143
Views
0
CrossRef citations to date
0
Altmetric
Epidemiology / Épidémiologie

Comparing tar spot epidemics in high-risk areas in the United States and Honduras

ORCID Icon, , , , , , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 288-305 | Accepted 22 Dec 2023, Published online: 01 Feb 2024

References

  • Abbott E. 1931. Further notes on plant diseases in Peru. Phytopathol. 21:1061–1071.
  • Arneson PA 2001. Plant disease epidemiology: temporal aspects. The Plant Health Instr. doi: 10.1094/PHI-A-2001-0524-01.
  • Bajet NB, Renfro BL, Carrasco JMV. 1994. Control of tar spot of maize and its effect on yield. Int J Pest Manage. 40:121–125. doi: 10.1080/09670879409371868.
  • Barreto HJ, Edmeades GO, Chapman SC, Crossa J. 1997. The alpha lattice design in plant breeding and agronomy: generation and analysis. In: Edmeades G, Banziger M, Mickelson H Pena-Valdivia C, editors. Developing drought- and low N-tolerant maize. Mexico: Word development; p. 544–551.
  • Bell FH, Alandia BS. 1957. Diseases of temperate climate crops in Bolivia. Plant Dis Rep. 41:646–649.
  • Caldwell DM, Ades AE, Higgins JPT. 2005. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. British Med J. 331(7521):897–900. doi: 10.1136/bmj.331.7521.897.
  • Campbell CL, Madden LV. 1990. Introduction to plant disease epidemiology. New York (NY): Wiley.
  • Castaño A. 1969. Mancha de asfalto (tar spot) de la hoja del maíz. Agric trop. Vol. 25. Spanish; p. 332.
  • Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, et al. 2018. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 391(10128):1357–1366. doi:10.1016/S0140-6736(17)32802-7.
  • Dittrich U, Hock J, Kranz J, Renfro BL. 1991. Germination of phyllachora maydis ascospores and conidia of monographella maydis. Cryptogam Bot. 2:214–218.
  • Fernández-Campos M, Góngora-Canul C, Das S, Kabir M, Valent B, Cruz C. 2020. Epidemiological criteria to support breeding tactics against the emerging, high-consequence wheat blast disease. Plant Dis. 104(8):2252–2261. doi: 10.1094/PDIS-12-19-2672-RE.
  • García-Peña JC, Ramírez-Gil JG, Góngora-Canul C, Calderón L, Cuellar J, Cruz CD. 2023. Multiscale temporal and spatiotemporal analysis of wheat blast infection-like dynamics using vertical plant stratification, regression and Markov chain approaches. Plant Pathol. (9):1570–1584. doi: 10.1111/ppa.13789.
  • Garrido-Ramirez ER. 2017. Mecanismos de infección del maíz por los hongos involucrados en el complejo mancha de asfalto [Mechanisms of maize infection by the fungi involved in Tar Spot Complex]. Rev Mex Fitopatol. 36:14–14 (Suppl:S14–S15). Spanish.
  • Groves CL, Kleczewski NM, Telenko DEP, Chilvers MI, Smith DL. 2020. Phyllachora maydis ascospore release and germination from overwintered corn residue. Plant Health Prog. 21(1):26–30. doi: 10.1094/PHP-10-19-0077-RS.
  • Hanway JJ. 1966. “How a corn plant develops”. Iowa (IA): Iowa State University. Special Reports. 38.
  • Hernández RL, Sandoval IJS. 2015. Escala Diagramática de Severidad para el Complejo Mancha de Asfalto del. Maíz Rev Mex Fitopatol. 33(1):95–103.
  • Hock J, Dittrich U, Renfro BL, Kranz J. 1992. Sequential development of pathogens in the maize tar spot disease complex. Mycopathologia. 117(3):157–161. doi: 10.1007/BF00442777.
  • Hock J, Kranz J, Renfo BL. 1995. Studies on the epidemiology of the tar spot disease complex of maize in Mexico. null. 44(3):490–502. doi: 10.1111/j.1365-3059.1995.tb01671.x.
  • Hock J, Kranz J, Renfro B. 1989. El complejo ‘mancha de asfalto’ de maíz: su distribución geográfica, requisitos ambientales e importancia económica en México.[Tar spot of corn complex: geographical distribution, environmental requirements, and economical importance in Mexico]. Rev Mex Fitopatol. 7(2):129–135. Spanish.
  • Jimenez BF. 2021. Evaluación de la resistencia de accesiones de maíz a la 895 mancha de asfalto mediante criterios epidemiológicos y sensores remo tos [Using epidemiological criteria and remote sensing to test corn accession resistance to tar spot] [ master’s thesis]. Honduras: Universidad Agrícola Panamericana el Zamorano. Spanish.
  • Jimenez BF. 2021. Evaluación de la resistencia de accesiones de maíz a la mancha de asfalto mediante criterios epidemiológicos y sensores remotos [Using epidemiological criteria and remote sensing to test corn accession resistance to tar spot] [ master’s thesis]. Honduras: Universidad Agrícola Panamericana el Zamorano. Spanish.
