462
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Nutritional Supplements During Gestation and Autism Spectrum Disorder: What Do We Really Know and How Far Have We Gone?

&
Pages 261-271 | Received 05 Dec 2018, Accepted 20 Jun 2019, Published online: 18 Jul 2019

References

  • Elsabbagh M, Divan G, Koh Y-J, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012;5(3):160–179. doi:10.1002/aur.239.
  • Tordjman S, Cohen D, Coulon N, Anderson GM, Botbol M, Canitano R, et al. Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity. Neurosci Biobehav Rev. 2017;80:210.
  • Moussa HN, Srikrishnan A, Blackwell SC, Dash P, Sibai BM. Fetal origins of autism spectrum disorders: the non-associated maternal factors. Future Sci OA. 2016;2(2):114.
  • Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;813doi:10.1186/s13229-017-0121-4.
  • Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, Arshad H, Baïz N, Bakermans-Kranenburg MJ, Bakulski KM, et al. Cohort Profile: Pregnancy and childhood epigenetics (PACE) consortium. Int J Epidemiol. 2018;47(1):22–23. doi:10.1093/ije/dyx190.
  • Gage SH, Munafò MR, Davey Smith G. Causal inference in developmental origins of health and disease (DOHaD) research. Annu Rev Psychol. 2016;67(1):567–585. doi:10.1146/annurev-psych-122414-033352.
  • Codagnone MG, Spichak S, O'Mahony SM, O'Leary OF, Clarke G, Stanton C, et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol Psychiatry. 2019;85:150–163. doi:10.1016/j.biopsych.2018.06.014.
  • Moody L, Chen H, Pan YX. Early-life nutritional programming of cognition-the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv Nutr. 2017;8(2):337–350. doi:10.3945/an.116.014209.
  • Zhang Y, Li N, Yang Z. Perinatal food restriction impaired spatial learning and memory behavior and decreased the density of nitric oxide synthase neurons in the hippocampus of adult male rat offspring. Toxicol Lett. 2010;193(2):167–172. doi:10.1016/j.toxlet.2010.01.002.
  • Vohr BR, Poggi Davis E, Wanke CA, Krebs NF. Neurodevelopment: the impact of nutrition and inflammation during preconception and pregnancy in low-resource settings. Pediatrics. 2017;139(Supplement 1):S38–49. doi:10.1542/peds.2016-2828F.
  • Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, Layé S. Neuroinflammation in Autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast. 2016;20163597209doi:10.1155/2016/3597209.
  • Nugent BM, Bale TL. The omniscient placenta: metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;3928–37. doi:10.1016/j.yfrne.2015.09.001.
  • Myatt L, Thornburg KL. Effects of prenatal nutrition and the role of the placenta in health and disease. Methods Mol Biol. 2018;173519–46. doi:10.1007/978-1-4939-7614-0_2.
  • van De Sande MM, van Buul VJ, Brouns FJ. Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev. 2014;27(2):199–214. doi:10.1017/S0954422414000110.
  • Dovrolis N, Kolios G, Spyrou GM, Maroulakou I. Computational profiling of the gut-brain axis: microflora dysbiosis insights to neurological disorders. Brief Bioinform. 2019;20:825–841. doi:10.1093/bib/bbx154.
  • Gogou M, Kolios G. Are therapeutic diets an emerging additional choice in autism spectrum disorder management? World J Pediatr. 2018;14(3):215–223. doi:10.1007/s12519-018-0164-4.
  • Gogou M, Kolios G. The effect of dietary supplements on clinical aspects of autism spectrum disorder: A systematic review of the literature. Brain Dev. 2017;39(8):656–664. doi:10.1016/j.braindev.2017.03.029.
  • Hyman SL, Stewart PA, Foley J, Cain U, Peck R, Morris DD, Wang H, Smith T. The gluten-free/casein-free diet: a double-blind challenge trial in children with Autism. J Autism Dev Disord. 2016;46(1):205–220. doi:10.1007/s10803-015-2564-9.
  • Mankad D, Dupuis A, Smile S, Roberts W, Brian J, Lui T, Genore L, Zaghloul D, Iaboni A, Marcon P, et al. A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with Autism. Mol Autism. 2015;6(1):18. doi:10.1186/s13229-015-0010-7.
