106
Views
0
CrossRef citations to date
0
Altmetric
Biochemistry

Antagonistic potential of forestry compost bacteria on Sclerotinia sclerotiorum (Lib.) de Bary, causal agent of carrot white mould

, , , &
Pages 246-256 | Accepted 14 Jan 2024, Published online: 23 Feb 2024

References

  • AAFC. 2022. Crop profile for carrot in Canada, 2021. Ottawa, Ontario: Pest Management Centre, Agriculture and Agri-Food Canada.
  • Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol. 91(1–9): 551–561. doi: 10.1385/ABAB:91-93:1-9:551.
  • Barghouth Z, Khazzam E, Ramlawi S, Wong A, Smith ML, Avis TJ. 2023. Microbial compost tea properties affect suppression of strawberry grey mould (Botrytis cinerea Pers.). Biocontrol Sci Technol. 33(1): 1–18. doi: 10.1080/09583157.2022.2141688.
  • Berry CL, Nandi M, Manuel J, Brassinga AKC, Fernando WGD, Loewen PC, de Kievit TR. 2014. Characterization of the Pseudomonas sp. DF41 quorum sensing locus and its role in fungal antagonism. Biol Control. 69:82–89. doi: 10.1016/j.biocontrol.2013.11.005.
  • Bin L, Knudsen GR, Eschen DJ. 1991. Influence of an antagonistic strain of Pseudomonas fluorescens on growth and ability of Trichoderma harzianum to colonize sclerotia of Sclerotinia sclerotiorum in soil. Phytopathology. 81(9): 994–1000. doi: 10.1094/Phyto-81-994.
  • Bolton MD, Thomma B, Nelson BD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol. 7(1): 1–16. doi: 10.1111/j.1364-3703.2005.00316.x.
  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. 2011. The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B-Biol Sci. 366(1573): 1987–1998. doi: 10.1098/rstb.2010.0390.
  • Chitrampalam P, Figuili PJ, Matheron ME, Subbarao KV, Pryor BM. 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in desert agroecosystems. Plant Dis. 92(12): 1625–1634. doi: 10.1094/PDIS-92-12-1625.
  • Cloutier A, Tran S, Avis TJ. 2020. Suppressive effect of compost bacteria against grey mould and Rhizopus rot on strawberry fruit. Biocontrol Sci Technol. 30(2): 143–159. doi: 10.1080/09583157.2019.1695745.
  • Davis RM. 2004. Carrot diseases and their management. In: Naqvi S, editor. Diseases of fruits and vegetables volume I: diagnosis and management. Dordrecht: Springer Netherlands; pp. 397–439.
  • Duke KA, Becker MG, Girard IJ, Millar JL, Fernando WGD, Belmonte MF, de Kievit TR. 2017. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genom. 18(1): 467. doi: 10.1186/s12864-017-3848-6.
  • Expert JM, Digat B. 1995. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can J Microbiol. 41(8): 685–691. doi: 10.1139/m95-094.
  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. 2007. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot. 26(2): 100–107. doi: 10.1016/j.cropro.2006.04.007.
  • Gross H, Loper JE. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep. 26(11): 1408–1446. doi: 10.1039/b817075b.
  • Holden MTG, Chhabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, et al. 1999. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol. 33(6):1254–1266. doi:10.1046/j.1365-2958.1999.01577.x.
  • Hu XJ, Roberts DP, Maul JE, Emche SE, Liao X, Guo XL, Liu YY, McKenna LF, Buyer JS, Liu SY. 2011. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations. Can J Microbiol. 57(7): 539–546. doi: 10.1139/w11-041.
  • Hu XJ, Roberts DP, Xie LH, Maul JE, Yu CB, Li YS, Jiang ML, Liao XS, Che Z, Liao X. 2014. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field. Biol Control. 70:54–64. doi: 10.1016/j.biocontrol.2013.12.005.
  • Kamal MM, Lindbeck KD, Savocchia S, Ash GJ. 2015. Biological control of sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64(6): 1375–1384. doi: 10.1111/ppa.12369.
  • Kilani J, Fillinger S. 2016. Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front Microbiol. 7:2014. doi: 10.3389/fmicb.2016.02014.
  • Kora C, McDonald MR, Boland GJ. 2003. Sclerotinia rot of carrot: an example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Dis. 87(5): 456–470. doi: 10.1094/PDIS.2003.87.5.456.
  • Kora C, McDonald MR, Boland GJ. 2005. Epidemiology of sclerotinia rot of carrot caused by Sclerotinia sclerotiorum. Can J Plant Pathol. 27(2): 245–258. doi: 10.1080/07060660509507222.
  • Kumar SN, Mohandas C, Siji JV, Rajasekharan KN, Nambisan B. 2012. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. J Appl Microbiol. 113(4): 914–924. doi: 10.1111/j.1365-2672.2012.05385.x.
  • Kurniawan O, Wilson K, Mohamed R, Avis TJ. 2018. Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biol Control. 126:136–141. doi: 10.1016/j.biocontrol.2018.08.001.
  • Luo M, Purdy H, Avis TJ. 2019. Compost bacteria provide antifungal activity against grey mold and Alternaria rot on bell pepper fruit. Botany. 97(3): 221–230. doi: 10.1139/cjb-2018-0180.
  • McQuilken MP, Chalton D. 2009. Potential for biocontrol of sclerotinia rot of carrot with foliar sprays of Contans® WG (Coniothyrium minitans). Biocontrol Sci Technol. 19(2): 229–235. doi: 10.1080/09583150802635549.