  • Kleczewski NM, Donnelly J, Higgins R. 2019. Phyllachora maydis, causal agent of tar spot on corn, can overwinter in Northern Illinois. Plant Health Prog. 20(3):178. doi: 10.1094/PHP-04-19-0030-BR.
  • Lee DY, Na DY, Góngora-Canul C, Baireddy S, Lane B, Cruz AP, Fernández-Campos M, Kleczewski NM, Telenko DEP, Goodwin SB, et al. 2021. Contour-based detection and quantification of tar spot stromata using red-green-blue (RGB) imagery. Front Plant Sci. 1(12):675975. doi: 10.3389/fpls.2021.675975.
  • Lièvre M, Cucherat M, Leizorovicz A. 2002. Pooling, meta-analysis, and the evaluation of drug safety. Curr Control Trials Cardiovasc Med. 3(1):6. doi: 10.1186/1468-6708-3-6.
  • Liu LJ. 1973. Incidence of tar spot disease of corn in Puerto rico. J Agric Univ P R. 57(3):211–216. doi: 10.46429/jaupr.v57i3.10745.
  • Loladze A, Rodrigues-Jr FA, Toledo F, San-Vicente F, Gérard B, Boddupalli MP. 2019. Application of remote sensing for phenotyping tar spot complex resistance in maize. Front Plant Sci. 10:552. doi: 10.3389/fpls.2019.00552.
  • Madden LV, Hughes G, van den Bosch F. 2007. The study of plant disease epidemics. Minnesota (MN): APS Press.
  • Madden LV, Piepho HP, Paul PA. 2016. Statistical models and methods for network meta-analysis. Phytopathol. 106(8):792–806. doi: 10.1094/PHYTO-12-15-0342-RVW.
  • Maiti SI, Saikai SK. 2019. Effect size- a magic wand for fickle P-value in experimental biology research. J Adv Sci Res. 10(4):1–7.
  • Malaguti G, Subero LJ. 1972. Mancha de asfalto del maíz [Tar spor of corn. Agron Trop. Vol. 22. Spanish; pp. 443–445.
  • Maublanc A. 1904. Espèces nouvelles de champignons inferieurs [New species of lower fungi]. Bull Soc Mycol Fr. 20:72–74. French.
  • McCoy AG, Roth MG, Shay R, Noel ZA, Jayawardana MA, Longley RW, Bonito G, Chilvers MI. 2019. Identification of fungal communities within the tar spot complex of corn in Michigan via next-generation sequencing. Phytobiomes J. 3(3):235–243. doi: 10.1094/PBIOMES-03-19-0017-R.
  • McGuire JU, Crandall BS. 1967. Survey of insect pests and plant diseases of selected food crops of Mexico, Central America, and Panama. Washington (WA): International Agricultural Development Service, U.S. Dept. of Agriculture.
  • Milgroom MG. 2017. Emerging and reemerging plant diseases. In: Milgroom M, editor. Population biology of plant pathogens: genetics, ecology, and evolution. St Paul. (MN): APS Press; pp. 275–31.
  • Moré JJ. 1978. The levenberg-marquardt algorithm: implementation and theory. In: Watson GA, editor. Numerical analysis. Lecture notes in mathematics. Vol. 630. Berlin, Heidelberg: Springer. doi: 10.1007/BFb0067700.
  • Mueller D, Wise K, Sisson A. 2022. Corn disease loss estimates from the United States and Ontario, Canada - 2021. Plant Protection Network. doi: 10.31274/cpn-20220328-0.
  • Naseri B. 2022. Advanced epidemiology of wheat stem rust: disease occurrence and progression. All life. 15(1):1065–1074. doi: 10.1080/26895293.2022.2126899.
  • Naseri B, Kazemi H. 2020. Structural characterization of stripe rust progress in wheat crops sown at different planting dates. Heliyon. 6(11):e05328. doi: 10.1016/j.heliyon.2020.e05328.
  • Naseri B, Sheikholeslami M. 2021. Progression of powdery mildew in susceptible-resistant wheat (triticum aestivum) cultivars sown at different dates. J Phytopathol. 169(10):640–647. doi: 10.1111/jph.13035.
  • Ngugi HK, Esker PD, Scherm H. 2011. Meta-analysis to determine the effects of plant disease management measures: review and case studies on soybean and apple. Phytopathol. 101(1):31–41. doi: 10.1094/PHYTO-03-10-0068.
  • Oh S, Lee DY, Gongora-Canul C, Ashapure A, Carpenter J, Cruz AP, Fernandez-Campos M, Lane BZ, Telenko DEP, Jung J, et al. 2021. Tar spot disease quantification using unmanned aircraft systems (UAS) data. Remote Sens. 13(13):2567. doi:10.3390/rs13132567.
  • Paul PA, Lipps PE, Madden LV. 2006. Meta-analysis of regression coefficients for the relationship between fusarium head blight and deoxynivalenol content of wheat. Phytopathology. 96(6):951–961. doi: 10.1094/PHYTO-96-0951.