  • Vuillermot S, Luan W, Meyer U, Eyles D. Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism. 2017;8:9.
  • Weiser MJ, Mucha B, Denheyer H, Atkinson D, Schanz N, Vassiliou E, Benno RH. Dietary docosahexaenoic acid alleviates autistic-like behaviors resulting from maternal immune activation in mice. Prostaglandins Leukot Essent Fatty Acids. 2016;10627–37. doi:10.1016/j.plefa.2015.10.005.
  • Tran PV, Kennedy BC, Pisansky MT, Won K-J, Gewirtz JC, Simmons RA, Georgieff MK. Prenatal choline supplementation diminishes early-life iron deficiency-induced reprogramming of molecular networks associated with behavioral abnormalities in the adult rat hippocampus. J Nutr. 2016;146(3):484–493. doi:10.3945/jn.115.227561.
  • Barua S, Kuizon S, Brown WT, Junaid MA. High gestational folic acid supplementation alters expression of imprinted and candidate autism susceptibility genes in a sex-specific manner in mouse offspring. J Mol Neurosci. 2016;58(2):277–286. doi:10.1007/s12031-015-0673-8.
  • Matsui F, Hecht P, Yoshimoto K, Watanabe Y, Morimoto M, Fritsche K, Will M, Beversdorf D. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene/prenatal stress mouse model. Neuroscience. 2018;371407–419. doi:10.1016/j.neuroscience.2017.12.029.
  • Jones KL, Will MJ, Hecht PM, Parker CL, Beversdorf DQ. Maternal diet rich in omega-6 polyunsaturated fatty acids during gestation and lactation produces autistic-like sociability deficits in adult offspring. Behav Brain Res. 2013;238193–199. doi:10.1016/j.bbr.2012.10.028.
  • Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role of vitamin D in brain health: a mini literature review. Cureus. 2018;10(7):e2960doi:10.7759/cureus.2960.
  • Kaneko I, Sabir MS, Dussik CM, Whitfield GK, Karrys A, Hsieh J-C, Haussler MR, Meyer MB, Pike JW, Jurutka PW, et al. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. Faseb J. 2015;29(9):4023–4035. doi:10.1096/fj.14-269811.
  • Mazahery H, Camargo CA, Jr, Conlon C, Beck KL, Kruger MC, von Hurst PR. Vitamin D and autism spectrum disorder: a literature review. Nutrients. 2016;8(4):236doi:10.3390/nu8040236.
  • Yates NJ, Tesic D, Feindel KW, Smith JT, Clarke MW, Wale C, Crew RC, Wharfe MD, Whitehouse AJO, Wyrwoll CS, et al. Vitamin D is crucial for maternal care and offspring social behaviour in rats. J Endocrinol. 2018;237(2):73–85. doi:10.1530/JOE-18-0008.
  • Langguth M, Fassin M, Alexander S, Turner KM, Burne T. No effect of prenatal vitamin D deficiency on autism-relevant behaviours in multiple inbred strains of mice. Behav Brain Res. 2018;34842–52. doi:10.1016/j.bbr.2018.04.004.
  • Anderson CM, Ralph JL, Johnson L, Scheett A, Wright ML, Taylor JY, Ohm JE, Uthus E. First trimester vitamin D status and placental epigenomics in preeclampsia among Northern Plains primiparas. Life Sci. 2015;12910–15. doi:10.1016/j.lfs.2014.07.012.
  • Wu D-M, Wen X, Han X-R, Wang S, Wang Y-J, Shen M, Fan S-H, Zhuang J, Li M-Q, Hu B, et al. Relationship between neonatal vitamin D at birth and risk of autism spectrum disorders: the NBSIB study. J Bone Miner Res. 2018;33(3):458–466. doi:10.1002/jbmr.3326.
  • Vinkhuyzen AAE, Eyles DW, Burne THJ, Blanken LME, Kruithof CJ, Verhulst F, White T, Jaddoe VW, Tiemeier H, McGrath JJ, et al. Gestational vitamin D deficiency and autism spectrum disorder. BJPsych Open. 2017;3(2):85–90. doi:10.1192/bjpo.bp.116.004077.
