132
Views
0
CrossRef citations to date
0
Altmetric
Genetics and Resistance / Génétique et Résistance

Species diversity of Fusarium head blight and deoxynivalenol (DON) levels in Western Canadian wheat fields

, , & ORCID Icon
Pages 128-141 | Accepted 24 Nov 2023, Published online: 19 Dec 2023

References

  • AAFC. 2020. Canada: outlook for principal field crops Canada; [accessed 2021 Sep 21]. https://agriculture.canada.ca/en/canadas-agriculture-sectors/crops/reports-and-statistics-data-canadian-principal-field-crops/canada-outlook-principal-field-crops-2021-08-20%0Ahttps://www.agr.gc.ca/eng/crops/reports-and-statistics-data-for-canadian-princi.
  • Amarasinghe CC, Sharanowski B, Fernando WGD. 2019. Molecular phylogenetic relationships, trichothecene chemotype diversity and aggressiveness of strains in a global collection of Fusarium graminearum species. Toxins. 11(5):263. doi: 10.3390/toxins11050263.
  • Amarasinghe CC, Simsek S, Brûlé-Babel A, Fernando WGD. 2016. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum. Food Addit Contam. 33(7):1254–1264. doi: 10.1080/19440049.2016.1198050.
  • Amarasinghe CC, Tittlemier SA, Fernando WGD. 2015. Nivalenol-producing Fusarium cerealis associated with Fusarium head blight in winter wheat in Manitoba, Canada. Plant Pathol. 64(4):988–995. doi: 10.1111/ppa.12329.
  • Aoki T, O’Donnell K. 1999. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum. Mycologia. 91(4):597–609. doi: 10.1080/00275514.1999.12061058.
  • Audenaert K, van Broeck R, van Bekaert B, de Witte F, Heremans B, Messens K, Höfte M, Haesaert G. 2009. Fusarium head blight (FHB) in Flanders: population diversity, inter-species associations and DON contamination in commercial winter wheat varieties. Eur J Plant Pathol. 125(3):445–458. doi: 10.1007/s10658-009-9494-3.
  • Brandfass C, Karlovsky P. 2006. Simultaneous detection of Fusarium culmorum and F. graminearum in plant material by duplex PCR with melting curve analysis. BMC Microbiol. 6(1):1–10. doi: 10.1186/1471-2180-6-4.
  • Buerstmayr M, Steiner B, Buerstmayr H, Léon J. 2020. Breeding for Fusarium head blight resistance in wheat—progress and challenges. Plant Breed. 139(3):429–454. doi: 10.1111/pbr.12797.
  • Campbell AB. 2015. Wheat. [accessed 2021 Sep 22]. https://www.thecanadianencyclopedia.ca/en/article/wheat.
  • Canadian Grain Commission. 2020. Frequency and severity of Fusarium damaged kernels (FDK) in harvest sample program: red spring wheat samples. [accessed 2022 Feb 4]. https://www.grainscanada.gc.ca/en/grain-research/export-quality/cereals/wheat/western/annual-fusarium-damage/canada-western-red-spring/.
  • Clear RM, Patrick SK. 2000. Fusarium head blight pathogens isolated from Fusarium-damaged kernels of wheat in western Canada, 1993 to 1998. Can J Plant Pathol. 22(1):51–60. doi: 10.1080/07060660009501161.
  • Cowger C, Patton-Özkurt J, Brown-Guedira G, Perugini L. 2009. Post-anthesis moisture increased fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology. 99(4):320–327. doi: 10.1094/PHYTO-99-4-0320.
  • Demeke T, Clear RM, Patrick SK, Gaba D. 2005. Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. Int J Food Microbiol. 103(3):271–284. doi: 10.1016/j.ijfoodmicro.2004.12.026.
  • Desjardins A 2006. Fusarium mycotoxins: chemistry, genetics, and biology. American Phytopathological Society (APS) Press; [accessed 2021 Aug 9]. https://www.cabdirect.org/cabdirect/abstract/20063036927
  • Fernando WGD, Oghenekaro AO, Tucker JR, Badea A. 2021. Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of Fusarium head blight in wheat and barley. Can J Plant Pathol. 43(4):495–526. doi: 10.1080/07060661.2020.1861102.
  • Fernando WGD, Zhang JX, Dusabenyagasani M, Guo XW, Ahmed H, McCallum B. 2006. Genetic diversity of Gibberella zeae isolates from Manitoba. In: Plant disease. Vol. 90, The American Phytopathological Society; pp. 1337–1342. doi:10.1094/PD-90-1337.
