding of tomato yellow leaf curl virus rep to its replication origin by artificial zinc-finger protein. Mol Biotechnol. 54(2):198–203. doi:10.1007/s12033-012-9552-5.
  • Mubarik MS, Wang X, Khan SH, Ahmad A, Khan Z, Amjid MW, Razzaq MK, Ali Z, Azhar MT. 2021. Engineering broad-spectrum resistance to cotton leaf curl disease by CRISPR-Cas9 based multiplex editing in plants. GM Crops Food. 12(2):647–658. doi:10.1080/21645698.2021.1938488.
  • Mushtaq M, Mukhtar S, Sakina A, Dar AA, Bhat R, Deshmukh R, Molla K, Kundoo AA, Dar MS. 2020. Tweaking genome-editing approaches for virus interference in crop plants. Plant Physiol Biochem. 147:242–250. doi:10.1016/j.plaphy.2019.12.022.
  • Nilon A, Robinson K, Pappu HR, Mitter N. 2021. Current status and potential of RNA interference for the management of tomato spotted wilt virus and thrips vectors. Pathogens. 10(3):320. doi:10.3390/pathogens10030320.
  • Patil BL, Raghu R, Dangwal M, Byregowda M, Voloudakis A. 2021. Exogenous dsRNA-mediated field protection against pigeonpea sterility mosaic emaravirus. J Plant Biochem Biotechnol. 30(2):400–405. doi:10.1007/s13562-020-00627-z.
  • Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. 2019. A new era for mild strain cross-protection. Viruses. 11(7):670. doi:10.3390/v11070670.
  • Pramanik D, Shelake RM, Park J, Kim MJ, Hwang I, Park Y, Kim JY. 2021. CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew. Int J Mol Sci. 22(4):1878. doi:10.3390/ijms22041878.
  • Pyott DE, Sheehan E, Molnar A. 2016. Engineering of CRISPR/Cas9‐mediated potyvirus resistance in transgene‐free arabidopsis plants. Mol Plant Pathol. 17(8):1276–1288. doi:10.1111/mpp.12417.
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Prot. 8(11):2281–2308. doi:10.1038/nprot.2013.143.
  • Romay G, Bragard C. 2017. Antiviral defenses in plants through genome editing. Front Microbiol. 8:47. doi:10.3389/fmicb.2017.00047.
  • Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, Pappu HR, Melcher U. 2019. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PLoS One. 14(10):e0223765. doi:10.1371/journal.pone.0223765.
  • Rubio L, Galipienso L, Ferriol I. 2020. Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front Plant Sci. 11:1092. doi:10.3389/fpls.2020.01092.
  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 3(3):430–439.
  • Schornack S, Moscou MJ, Ward ER, Horvath DM. 2013. Engineering plant disease resistance based on TAL effectors. Ann Rev Phytopathol. 51(1):383–406. doi:10.1146/annurev-phyto-082712-102255.
  • Seal SE, Jeger MJ, Van Den Bosch F. 2006. Begomovirus evolution and disease management. Adv Virus Res. 67:297–316.
  • Sera T. 2005. Inhibition of virus DNA replication by artificial zinc finger proteins. J Virol. 79(4):2614–2619. doi:10.1128/JVI.79.4.2614-2619.2005.
  • Shahriar SA, Islam MN, Chun CNW, Rahim M, Paul NC, Uddain J, Siddiquee S. 2021. Control of plant viral diseases by CRISPR/Cas9: resistance mechanisms, strategies and challenges in food crops. Plants. 10(7):1264. doi:10.3390/plants10071264.
  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. 2011. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 11(1):11–27. doi:10.2174/156652311794520111.
  • Small I. 2007. Rnai for revealing and engineering plant gene functions. Curr Opin Biotechnol. 18(2):148–153. doi:10.1016/j.copbio.2007.01.012.
  • Sovová T, Kerins G, Demnerová K, Ovesná J. 2016. Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Curr Iss Mol Biol. 21(1):41–62.
  • Stanislaus AC, Rajan V, Prykhozhij S, Berman JN, Ignacimuthu S. 2016. Insert, remove or replace: a highly advanced genome editing system using CRISPR/Cas9. BBA Mol Cell Res. 1863(9):1863. doi:10.1016/j.bbamcr.2016.06.009.