  • Paul PA, McMullen MP, Hershman DE, Madden LV. 2010. Meta-analysis of the effects of triazole-based fungicides on wheat yield and test weight as influenced by fusarium head blight intensity. Phytopathology. 100(2):160–171. doi: 10.1094/PHYTO-100-2-0160.
  • Pereyda-Hernández J, Hernández-Morales J, Sandoval-Islas JS. 2009. Etiología y manejo de la mancha de asfalto (Phyllachora maydis Maubl.) del maíz en Guerrero, México. Agrociencia. 43:511–519.
  • Pielaat A, Van den Bosh F, Fitt BDL, Jeger MJ. 2002. Simulation of vertical spread of plant diseases in a crop canopy by stem extension and splash dispersal. Ecol Model. 151(2–3):195–212. doi: 10.1016/S0304-3800(01)00484-7.
  • Puerto CE 2020. Caracterización de mancha de asfalto en maíz (Zea mays), bajo el uso de herramientas de detección y control en condiciones de campo. [Characterization of tar spot on corn using detection and control tools under field conditions] [ master’s thesis]. Honduras: Universidad Agrícola Panamericana el Zamorano. Spanish.
  • Puerto CE, Avellaneda C. 2021. Epidemiología de la mancha de asfalto en maíz bajo diferentes estrategias de manejo. Ceiba. Zamorano Investiga. Spanish; pp. 65–82.
  • Ríos HEN, Ochoa FYM, Cerna CE, Landeros FJ, Cepeda SM, Rodríguez GR. 2017. Hongos asociados a la mancha de asfalto en el cultivo de maíz en México [Fungi associated with the tar spot in maize cultivation in Mexico]. Rev Mex Ciencias Agr. 8(2):457–462. Spanish. doi:10.29312/remexca.v8i2.65.
  • Ross T 2022. Tar spot of corn: Assessing the population dynamics of Phyllachora maydis, its economic impact and management in Midwest United States. [ dissertation]. Indiana (IN): Purdue University.
  • Ruhl G, Romberg MK, Bissonnette S, Plewa D, Creswell T, Wise KA. 2016. First report of tar spot on corn caused by phyllachora maydis in the United States. Plant Dis. 100(7):1496. doi: 10.1094/PDIS-12-15-1506-PDN.
  • Simko I, Piepho HP. 2012. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology. 102(4):381–389. doi: 10.1094/PHYTO-07-11-0216.
  • Stevens SS. 1946. On the theory of scales ofmeasurement. Sci. 103:677–680. doi: 10.1126/science.103.2684.677.
  • Telenko DEP, Chilvers MI, Byrne AM, Check JC, Da Silva CR, Kleczewski NM, Roggenkamp E, Ross TJ, Smith DM. 2022. Fungicide efficacy on tar spot and yield of corn in the Midwest. Plant Health Prog. 23(3):281–287. doi: 10.1094/PHP-10-21-0125-RS.
  • Telenko DEP, Chilvers MI, Kleczewski N, Mueller D, Plewa D, Robertson A, Smith DL, Tenuta A, Wise K. 2020. An overview of tar spot. Crop Protection Network.
  • Telenko DEP, Chilvers MI, Kleczewski N, Smith DL, Byrne AM, Devillez P, Diallo T, Higgins R, Joos D, Kohn K, et al. 2019. How tar spot of corn impacted hybrid yields during the 2018 midwest epidemic. Crop Protection Network. doi: 10.31274/cpn-20190729-002.
  • Telenko DEP, Ross TJ, Shim S, Wang Q, Sigh R. 2020. Draft genome sequence resource for phyllachora maydis - an obligate pathogen that causes tar spot of corn with recent economic impacts in the United States. Mol Plant Microbe Interact. 33(7):884–887. doi: 10.1094/MPMI-03-20-0075-A.
  • Nutter FW Jr, Teng PS, Shokes FM. 1991. Disease assessment terms and concepts. Plant Dis. 75:1187–1188.
  • Tonin FS, Rotta I, Mendes AM, Pontarolo R. 2017. Network meta-analysis: a technique to gather evidence from direct and indirect comparisons. Pharm Pract (Granada). 15(1):943. doi: 10.18549/PharmPract.2017.01.943.
  • Valle-Torres J, Ross TJ, Plewa D, Avellaneda MC, Check J, Chilvers MI, Cruz AP, Dalla Lana F, Groves C, Gongora-Canul C, et al. 2020. Tar spot: an understudied disease threatening corn production in the Americas. Plant Dis. 104(10):2541–2550. doi:10.1094/PDIS-02-20-0449-FE.
  • Yang L, Ren M, Zhan J. 2022. Modeling plant diseases under climate change: evolutionary perspectives. Trends Plant Sci. 28(5):519–526. doi: 10.1016/j.tplants.2022.12.011.
  • Zhang C, Lane B, Fernández-Campos M, Cruz-Sancan A, Lee D, Gongora-Canul C, Ross TJ, Da Silva CR, Telenko DEP, Goodwin SB, et al. 2022. Monitoring tar spot disease in corn at different canopy and temporal levels using aerial multispectral imaging and machine learning. Front Plant Sci. 13:1077403. doi: 10.3389/fpls.2022.1077403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.