  • Figueroa M, Hammond-Kosack KE, Solomon PS. 2018. A review of wheat diseases—a field perspective. Mol Plant Pathol. 19(6):1523–1536. doi: 10.1111/mpp.12618.
  • Gilbert J, Fernando WGD. 2004. Epidemiology and biological control of Gibberella zeae/Fusarium graminearum. Can J Plant Pathol. 26(4):464–472. doi: 10.1080/07060660409507166.
  • Gilbert J, Tekauz A. 2000. Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol. 22(1):1–8. doi: 10.1080/07060660009501155.
  • Goswami RS, Kistler HC. 2005. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology®. 95(12):1397–1404. doi: 10.1094/PHYTO-95-1397.
  • Grote U, Fasse A, Nguyen TT, Erenstein O. 2021. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst. 4:317. doi: 10.3389/fsufs.2020.617009.
  • Guo XW. 2008. Development of models to predict Fusarium Head Blight disease and deoxynivalenol in wheat, and genetic causes for chemotype diversity and shifting of Fusarium graminearum in Manitoba [dissertation]. Universiry of Manitoba.
  • Guo XW, Fernando WGD, Seow-Brock HY. 2008. Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Dis. 92(5):756–762. doi: 10.1094/PDIS-92-5-0756.
  • Hope R, Aldred D, Magan N. 2005. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett Appl Microbiol. 40(4):295–300. doi: 10.1111/j.1472-765X.2005.01674.x.
  • Inch S, Fernando WGD, Gilbert J. 2005. Seasonal and daily variation in the airborne concentration of Gibberella zeae (schw.) Petch spores in Manitoba. Can J Plant Pathol. 27(3):357–363. doi: 10.1080/07060660509507233.
  • Ji F, Wu J, Zhao H, Xu J, Shi J. 2015. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. Toxins. 7(3):728–742. doi: 10.3390/toxins7030728.
  • Jurado M, Vázquez C, Patiño B, González- J, Teresa M. 2005. PCR detection assays for the trichothecene-producing species Fusarium graminearum. Fusarium culmorum, Fusarium Poae, Fusarium Equiseti And Fusarium Sporotrichioides Syst Appl Microbiol. 28(6):562–568. doi: 10.1016/j.syapm.2005.02.003.
  • Kang Z, Zingen-Sell I, Buchenauer H. 2005. Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue. Eur J Plant Pathol. 111:19–28. doi: 10.1007/s10658-004-1983-9.
  • Kelly AC, Ward TJ, Yun S-H. 2018. Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen. PLoS One. 13(3):e0194616. doi: 10.1371/journal.pone.0194616.
  • Klem K, Váňová M, Hajšlová J, Lancová K, Sehnalová M. 2007. A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ. 53:421–429. doi: 10.17221/2200-pse.
  • Kulik T, Fordoński G, Pszczółkowska A, Płodzień K, Łapiński M. 2004. Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichioides. FEMS Microbiol Lett. 239(1):181–186. doi: 10.1016/j.femsle.2004.08.037.
  • Leonard KJ, Bushnell WR. 2003. Fusarium head blight of wheat and Barley. St. Paul (MN): APS Press.
  • McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D. 2012. A unified effort to fight an enemy of wheat and barley: fusarium head blight. Plant Dis. 96(12):1712–1728. doi: 10.1094/PDIS-03-12-0291-FE.
  • Miller JD, Richardson SN. 2013. Mycotoxins in Canada: a perspective for 2013. Ottawa (Ontario): Department of Chemistry, Carleton University; [accessed 2020 Nov 26]. https://scabusa.ag.cornell.edu/pdfs/Mycotoxins-in-Canada_Sept-13.pdf.
  • Mishra PK, Fox RT, Culham A. 2003. Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiol Lett. 218(2):329–332. doi: 10.1111/j.1574-6968.2003.tb11537.x.
  • Moradi M, Oerke EC, Steiner U, Tesfaye D, Schellander K, Dehne HW. 2010. Microbiological and SYBR green real-time PCR detection of major fusarium head blight pathogens on wheat ears. Mikrobiologiia. 79(5):655–63. PMID: 21090507.
  • Nelson PE, Toussoun TA, Marasas WFO. 1983. Fusarium species: an illustrated manual for identification. Pennsylvania: Pennsylvania State University, University Park.
  • Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, Joyce D. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol. 53(1):17–37. doi: 10.1006/pmpp.1998.0170.
