1,490
Views
0
CrossRef citations to date
0
Altmetric
Epidemiology / Épidémiologie

Artificial intelligence analysis of contributive factors in determining blackleg disease severity in canola farmlands

, , , , & ORCID Icon
Pages 114-127 | Accepted 24 Nov 2023, Published online: 15 Dec 2023

References

  • Barbetti M. 1975. Effects of temperature on development and progression in rape of crown canker caused by Leptosphaeria maculans. Aust J Exp Agric. 15(76):705–708. doi: 10.1071/EA9750705.
  • Biddulph J, Fitt BD, Leech P, Welham S, Gladders P. 1999. Effects of temperature and wetness duration on infection of oilseed rape leaves by ascospores of Leptosphaeria maculans (stem canker). Eur J Plant Pathol. 105(8):769–781. doi: 10.1023/A:1008727530088.
  • Canola Council of Canada. 2020. Flea beetles. Canola encyclopedia; [accessed 2022 Mar 31]. https://www.canolacouncil.org/canola-encyclopedia/insects/flea-beetles/.
  • Cárcamo H, Otani J, Dosdall L, Blackshaw R, Clayton G, Harker K, O’Donovan J, Entz T. 2008. Effects of seeding date and canola species on seedling damage by flea beetles in three ecoregions. Eur J Plant Pathol. 132(8):623–631. doi: 10.1111/j.1439-0418.2008.01298.x.
  • Chi M, Feng R, Bruzzone L. 2008. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv Space Res. 41(11):1793–1799. doi: 10.1016/j.asr.2008.02.012.
  • Dosdall LM, Herbut MJ, Cowle NT. 1994. Susceptibilities of species and cultivars of canola and mustard to infestation by root maggots (Delia spp.)(Diptera: Anthomyiidae). Can Entomol. 126(2):251–260. doi: 10.4039/Ent126251-2.
  • Fenu G, Malloci FM. 2021. Forecasting plant and crop disease: an explorative study on current algorithms. BDCC. 5(1):2. doi: 10.3390/bdcc5010002.
  • Fernando WGD, Zhang X, Selin C, Zou Z, Liban SH, Mclaren DL, Kubinec A, Parks PS, Rashid MH, Padmathilake KRE. 2018. A six-year investigation of the dynamics of avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans populations associated with canola crops in Manitoba, Canada. Plant Dis. 102(4):790–798. doi: 10.1094/PDIS-05-17-0630-RE.
  • Fitt BD, Brun H, Barbetti M, Rimmer S. 2006. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol. 114(1):3–15. doi: 10.1007/s10658-005-2233-5.
  • Ghanbarnia K, Fernando WGD, Crow G. 2009. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans. Phytopathology. 99(7):879–886. doi: 10.1094/PHYTO-99-7-0879.
  • Ghanbarnia K, Fernando WGD, Crow G. 2011. Comparison of disease severity and incidence at different growth stages of naturally infected canola plants under field conditions by pycnidiospores of Phoma lingam as a main source of inoculum. Can J Plant Pathol. 33(3):355–363. doi: 10.1080/07060661.2011.593189.
  • Guo X, Fernando WGD. 2005. Seasonal and diurnal patterns of spore dispersal by Leptosphaeria maculans from canola stubble in relation to environmental conditions. Plant Dis. 89(1):97–104. doi: 10.1094/PD-89-0097.
  • Guo X, Fernando WGD, Entz M. 2005. Effects of crop rotation and tillage on blackleg disease of canola. Can J Plant Pathol. 27(1):53–57. doi: 10.1080/07060660509507193.
  • Hall R. 1992. Epidemiology of blackleg of oilseed rape. Can J Plant Pathol. 14(1):46–55. doi: 10.1080/07060669209500905.
  • Hammond KE, Lewis B, Musa T. 1985. A systemic pathway in the infection of oilseed rape plants by Leptosphaeria maculans. Plant Pathol. 34(4):557–565. doi: 10.1111/j.1365-3059.1985.tb01407.x.
  • Huang YJ, Fitt BD, Jedryczka M, Dakowska S, West JS, Gladders P, Steed JM, Li ZQ. 2005. Patterns of ascospore release in relation to phoma stem canker epidemiology in England (Leptosphaeria maculans) and Poland (Leptosphaeria biglobosa). Eur J Plant Pathol. 111(3):263–277. doi: 10.1007/s10658-004-4421-0.
  • Huang S, Zhai C, Zou Z, Liu F, Parks P, Mcgregor L, Fernando WGD, Peng G. 2022. Effect of wounding and wound age on infection of canola cotyledons by Leptosphaeria maculans, interacting with leaf wetness. Can J Plant Pathol. 44(5):709–722. doi: 10.1080/07060661.2022.2059573.
  • Hwang SF, Strelkov SE, Peng G, Ahmed H, Zhou Q, Turnbull G. 2016. Blackleg (Leptosphaeria maculans) severity and yield loss in canola in Alberta, Canada. Plants. 5(3):31. doi: 10.3390/plants5030031.
  • Jedryczka M, Kaczmarek J, Dawidziuk A, Brachaczek A. 2008. System for forecasting disease epidemics–aerobiological methods in Polish agriculture. Asp Appl Biol. 89:65–70.