  • Vinkhuyzen AAE, Eyles DW, Burne THJ, Blanken LME, Kruithof CJ, Verhulst F, Jaddoe VW, Tiemeier H, McGrath JJ. Gestational vitamin D deficiency and autism-related traits: the generation R study. Mol Psychiatry. 2018;23(2):240–246. doi:10.1038/mp.2016.213.
  • Chen J, Xin K, Wei J, Zhang K, Xiao H. Lower maternal serum 25(OH) D in first trimester associated with higher autism risk in Chinese offspring. J Psychosom Res. 2016;8998–101. doi:10.1016/j.jpsychores.2016.08.013.
  • Jia F, Shan L, Wang B, Li H, Feng J, Xu Z, et al. Fluctuations in clinical symptoms with changes in serum 25(OH) vitamin D levels in autistic children: Three cases report. Nutr Neurosci. 2018;81–4. doi:10.1080/1028415X.2018.1458421.
  • Saad K, Abdel-Rahman AA, Elserogy YM, Al-Atram AA, Cannell JJ, Bjørklund G, Abdel-Reheim MK, Othman HAK, El-Houfey AA, Abd El-Aziz NHR, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr Neurosci. 2016;19(8):346–351. doi:10.1179/1476830515Y.0000000019.
  • Kerley CP, Power C, Gallagher L, Coghlan D. Lack of effect of vitamin D3 supplementation in autism: a 20-week, placebo-controlled RCT. Arch Dis Child. 2017;102(11):1030–1036. doi:10.1136/archdischild-2017-312783.
  • Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, et al. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids. 2018;136:3–13. doi:10.1016/j.plefa.2017.03.006.
  • Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, da Cruz Cittadin Soares E, Reis PA, de Castro Faria Neto HC, Petronilho F, et al. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition. 2017;35119–127. doi:10.1016/j.nut.2016.10.019.
  • Lyall K, Munger KL, O'Reilly ÉJ, Santangelo SL, Ascherio A. Maternal dietary fat intake in association with autism spectrum disorders. Am J Epidemiol. 2013;178(2):209–220. doi:10.1093/aje/kws433.
  • Tesei A, Crippa A, Ceccarelli SB, Mauri M, Molteni M, Agostoni C, Nobile M. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders. Eur Child Adolesc Psychiatry. 2017;26(9):1011–1030. doi:10.1007/s00787-016-0932-4.
  • Brigandi S, Shao H, Qian S, Shen Y, Wu BL, Kang J. Autistic children exhibit decreased levels of essential fatty acids in red blood cells. IJMS. 2015;16(12):10061. doi:10.3390/ijms160510061.
  • Vancassel S, Durand G, Barthélémy C, Lejeune B, Martineau J, Guilloteau D, Andrès C, Chalon S. Plasma fatty acid levels of autistic children. Prostaglandins Leukot Essent Fatty Acids. 2001;65(1):1–7. doi:10.1054/plef.2001.0281.
  • Mazahery H, Stonehouse W, Delshad M, Kruger M, Conlon C, Beck K, von Hurst P. Relationship between long chain n-3 polyunsaturated fatty acids and autism spectrum disorder: systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients. 2017;9(2):155. doi:10.3390/nu9020.
  • Ooi YP, Weng S-J, Jang LY, Low L, Seah J, Teo S, Ang RP, Lim CG, Liew A, Fung DS, et al. Omega-3 fatty acids in the management of Autism Spectrum Disorders: Findings from an open-label pilot study in Singapore. Eur J Clin Nutr. 2015;69(8):969–971. doi:10.1038/ejcn.2015.28.
  • McKee SE, Grissom NM, Herdt CT, Reyes TM. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams. Faseb J. 2017;31(6):2352–2363. doi:10.1096/fj.201601172R.
  • O'Neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet. 2014;5:289.
  • Medici V, Shibata NM, Kharbanda KK, Islam MS, Keen CL, Kim K, Tillman B, French SW, Halsted CH, LaSalle JM, et al. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics. 2014;9(2):286–296. doi:10.4161/epi.27110.