  • Nicholson P, Simpson DR, Wilson AH, Chandler E, Thomsett M. 2004. Detection and differentiation of trichothecene and enniatin-producing Fusarium species on small-grain cereals. Eur J Plant Pathol. 110(5/6):503–514. doi: 10.1023/B:EJPP.0000032390.65641.a7.
  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol. 41(6):600–623. doi: 10.1016/j.fgb.2004.03.003.
  • Panthi A, Hallen-Adams H, Wegulo SN, Hernandez Nopsa J, Stephen Baenziger P. 2014. Chemotype and aggressiveness of isolates of Fusarium graminearum causing head blight of wheat in Nebraska. Can J Plant Pathol. 36(4):447–455. doi: 10.1080/07060661.2014.964775.
  • Parry DW, Jenkinson P, McLeod L. 1995. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol. 44(2):207–238. doi: 10.1111/j.1365-3059.1995.tb02773.x.
  • Parry DW, Nicholson P. 1996. Development of a PCR assay to detect Fusarium poae in wheat. Plant Pathol. 45(2):383–391. doi: 10.1046/j.1365-3059.1996.d01-133.x.
  • Paul PA, El-Allaf SM, Lipps PE, Madden LV. 2004. Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology®. 94(12):1342–1349. doi: 10.1094/PHYTO.2004.94.12.1342.
  • Paul PA, Lipps PE, Madden LV. 2005. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology®. 95(10):1225–1236. doi: 10.1094/PHYTO-95-1225.
  • Seeling K, Boguhn J, Strobel E, Dänicke S, Valenta H, Ueberschär KH, Rodehutscord M. 2006. On the effects of Fusarium toxin contaminated wheat and wheat chaff on nutrient utilisation and turnover of deoxynivalenol and zearalenone in vitro (rusitec). Toxicol Vitr. 20(5):703–711. doi: 10.1016/j.tiv.2005.10.006.
  • Sinha RC, Savard ME. 1997. Concentration of deoxynivalenol in single kernels and various tissues of wheat heads. Can J Plant Pathol. 19(1):8–12. doi: 10.1080/07060669709500578.
  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K. 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol. 44(11):1191–1204. doi: 10.1016/j.fgb.2007.03.001.
  • Stull R. 2000. Meteorology for scientists and engineers: a technical companion book with Ahrens’ meteorology Today. 2nd ed. Pacific Grove (CA): Brooks/Cole; p. 10–12.
  • Sung JM, Cook R. 1981. Effect of Water Potential on Reproduction and Spore Germination by Fusarium roseum ’Graminearum,’ ’Culmorum,’ and ’Avenaceum’. J Phytopathol. 71(5):499. doi: 10.1094/PHYTO-71-499.
  • Sutton JC. 1982. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol. 4(2):195–209. doi: 10.1080/07060668209501326.
  • Tillmann M, von Tiedemann A, Winter M. 2017. Crop rotation effects on incidence and diversity of Fusarium species colonizing stem bases and grains of winter wheat. J Plant Dis Prot. 124(2):121–130. doi: 10.1007/s41348-016-0064-6.
  • Tittlemier SA, Arsiuta J, Mohammad U, Hainrich C, Bowler K, Croom R, Olubodun A, Blagden R, Mckendry T, Gräfenhan T, et al. 2020. Variable relationships between Fusarium damage and deoxynivalenol concentrations in wheat in western Canada in 2016. Can J Plant Pathol. 42(1):41–51. doi: 10.1080/07060661.2019.1620861.
  • Waalwijk C, van der Heide R, de Vries I, van der Lee T, Schoen C, Corainville GC, Häuser-Hahn I, Kastelein P, Köhl J, Lonnet P, et al. 2004. Quantitative detection of Fusarium species in wheat using TaqMan. Eur J Plant Pathol. 110(5/6):481–494. doi: 10.1007/978-1-4020-2285-2_3.
  • Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF, Liao YC. 2008. Development of a generic PCR detection of 3-acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and Nivalenol-chemotypes of Fusarium graminearum clade. Int J Mol Sci. 9(12):2495–2504. doi: 10.3390/ijms9122495.
  • Wang JH, Ndoye M, Zhang JB, Li HP, Liao YC. 2011. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins. 3(8):1020–1037. doi: 10.3390/toxins3081020.
  • Ward TJ, Bielawski JP, Corby KH, Sullivan E, O’Donnell K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci USA. 99(14):9278–9283. doi: 10.1073/pnas.142307199.
  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TM. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 45(4):473–484. doi: 10.1016/j.fgb.2007.10.003.
  • Wegulo SN. 2012. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins. 4:1157–1180. doi: 10.3390/toxins4111157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.