  • Khaki S, Wang L, Archontoulis SV. 2020. A CNN-RNN framework for crop yield prediction. Front Plant Sci. 10:1750. doi: 10.3389/fpls.2019.01750.
  • Lamb RJ. 1989. Entomology of oilseed Brassica crops. Annu Rev Entomol. 34(1):211–229. doi: 10.1146/annurev.en.34.010189.001235.
  • Lô-Pelzer E, Bousset L, Jeuffroy MH, Salam MU, Pinochet X, Boillot M, Aubertot JN. 2010. SIPPOM-WOSR: a simulator for integrated pathogen population management of phoma stem canker on winter oil seed rape: I. description of the model. Field Crops Res. 118(1):73–81. doi: 10.1016/j.fcr.2010.04.007.
  • Mcgee D, Emmett R. 1977. Black leg (Leptosphaeria maculans (Desm.) Ces. et de not.) of rapeseed in Victoria: crop losses and factors which affect disease severity. Aust J Agric Res. 28(1):47–51. doi: 10.1071/AR9770047.
  • Pasupa K, Sunhem W. 2016. A comparison between shallow and deep architecture classifiers on small dataset. 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia. p. 1–6. doi: 10.1109/ICITEED.2016.7863293.
  • Peng G, Liu C, Fernando WGD, Lang R, Mclaren DL, Johnson EN, Kutcher HR, Singh G, Turkington TK, Yu F. 2020. Early fungicide treatment reduces blackleg on canola but yield benefit is realized only on susceptible cultivars under high disease pressure. Can J Plant Pathol. 43(3):384–393. doi: 10.1080/07060661.2020.1824166.
  • Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen Y, Keogh E. 2014. Dynamic time warping averaging of time series allows faster and more accurate classification. 2014 IEEE International Conference on Data Mining. p. 470–479. doi: 10.1109/ICDM.2014.27.
  • Petitjean F, Forestier G, Webb GI, Nicholson AE, Chen Y, Keogh E. 2016. Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm. Knowl Inf Syst. 47(1):1–26. doi: 10.1007/s10115-015-0878-8.
  • Petitjean F, Ketterlin A, Gançarski P. 2011. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit. 44(3):678–693. doi: 10.1007/s10115-015-0878-8.
  • Petrie G. 1994. Effects of temperature and moisture on the number, size and septation of ascospores produced by Leptosphaeria maculans (blackleg) on rapeseed stubble. Can Plant Dis Surv. 74:141–152.
  • Poslušná J, Plachka E. 2014. Forecasting system for infection risk of phoma stem canker in selected regions of the Czech Republic in 2009-2011. Plant Prot Sci. 50(1):8–16. doi: 10.17221/84/2012-PPS.
  • Skelsey P. 2021. Forecasting risk of crop disease with anomaly detection algorithms. Phytopathology. 111(2):321–332. doi: 10.1094/PHYTO-05-20-0185-R.
  • Soomro W, Kutcher R, Yu FQ, Hwang SF, Fernando WGD, Stephen ES, Peng G. 2021. The race structure of Leptosphaeria maculans in western Canada between 2012 and 2014 and its influence on blackleg of canola. Can J Plant Pathol. 43(3):480–493. doi: 10.1080/07060661.2020.1829064.
  • Sosnowski M, Scott E, Ramsey M. 2004. Infection of Australian canola cultivars (Brassica napus) by Leptosphaeria maculans is influenced by cultivar and environmental conditions. Austral Plant Pathol. 33(3):401–411. doi: 10.1071/AP04045.
  • Toscano‐Underwood C, West JS, Fitt BD, Todd A, Jedryczka M. 2001. Development of phoma lesions on oilseed rape leaves inoculated with ascospores of A‐group or B‐group Leptosphaeria maculans (stem canker) at different temperatures and wetness durations. Plant Pathol. 50(1):28–41. doi: 10.1046/j.1365-3059.2001.00526.x.
  • Westdal P, Romanow W. 1972. Observations on the biology of the flea beetle, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Manitoba Entomologist. 6:35–45.
  • Xiao Q, Li W, Chen P, Wang B. 2018. Prediction of crop pests and diseases in cotton by long short term memory network. International Conference on Intelligent Computing, China. p. 11–16. doi: 10.1007/978-3-319-95933-7_2.
  • Xiao Q, Li W, Kai Y, Chen P, Zhang J, Wang B. 2019. Occurrence prediction of pests and diseases in cotton on the basis of weather factors by long short term memory network. BMC Bioinformat. 20(S25):1–15. doi: 10.1186/s12859-019-3262-y.
  • Xi K, Morrall R, Gugel R, Verma P. 1991. Latent infection in relation to the epidemiology of blackleg of spring rapeseed. Can J Plant Pathol. 13(4):321–331. doi: 10.1080/07060669109500917.
  • Zhang L, Zhang Z, Luo Y, Cao J, Tao F. 2019. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 12(1):21. doi: 10.3390/rs12010021.
  • Zhong H, Li X, Lobell D, Ermon S, Brandeau ML. 2018. Hierarchical modeling of seed variety yields and decision making for future planting plans. Environ Syst Decis. 38(4):458–470. doi: 10.1007/s10669-018-9695-4.