  • Ash JA, Velazquez R, Kelley CM, Powers BE, Ginsberg SD, Mufson EJ, Strupp BJ. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis. 2014;7032–42. doi:10.1016/j.nbd.2014.06.001.
  • Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet. 2011;20(9):1687–1696. doi:10.1093/hmg/ddr044.
  • Delaney C, Garg SK, Fernandes C, Hoeltzel M, Allen RH, Stabler S, Yung R. Maternal diet supplemented with methyl-donors protects against atherosclerosis in F1 ApoE(-/-) mice. PLoS One. 2013;8(2):e56253. doi:10.1371/journal.pone.0056253.
  • Giudicelli F, Brabant AL, Grit I, Parnet P, Amarger V. Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet. PLoS One. 2013;8(7):e68268. doi:10.1371/journal.pone.0068268.
  • Degroote S, Hunting D, Takser L. Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring. Neurotoxicol Teratol. 2018;66132–138. doi:10.1016/j.ntt.2017.12.008.
  • Tran PV, Kennedy BC, Lien YC, Simmons RA, Georgieff MK. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol. 2015;308(4):276–282.
  • Kaminsky Z, Wang SC, Petronis A. Complex disease, gender and epigenetics. Ann Med. 2006;38(8):530–544.
  • Marrocco J, McEwen BS. Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci. 2016;18(4):373–383.
  • Lai X, Wu X, Hou N, Liu S, Li Q, Yang T, et al. Vitamin A deficiency induces autistic-like behaviors in rats by regulating the RARβ-CD38-oxytocin axis in the hypothalamus. Mol Nutr Food Res. 2018;62:1700754. doi:10.1002/mnfr.201700754.
  • DeVilbiss EA, Magnusson C, Gardner RM, Rai D, Newschaffer CJ, Lyall K, et al. Antenatal nutritional supplementation and autism spectrum disorders in the stockholm youth cohort: population based cohort study. BMJ. 2017;359:4273.
  • Raghavan R, Riley AW, Volk H, Caruso D, Hironaka L, Sices L, Hong X, Wang G, Ji Y, Brucato M, et al. Maternal multivitamin intake, plasma folate and vitamin B12 levels and autism spectrum disorder risk in offspring. Paediatr Perinat Epidemiol. 2018;32(1):100–111. doi:10.1111/ppe.12414.
  • Strøm M, Granström C, Lyall K, Ascherio A, Olsen SF. Research Letter: Folic acid supplementation and intake of folate in pregnancy in relation to offspring risk of autism spectrum disorder. Psychol Med. 2018;48(6):1048–1054. doi:10.1017/S0033291717002410.
  • Lange KW, Hauser J, Reissmann A. Gluten-free and casein-free diets in the therapy of autism. Curr Opin Clin Nutr Metab Care. 2015;18(6):572–575. doi:10.1097/MCO.0000000000000228.
  • Hopf KP, Madren E, Santianni KA. Use and perceived effectiveness of complementary and alternative medicine to treat and manage the symptoms of autism in children: a survey of parents in a community population. J Altern Complement Med. 2016;22(1):25–32. doi:10.1089/acm.2015.0163.
  • Schmidt RJ, Tancredi DJ, Ozonoff S, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tassone F, Hertz-Picciotto I. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Am J Clin Nutr. 2012;96(1):80–89. doi:10.3945/ajcn.110.004416.
  • Braun JM, Froehlich T, Kalkbrenner A, Pfeiffer CM, Fazili Z, Yolton K, Lanphear BP. Brief report: are autistic-behaviors in children related to prenatal vitamin use and maternal whole blood folate concentrations? J Autism Dev Disord. 2014;44(10):2602–2607. doi:10.1007/s10803-014-2114-x.
  • Surén P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA. 2013;309(6):570–577. doi:10.1001/jama.2012.155925.
  • Levine SZ, Kodesh A, Viktorin A, Smith L, Uher R, Reichenberg A, Sandin S. Association of maternal use of folic acid and multivitamin supplements in the periods before and during pregnancy with the risk of autism spectrum disorder in offspring. JAMA Psychiatry. 2018;75(2):176–184. doi:10.1001/jamapsychiatry.2017.4050.