  • Steinert J, Schiml S, Puchta H. 2016. Homology-based doublestrand break-induced genome engineering in plants. Plant Cell Rep. 35:1429–1438.
  • Stella S, Montoya G. 2016. The genome editing revolution: a CRISPR‐Cas TALE off‐target story. Inside Cell. 38(1):7–16. doi:10.1002/bies.201670903.
  • Stevens M, Lacomme C. 2017. Transmission of plant viruses. In: van Emden H, and Harrington R, editors. Aphids as Crop Pests. 2nd ed. Wallingford (UK): CABI; p. 323–361.
  • Suweis S, Carr JA, Maritan A, Rinaldo A, D’Odorico P. 2015. Resilience and reactivity of global food security. Proc Natl Acad Sci USA. 112(22):6902–6907. doi:10.1073/pnas.1507366112.
  • Tenllado F. 2004. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res. 102(1):85–96. doi:10.1016/j.virusres.2004.01.019.
  • Toker C, Lluch C, Tejera NA, Serraj R, Siddique KHM. 2007. 23 Abiotic stresses. In: Chickpea breeding and management. p. 474.
  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. 2019. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Comm Biol. 2(1):1–11. doi:10.1038/s42003-019-0288-7.
  • Tripathi L, Ntui VO, Tripathi JN, Kumar PL. 2021. Application of CRISPR/Cas for diagnosis and management of viral diseases of banana. Front Microbiol. 11:609784. doi:10.3389/fmicb.2020.609784.
  • Tröder SE, Zevnik B. 2022. History of genome editing: from meganucleases to CRISPR. Lab Anim. 56(1):60–68. doi:10.1177/0023677221994613.
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 11(9):636–646. doi:10.1038/nrg2842.
  • Varanda CM, Félix MDR, Campos MD, Patanita M, Materatski P. 2021. Plant viruses: from targets to tools for CRISPR. Viruses. 13(1):141. doi:10.3390/v13010141.
  • Varma A, Malathi VG. 2003. Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol. 142(2):145–164. doi:10.1111/j.1744-7348.2003.tb00240.x.
  • Voytas DF, Gao C, McCouch SR. 2014. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12(6):e1001877. doi:10.1371/journal.pbio.1001877.
  • Whitfield AE, Falk BW, Rotenberg D. 2015. Insect vector-mediated transmission of plant viruses. Virol. 479-480:278–289. doi:10.1016/j.virol.2015.03.026.
  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, K S-G, Kim S-T, Choe S, Kim J-S. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 33(11):1162–1164. doi:10.1038/nbt.3389.
  • Wright DA, Li T, Yang B, Spalding MH. 2014. TALEN-mediated genome editing: prospects and perspectives. Biochem J. 462(1):15–24. doi:10.1042/BJ20140295.
  • Yin K, Han T, Xie K, Zhao J, Song J, Liu Y. 2019. Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res. 1(1):1–9. doi:10.1186/s42483-019-0017-7.
  • Yoon YJ, Venkatesh J, Lee JH, Kim J, Lee HE, Kim DS, Kang BC. 2020. Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Front Plant Sci. 11:1098. doi:10.3389/fpls.2020.01098.
  • Zaidi SSEA, Tashkandi M, Mansoor S, Mahfouz MM. 2016. Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci. 7:1673.
  • Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D. 2020. Multiplex CRISPR/Cas9‐mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J. 18(6):1384–1395. doi:10.1111/pbi.13302.
  • Zhang T, Zhao Y, Ye J, Cao X, Xu C, Chen B, An H, Jiao Y, Zhang F, Yang X, et al. 2019. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol J. 17(7):1185. doi:10.1111/pbi.13095.
  • Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J. 16(8):1415–1423. doi:10.1111/pbi.12881.
  • Zhao H, Wolt JD, Harwood W. 2017. Risk associated with off-target plant genome editing and methods for its limitation. Emerg Top Life Sci. 1(2):231–240. doi:10.1042/ETLS20170037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.