  • Mohamed R, Groulx E, Defilippi S, Erak T, Tambong JT, Tweddell RJ, Tsopmo A, Avis TJ. 2017. Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Can J Microbiol. 63(5): 411–426. doi: 10.1139/cjm-2016-0599.
  • Mokrane S, Buonocore E, Capone R, Franzese PP. 2023. Exploring the global scientific literature on food waste and loss. Sustainability. 15(6): 4757. doi: 10.3390/su15064757.
  • Monteiro FP, Ferreira LC, Pacheco LP, Souza PE. 2013. Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. J Agric Sci. 5(4): 214–223. doi: 10.5539/jas.v5n4p214.
  • Ojaghian MR, Zhang J-Z, Xie G-L, Wang Q, Li X-L, Guo D-P. 2017. Efficacy of UV-C radiation in inducing systemic acquired resistance against storage carrot rot caused by Sclerotinia sclerotiorum. Postharvest Biol Technol. 130:94–102. doi: 10.1016/j.postharvbio.2017.04.009.
  • Ortet P, Barakat M, Lalaouna D, Fochesato S, Barbe V, Vacherie B, Santaella C, Heulin T, Achouak W. 2011. Complete genome sequence of a beneficial plant root-associated bacterium Pseudomonas brassicacearum. J Bacteriol. 193(12): 3146–3146. doi: 10.1128/JB.00411-11.
  • Ovchinnikov YA, Ivanov VT. 1975. Conformational states and biological activity of cyclic peptides. Tetrahedron. 31(18): 2177–2209. doi: 10.1016/0040-4020(75)80216-X.
  • Papoutsis K, Edelenbos M. 2021. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends Food Sci Technol. 112:88–98. doi: 10.1016/j.tifs.2021.03.038.
  • Pershakova TV, Kupin GA, Mihaylyuta LV, Babakina MV, Panasenko EY, Viktorova EP. 2018. Investigation of antagonistic properties of bacteria Bacillus subtilis against carrot phytopathogenes in vitro and in vivo experiments. J Pharm Sci Res. 10:1619–1622.
  • Rahman MME, Hossain DM, Suzuki K, Shiiya A, Dey TK, Nonaka M, Harada N. 2016. Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Austral Plant Pathol. 45(1): 103–117. doi: 10.1007/s13313-016-0397-4.
  • Ramlawi S, Aitken A, Abusharkh S, McMullin DR, Avis TJ. 2022. Arthropeptide A, an antifungal cyclic tetrapeptide from Arthrobacter psychrophenolicus isolated from disease suppressive compost. Nat Prod Res. 36(22): 5715–5723. doi: 10.1080/14786419.2021.2018434.
  • Ramlawi S, Chiu JO, Cloutier A, Avis TJ. 2021. Suppression of Fusarium dry rot of potato using beneficial bacterial treatments. J Plant Pathol. 103(1): 269–281. doi: 10.1007/s42161-020-00731-y.
  • Rhee KH. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus Pyricularia oryzae. J Microbiol Biotechnol. 13:984–988.
  • Saharan GS, Mehta N. 2008. Disease management. Sclerotinia diseases of crop plants: biology, ecology and disease management. Dordrecht: Springer Netherlands; p. 301–376.
  • Sansinenea E, Salazar F, Jimenez J, Mendoza A, Ortiz A. 2016. Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Lett. 57(24): 2604–2607. doi: 10.1016/j.tetlet.2016.04.117.
  • Savchuk S, Fernando WGD. 2004. Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists. FEMS Microbiol Ecol. 49(3): 379–388. doi: 10.1016/j.femsec.2004.04.014.
  • Selin C, Habibian R, Poritsanos N, Athukorala SNP, Fernando D, De Kievit TR. 2009. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol Ecol. 71(1): 73–83. doi: 10.1111/j.1574-6941.2009.00792.x.
  • Stockwell VO, Stack JP. 2007. Using Pseudomonas spp. for integrated biological control. Phytopathology. 97(2): 244–249. doi: 10.1094/PHYTO-97-2-0244.
  • Strom K, Sjogren J, Broberg A, Schnurer J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 68(9): 4322–4327. doi: 10.1128/AEM.68.9.4322-4327.2002.
  • Sun GZ, Yao T, Feng CJ, Chen L, Li JH, Wang LD. 2017. Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biol Control. 104:35–43. doi: 10.1016/j.biocontrol.2016.10.008.
  • Tesfaendrias MT, McDonald MR, Warland J. 2010. Consistency of long-term marketable yield of carrot and onion cultivars in muck (organic) soil in relation to seasonal weather. Can J Plant Sci. 90(5): 755–765. doi: 10.4141/CJPS09175.
  • Tezuka Y, Huang Q, Kikuchi T, Nishi A, Tubaki K. 1994. Studies on the metabolites of mycoparasitic Fungi. I. Metabolites of Cladobotryum varium. Chem Pharm Bull (Tokyo). 42(12): 2612–2617. doi: 10.1248/cpb.42.2612.
  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG. 2017. Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol. 8:446. doi: 10.3389/fmicb.2017.00446.
  • Wang XQ, Zhao DL, Shen LL, Jing CL, Zhang CS. 2018. Application and mechanisms of Bacillus subtilis in biological control of plant disease. In: Meena V, editor. Role of rhizospheric microbes in soil: volume 1: stress management and agricultural sustainability. Singapore: Springer Singapore; p. 225–250.
  • Zeng WT, Kirk W, Hao JJ. 2012. Field management of Sclerotinia stem rot of soybean using biological control agents. Biol Control. 60(2): 141–147. doi: 10.1016/j.biocontrol.2011.09.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.