  • Wang M, Li K, Zhao D, Li L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: a meta-analysis. Mol Autism. 2017;8:51.
  • Steenweg-de Graaff J, Ghassabian A, Jaddoe VW, Tiemeier H, Roza SJ. Folate concentrations during pregnancy and autistic traits in the offspring. The Generation R Study. Eur J Public Health. 2015;25(3):431–433. doi:10.1093/eurpub/cku126.
  • Nilsen RM, Surén P, Gunnes N, Alsaker ER, Bresnahan M, Hirtz D, Hornig M, Lie KK, Lipkin WI, Reichborn-Kjennerud T, et al. Analysis of self-selection bias in a population-based cohort study of autism spectrum disorders. Paediatr Perinat Epidemiol. 2013;27(6):553–563. doi:10.1111/ppe.12077.
  • Virk J, Liew Z, Olsen J, Nohr EA, Catov JM, Ritz B. Preconceptional and prenatal supplementary folic acid and multivitamin intake and autism spectrum disorders. Autism. 2016;20(6):710–718. doi:10.1177/1362361315604076.
  • James SJ, Melnyk S, Jernigan S, Pavliv O, Trusty T, Lehman S, et al. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am J Med Genet B Neuropsychiatr Genet. 2010;153(6):1209–1220.
  • Sun C, Zou M, Zhao D, Xia W, Wu L. Efficacy of folic acid supplementation in autistic children participating in structured teaching: an open-label trial. Nutrients. 2016;8(6):337. doi:10.3390/nu8060337.
  • Frye RE, Slattery J, Delhey L, Furgerson B, Strickland T, Tippett M, Sailey A, Wynne R, Rose S, Melnyk S, et al. Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial. Mol Psychiatry. 2018;23(2):247–256. doi:10.1038/mp.2016.168.
  • Schmidt RJ, Tancredi DJ, Krakowiak P, Hansen RL, Ozonoff S. Maternal intake of supplemental iron and risk of autism spectrum disorder. Am J Epidemiol. 2014;180(9):890–900. doi:10.1093/aje/kwu208.
  • Cusick SE, Georgieff MK, Rao R. Approaches for reducing the risk of early-life iron deficiency-induced brain dysfunction in children. Nutrients. 2018;10(2):227. doi:10.3390/nu10020227.
  • Schmidt RJ, Hansen RL, Hartiala J, Allayee H, Schmidt LC, Tancredi DJ, Tassone F, Hertz-Picciotto I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22(4):476–485. doi:10.1097/EDE.0b013e31821d0e30.
  • Lundqvist A, Johansson I, Wennberg A, Hultdin J, Högberg U, Hamberg K, Sandström H. Reported dietary intake in early pregnant compared to non-pregnant women - a cross-sectional study. BMC Pregnancy Childbirth. 2014;14(1):373. doi:10.1186/s12884-014-0373-3.
  • Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW, Ruocco F, Begum U, Guariglia SR, Brown WT, Junaid MA, et al. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS One. 2014;9(7):e101674doi:10.1371/journal.pone.0101674.
  • Elnenaei MO, Chandra R, Mangion T, Moniz C. Genomic and metabolomic patterns segregate with responses to calcium and vitamin D supplementation. Br J Nutr. 2011;105(1):71–79. doi:10.1017/S0007114510003065.
  • Achour O, Elmtaoua S, Zellama D, Omezzine A, Moussa A, Rejeb J, Boumaiza I, Bouacida L, Rejeb NB, Achour A, et al. The C677T MTHFR genotypes influence the efficacy of B9 and B12 vitamins supplementation to lowering plasma total homocysteine in hemodialysis. J Nephrol. 2016;29(5):691–698. doi:10.1007/s40620-015-0235-8.
  • Zhang Z, Li S, Yu L, Liu J. Polymorphisms in vitamin D receptor genes in association with childhood autism spectrum disorder. Dis Markers. 2018;20187862892doi:10.1155/2018/7862892.
  • Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–193. doi:10.1007/s12264-017-0100-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.